Compressions and Expansions: Liquids

The isothermal compressions of solutions and liquids have been extensively studied and the subject has a remarkable history. The term compression, symbol K describes the sensitivity of the volume of a system to an isothermal change in pressure, $(\partial V / \partial p)$. Reference is usually made to the voyage made by HMS Challenger and the report of experiments undertaken by Tait into the compression of water [1-3]. Kell summarises various equations which have been proposed describing the isothermal dependence of the molar volume of water on pressure [4]; see also references [5,6].

The dependence of the volume of water (ℓ) at low pressures and at a given temperature on pressure can be represented by equation (a) where A and B are constants.

$$\frac{[V(\text{ref}) - V]}{V(\text{ref})} \cdot p = A / (B + p) \quad (a)$$

Here $V(\text{ref})$ is the volume ‘at zero pressure’, usually ambient pressure (i.e. approx 10^5 N m^{-2}). This equation often called the Tait equation [4] has the form shown in equation (b).

$$-(1/V^0) \cdot (\partial V / \partial p) = A / (B + p) \quad (b)$$

Alternatively [4] $V = V^0 [1 - A \cdot \ln((B + p)/B)]$ (c)

The challenge of measuring the isothermal compression of liquids has been taken up by many investigators; e.g. references [7-12]. The isothermal compressions of a liquid K_T is defined by equation (d) [13].

$$K_T = -(\partial V / \partial p)_T \quad (d)$$

The isothermal compressibility is given by equation (e) [14].

$$\kappa_T = -V^{-1} \cdot (\partial V / \partial p)_T \quad (e)$$

For all thermodynamic equilibrium states, both K_T and κ_T are positive variables. A related variable is the isochoric thermal pressure coefficient, $(\partial p / \partial T)_V$ [15].

We develop the story in the context of systems containing two liquid components. For a closed system containing n_1 and n_2 moles of chemical substances 1 and 2, the Gibbs energy is a dependent variable and the
variables \([T, p, n_1, n_2] \) are the independent variables. Temperature \(T \) is the thermal potential; pressure \(p \) is the mechanical variable. The number of thermodynamic variables necessary to define the system is established using the Gibbs Phase Rule [16]. For a closed system (at defined \(T \) and \(p \)) at thermodynamic equilibrium the composition/organisation is represented by \(\xi^{eq} \). The affinity for spontaneous change is zero consistent with the Gibbs energy being a minimum; equation (f).

\[
A = -(\partial G / \partial \xi^{eq})_{T,p} = 0 \tag{f}
\]

The Gibbs energy, volume and entropy of a solution at equilibrium are state variables. We contrast these properties with those properties which are associated with a process (pathway). Thus we contrast the state variable \(V \) with an unspecified compression of a solution. We need to define the path followed by the system when the pressure is changed. The Gibbs energy of a closed system at thermodynamic equilibrium (where the affinity for spontaneous change is zero and where the molecular composition/organisation is characterised by \(\xi^{eq} \)) is described by equation (g).

\[
G = G[T, p, n_1, n_2, A = 0] \tag{g}
\]

The same state is characterised by the equilibrium volume and equilibrium entropy by equations (h) and (i) respectively.

\[
V = V[T, p, n_1, n_2, A = 0] \tag{h}
\]

\[
S = S[T, p, n_1, n_2, A = 0] \tag{i}
\]

We use two intensive variables, \(T \) and \(p \), in the definition of extensive variables \(G, V \) and \(S \). When the pressure is increased by finite increments from \(p \) to \((p + \Delta p) \), the volume changes in finite increments from \(V \) to \((V + \Delta V) \). For an important pathway, the temperature is constant. However to satisfy the condition that the affinity for spontaneous change \(A \) is zero, the molecular organisation/composition \(\xi \) changes. The volume at pressure \((p + \Delta p) \) is defined using equation (j).

\[
V = V[T, (p + \Delta p), n_1, n_2, A = 0] \tag{j}
\]

In principle we plot the volume as a function of pressure at constant temperature, \(n_1, n_2 \), and at ‘\(A = 0 \)’. The gradient of the plot defined by
equation (h) yields the equilibrium isothermal compression, $K_T(A=0)$; equation (k)

$$K_T(A=0) = -(\partial V / \partial p)_{T,A=0} \quad (k)$$

$K_T(A=0)$ characterises the state defined by the set of variables, $[T,p,n_1,n_2,A=0]$.

We turn our attention to another property starting with a system having a volume defined by equation (h). The system is perturbed by a change in pressure from p to $(p + \Delta p)$ in an equilibrium displacement. However on this occasion we require that the entropy of the system remains constant at a value defined by equation (i). In principle we plot the volume V as a function of pressure at constant n_1, n_2, at ‘A=0’ and at a constant entropy defined by equation (i). The gradient of the plot at the point where the volume is defined by equation (g) yields the equilibrium isentropic compression $K_S(A=0)$; equation (l) where isentropic = adiabatic and ‘at equilibrium’.

$$K_S(A=0) = -(\partial V / \partial p)_{S,A=0} \quad (l)$$

The equilibrium state characterised by $K_S(A=0)$ is defined by the variables $[T,p,n_1,n_2,A=0]$. In other words an isentropic volumetric property describes a solution defined in part by the intensive variables T and p. Significantly the condition on the partial derivative in equation (l) is an extensive variable, entropy. For a stable phase K_S is positive.

The arguments outlined above are repeated with respect to both isobaric equilibrium expansions $E_p(A=0)$ and isentropic equilibrium expansions, $E_S(A=0)$; equations (m) and (n).

$$E_p(A=0) = -(\partial V / \partial T)_{p,A=0} \quad (m)$$

$$E_S(A=0) = -(\partial V / \partial T)_{S,A=0} \quad (n)$$

The (equilibrium) volume intensive isothermal κ_T and isentropic κ_S compressibilities are defined by equations (o) and (p).

$$\kappa_T = -(1/V) \cdot (\partial V / \partial p)_T = K_T \cdot V^{-1} \quad (o)$$

$$\kappa_S = -(1/V) \cdot (\partial V / \partial p)_S = K_S \cdot V^{-1} \quad (p)$$
In 1914 Tyrer reported isentropic and isothermal compressibilities for many liquids [9]. Equations (q) and (r) define two (equilibrium) expansibilities, isentropic and isobaric, volume intensive properties.

\[\alpha_s = \frac{1}{V} \frac{\partial V}{\partial T} \]
\((q) \)

\[\alpha_p = \frac{1}{V} \frac{\partial V}{\partial p} \]
\((r) \)

Rowlinson and Swinton state that the property \(\alpha_s \) is ‘of little importance’ [17]. The isobaric heat capacity per unit volume \(\sigma \) is the ratio \([C_p/V] \). A property of some importance is the difference between compressibilities, \(\delta \); equation (s).

\[\delta = \kappa_T - \kappa_s = \frac{T \cdot [\alpha_p]^2}{V} = \frac{T \cdot [\alpha_p]^2}{\sigma} \]
\((s) \)

The property \(\sigma \) is given different symbols and names; e.g. volumetric specific heat. Here we identify \(\sigma \) as the thermal (or, heat) capacitance. The property \(\epsilon \) is the difference between isobaric and isentropic expansibilities; equation (t).

\[\epsilon = \alpha_p - \alpha_s = \kappa_T \cdot \sigma / T \cdot \alpha_p \]
\((t) \)

The Newton–Laplace equation is the starting point for the determination of isentropic compressibilities of liquids using sound speeds and densities; equation (u).

\[u^2 = (\kappa_s \cdot \rho)^{-1} \]
\((u) \)

The isentropic condition on \(\kappa_s \) means that as a sound wave passes through a liquid the pressure and temperature fluctuate within each microscopic volume but the entropy remains constant.

Footnotes

Int. J. Thermophys., 1988, 9, 941.
[10] H. E. Eduljee, D. M. Newitt and K. E. Weale,
[13] $K_T = \frac{[m^3]}{[N \cdot m^{-2}]} = [m^3 \text{ Pa}^{-1}]$
[14] $\kappa_T = \frac{1}{[m^3]} \cdot \frac{[m^3]}{[Pa]} = [\text{Pa}^{-1}]$
[15] $(\partial p / \partial T)_v = [\text{Pa} \text{ K}^{-1}]$
[16] Phase Rule; P = 1; C = 2. Hence F = 3.
Then we define T, p and mole fraction composition.