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Abstract

This paper proposes a Bayesian approach to explore money-output
causality within a logistic smooth transition VECM framework. Our
empirical results provide substantial evidence that the postwar US
money-output relationship is nonlinear, with regime changes mainly
governed by the lagged inflation rates. More importantly, we ob-
tain strong support for long-run non-causality and nonlinear Granger-
causality from money to output. Furthermore, our impulse response
analysis reveals that a shock to money appears to have negative accu-
mulative impact on real output over the next fifty years, which calls
for more caution when using money as a policy instrument.

∗This paper has benefited from the helpful discussions with Stephen Hall, Gary Koop,
Roberto Leon-Gonzalez, Roderick McCrorie, Emi Mise and Rodney Strachan. Any re-
maining errors are the author’s responsibility. Financial support from the Department of
Economics, University of Leicester is gratefully acknowledged.
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1 Introduction

From the late 1980s through the early 2000s, with the prevalence of interest

rate based Taylor rule (Taylor, 1993), the role of money (monetary base or

monetary aggregates) had been deemphasized in much research on monetary

policy and macroeconomic modeling (see, e.g., Barro (1989), Taylor (1999),

Clarida, Gaĺı and Gertler (2000)). However, there has been a renewed in-

terest in the effect of money in recent years. Meltzer (2001), Nelson (2002,

2003), Duca and VanHoose (2004), among others, raise the issue that money

constitutes a crucial channel for the transmission mechanism of monetary

policy, and the role of money cannot be simply replaced by any other policy

instruments. Moreover, we find money reemerges as an important variable

of concern in a number of most recent empirical monetary analysis (for in-

stance, Wang and Wen (2005), Sims and Zha (2006), Hill (2007), to mention

a few).1

This paper contributes to the discussion on whether money matters by

revisiting an old topic: examining the causal effects from money to output

in the postwar US data.2 However, the current research departs from the

literature in two main aspects. First, to capture the possible regime changes

in US monetary policy, we adopt a smooth transition vector error correction
1As of the time of writing, Federal Reserve, the European Central Bank, Bank of

England and central banks from Canada and Switzerland jointly announced cash injection
plans to lessen the credit squeeze triggered by the sub-prime mortgages losses. Although
the consequence of the intervention is yet to know, this unprecedent operation clearly
implies that money remains a vital instrument for monetary policy.

2The money-output relationship has been intensively investigated in the literature.
However, there is much less consensus about how money affects output (see, e.g. Sims
(1972, 1980), Stock and Watson (1989), King and Watson (1997), Coe and Nason (2004)).
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model (STVECM) incorporating cointegration of an unknown form. Second,

we develop a simple Bayesian approach to investigating the causal effects

from money to output.

Single-equation smooth transition error correction models have been

widely used in the literature to capture the possible nonlinear money-output

relationship (Lütekepohl, Teräsvirta and Wolters (1999), Teräsvirta and

Eliasson (2001), Escribano (2004), Haug and Tam (2007), to mention a

few). However, considering the interplay between endogenously determined

money, interest rates and the ultimate policy targets output and inflation,

we believe STVECM can be more effective in capturing both the long run

and short run dynamics in the linkages among all the variables. Perhaps

the reason why researchers have not followed this route is due to the lack of

a fully developed statistics tool that can directly test the cointegration (or

no cointegration) null in a nonlinear VECM against its both linear and non-

linear alternatives (see Seo (2004), Seo (2006), Kapetanios, Shin and Snell

(2006) for details). In the literature, only Rothman, van Dijk and Frances

(2001) apply a multivariate STVECM framework which is closest to us to

study the money-output relationship.3 Yet, Rothman, van Dijk and Frances

(2001) pre-impose a theory based long-run cointegrating relationship in their

estimation. While recognizing that the actual money-output interrelation is

rather complex, unlike Rothman, van Dijk and Frances (2001), we let both

the cointegration rank and cointegrating vectors to be determined by the

data.
3Rothman, van Dijk and Frances (2001) test Granger causality from money to output

in a classical context involving rolling window forecasting.
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Our estimation technique is Bayesian. Specifically, we extend the Bayesian

cointegration space approach introduced in Strachan and Inder (2004) and

collapsed Gibbs sampler developed in Koop, Leon-Gonzalez and Strachan

(2005) into the nonlinear framework. Our method jointly captures the equi-

librium and presence of nonlinearity in the STVECM in a single step. Com-

pared with the available classical estimation techniques which often require

multiple steps and Taylor expansions, our approach is less susceptible to the

sequential testing and inaccurate approximation problems. Furthermore,

the commonly used maximum likelihood estimation in classical works is

subject to the multi-mode problem caused by the nuisance parameters in

the transition function of the STVECM. Yet, jagged likelihood functions do

not create any particular problems in our Gibbs sampling scheme.

Considering the large model we employed is subject to the criticism of

being too parameter rich, we use Bayes Factors for model comparison in

order to reward more parsimonious models.4 Alternative models are spec-

ified by placing zero restrictions on certain parameters of the unrestricted

STVECM. Our approach to examining whether money long-run causes out-

put is in spirit to that in Hall and Wickens (1993), Hall and Milne (1994)

and Granger and Lin (1995). With respects to the Granger causality test

from money to output, aside from considering if money directly enters the

output equation as described in Rothman, van Dijk and Frances (2001), we

look into whether money indirectly affects output through the channels of

price and interest rate.
4Bayes Factors include an automatic penalty for more complex models (see Koop and

Potter, (1999a, 1999b) for details).
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An important finding of our study is that the postwar US money-output

relationship is nonlinear, with the regime shifting mainly driven by the

lagged inflation rates. In terms of triggering regime changes, compared

with the key role played by inflation rates, the role of lagged annual growth

rates of output is less important, while the roles played by changes in oil

prices, money and interest rates are nearly negligible. However, it is worth

stressing that, in our study, nonlinear models consistently outperform linear

models.

We find substantial evidence that money does not long-run cause out-

put in the postwar US data. Additionally, consistent with the in-sample

testing results in Rothman, van Dijk and Frances (2001), our studies show

that money is nonlinearly Granger-causal for output. The impulse response

analysis shows that the dynamic paths of output given a shock to money is

rather complex. Most strikingly, we find that the accumulated effect of a

shock to money is negative on real output in the next 50 years, regardless of

the size and sign of the initial shock. This result calls for a word of caution

when using money as a policy instrument.

The outline of this paper is as follows. Section 2 describes the model and

the Bayesian estimation technique. Section 3 reports the empirical results.

Section 4 concludes.

2 STVECM Model and Bayesian Inference

Following a majority of empirical work (for example, Lütekepohl, Teräsvirta

and Wolters (1999), Rothman, van Dijk and Frances (2001)), we investigate
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the money-output relationship in a system of output, money, prices and

interest rates.

We use the monthly US data spanning from 1959:1 to 2006:12. The

data are obtained from the database of Federal Reserve Bank of St. Louis.

Various measures of output, money, prices and interest rates are used in

the literature. In this paper, we adopt the seasonally adjusted industrial

production index (it), the seasonally adjusted M2 money stock (mt), the

producer price index for all commodities (pt), and the secondary market

rate on 3-month Treasury bills (rt) for the measures of output, money, prices

and interest rates, respectively. All variables are in logarithms except for

interest rates which are in percent.

To catch the possible regime changes in US monetary policy, we model

the interrelationship among output, money, prices and interest rates in a

STVECM.5 Let yt = [it mt pt rt], the STVECM of the 1×4 vector time

series process yt, t=1,...,T, conditioning on the p observations t= -p+1,...,0,

can be specified as

4yt =yt−1βα+ ξ + Σp
h=14yt−hΓh

+ F (zt)(yt−1β
zαz + ξz + Σp

h=14yt−hΓz
h) + εt

(1)

εt is a Gaussian white noise process where E(εt) = 0, E(ε′sεt) = Σ for s = t,

and E(ε′sεt) = 0 for s 6= t. Note that 4yt = yt−yt−1. The dimensions of Γh

and Γz
h are n× n, and the dimensions of β, α′, βz, and αz′ are n× r. Since

5The possible regime changes in US monetary policy have been well documented in
the literature (see, e.g., Weise (1999), Clarida, Gaĺı and Gertler (2000), Leeper and Zha
(2003)).

6



we are using monthly data, without loss of generality, we set p = 6.

In model (1), the dynamics of the regime changes are assumed to be

captured by the first order logistic smooth transition function introduced in

Granger and Teräsvirta (1993) and Teräsvirta (1994):

F (zt) = {1 + exp[−γ(zt − c)/σ]}−1 (2)

where zt is the transition variable determining the regimes. Note that zt

can be any exogenous or endogenous variables of interest. In this paper,

following Rothman, van Dijk and Frances (2001), we set zt to be the lagged

annual growth rates of output, the lagged annual growth rates of money,

the lagged annual inflation rates, the lagged annual changes in interest rates

and the lagged annual growth rates in oil prices, respectively.6 In particular,

we allow the lag length of the transition variables to vary from 1 to 6.

The transition function F (zt) is bounded by 0 and 1. As convention,

we define F (zt) = 0 and F (zt) = 1 corresponding to the lower and upper

regimes, respectively. In function (2), the smoothing parameter γ (which

is non-negative) determines the speed of the smooth transition. Observe

that when γ → ∞, the transition function becomes a Dirac function, then

model (1) becomes a two-regime threshold VECM model along the lines of

Tong (1983). When γ = 0, the logistic function becomes a constant (equal

to 0.5), and the nonlinear model (1) collapses into a linear VECM. The

transition parameter c is the threshold around which the dynamics of the
6Rothman, van Dijk and Frances (2001) point out that using annual growth rates

instead of monthly changes as plausible transition variables is in accord with the commonly
accepted perception that the regimes in the money-output relationship are quite persistent.
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model change. The value for the parameter σ is chosen by the researcher

and could reasonably be set to one. In this study, we set σ equal to the

standard deviation of the process zt. This effectively normalizes γ such that

we can give γ an interpretation in terms of the inverse of the number of

standard deviations of zt. The transition from one extreme regime to the

other is smooth for reasonable values of γ.

Observe that model (1) encompasses a set of models distinguished by the

number of the long-run equilibrium relationships, the cointegrating vectors,

the order of the autoregressive process, the existence of the nonlinear effects,

the choice of the transition variable, and whether Granger non-causality or

long-run non-causality from money to output is imposed.

2.1 Likelihood Function

Koop, Leon-Gonzalez and Strachan (2005) develop an efficient collapsed

Gibbs sampler for the VECM estimation in linear contexts, which provides

great computation advantages over conventional methods. To incorporate

the collapsed Gibbs sampler into our posterior simulation algorithm, follow-

ing Koop, Leon-Gonzalez and Strachan (2005), we obtain two representa-

tions of the likelihood .

To start with, restricting β and βz to be semi-orthogonal, we write (1)

as

4yt = x1,t−1βα+ x2,tΦ + F (zt)(x1,t−1β
zαz + x2,tΦz) + εt (3)

where x1,t−1 = yt−1, x2,t = (1,4yt−1, ...,4yt−p), Φ = (ξ′,Γ′
1, ...,Γ

′
p)

′, Φz =

(ξz′ ,Γz′
1 , ...,Γ

z′
p )′. To simplify the notation, we then define the T × n ma-
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trix X0 = (4y′1,4y′2, ...,4y′T )′ and the T × 2(r + 1 + np) matrix X =

(X1β X2 F zX1β
z F zX2), where X1 = (x′1,1, x′1,2, ..., x′1,T )′, X2 =

(x′2,1, x′2,2, ..., x′2,T )′, and F z = diag(F (z1), F (z2), ..., F (zT )). Next, we

set B = (α′ Φ′ αz′ Φz′)′, and stack the error terms εt in the T ×n matrix

E, where E = (ε′1, ε
′
2, ..., ε

′
T )′. Finally, we rewrite model (1) as

X0 = X1βα+X2Φ + F zX1β
zαz + F zX2Φz + E = XB + E (4)

It is seen that the likelihood function of (4) is

L(y|Σ, B, β, βz, γ, c) ∝ |Σ|−
T
2 exp{−1

2
trΣ−1E′E} (5)

Vectorizing (4), model (1) can be transformed into

x0 = xb+ e (6)

where x0 = vec(X0), x = In ⊗X, b = vec(B), and e = vec(E). Note that

E(ee′) = Ve = Σ⊗ IT .

Given that
trΣ−1E′E = e′(Σ−1 ⊗ IT )e

= s2 + (b− b̂)′V −1(b− b̂)
(7)

where s2 = x′0Mvx0,Mv = Σ−1⊗[IT−X(X ′X)−1X ′], b̂ = [In⊗(X ′X)−1X ′]x0

and V = Σ⊗ (X ′X)−1. The likelihood (5) can be written as

L(y|Σ, B, β, βz, γ, c) ∝ |Σ|−
T
2 exp{−1

2
[s2 + (b− b̂)′V −1(b− b̂)]} (8)
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Observe that the likelihood of b is Normal conditional on all other parame-

ters.

With a Normal form for the likelihood of b, we next obtain a Normal

form for the likelihood of the cointegration vectors.

For any positive definite matrix κ and κz of rank r, we have βα =

βκκ−1α = β∗α∗ and βzαz = βzκzκz(−1)αz = βz∗αz∗, whereβ∗ = βκ and

α∗ = κ−1α, β∗z = βzκz and α∗z = κz(−1)αz. Moreover, restricting κ =

(αα′)
1
2 = (β∗′β∗)

1
2 , and κz = (αzαz′)

1
2 = (βz∗′βz∗)

1
2 , we find α∗′ and αz∗′

are semi-orthogonal if β and βz are semi-orthogonal. Therefore, we can

reexpress equation (4) as

X0 −X2Φ− F zX2Φz = X1βα+ F zX1β
zαz + E

= X1β
∗α∗ + F zX1β

∗zα∗z + E

(9)

Setting x̃0 = vec(X0 − X2Φ − F zX2Φz), x̃ = [α∗′ ⊗ X1 α∗z′ ⊗ F zX1],

b̃ = [vec(β∗)′ vec(β∗z)′]′, we find equation (9) can be written as

x̃0 = x̃b̃+ e (10)

where the dimension of x̃0 is Tn × 1, the dimension of x̃ is Tn × 2nr, and

the dimension of b̃ is 2nr × 1.

Thus, we find the second likelihood representation from (10) is

L(y|Σ, B, β, βz, γ, c) ∝ |Σ|−
T
2 exp{−1

2
[s2β∗+(bβ∗−b̂β∗)′V −1

β∗ (bβ∗−b̂β∗)]} (11)

where s2β∗ = (x̃0 − x̃b̂β∗)′(Σ−1 ⊗ IT )(x̃0 − x̃b̂β∗), b̂β∗ = (x̃′x̃)−1x̃′x̃0, V −1
β∗ =
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x̃′(Σ−1 ⊗ IT )x̃.

2.2 Priors

Although the most commonly elicited quantity money demand equation in-

dicates that the velocity of money is stationary (see, e.g., Rothman, van

Dijk and Frances (2001), Teräsvirta and Eliasson (2001)), empirical work

does not rule out the possibility that the number of the long run cointe-

gration relationships and the cointegration vectors are in fact data-based

(see, e.g., Ambler (1989), Friedman and Kuttner (1992), Swanson (1998)).

Furthermore, it is impossible to impose meaningful informative priors for

the coefficients of the long run/short run adjustment in the VECM nor for

parameters that indicates the speed of regime changes in the transition func-

tion. Hence, we use uninformative or weakly informative priors to allow the

data information to dominate any prior information. To start with, we as-

sume that all possible models are to be independent and, a priori, equally

likely.

Before setting our priors for the parameters, it is worthwhile to stress

the identification problems in our model setting. Note that both the linear

VECM and smooth transition VAR model (STVAR) suffer from identifica-

tion problems.

As well documented in the literature, a linear VECM suffers from both

the global and local nonidentifications of the cointegration vectors and pa-

rameters corresponding to the long-run adjustments. In Bayesian literature,

a great effort has been made to surmount this problem. In earlier research,

to set uninformative prior for the cointegration vector β, researchers first
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normalize β into β = [Ir V ′]′, then impose uninformative prior on the

sub-vector V . However, as argued by Strachan and van Dijk (2004), this

approach has an undesirable side-effect that it favors the regions of cointe-

gration space where the imposed linear normalization is actually invalid. In

most recent work, researchers have worked on putting uninformative priors

on the cointegration space (see, e.g., Strachan (2003), Strachan and Inder

(2004), Villani (2005)). As noted in Koop, Strachan, van Dijk and Villani

(2006), since only the space of the cointegration vector can be derived from

the data, it is better to elicit priors in terms of the cointegration space than

in terms of cointegration vectors.

With regards to the smooth transition part of the model, as explained in

Lubrano (1999a), since Bayesians have to integrate over the whole domain

of the smooth parameter, the identification problem that arises from γ = 0

(the so called Davies’ problem (Davies, 1977), see Koop and Potter (1999a)

for further explanation) becomes more serious in the Bayesian context than

in classical framework. Bauwens, Lubrano and Richard (1999) and Lubrano

(1999a, 1999b) introduce a number of prior settings to solve the problem.

Following Gefang and Strachan (2007), we tackle this problem by simply

setting the prior distribution of γ as Gamma.

The nonidentification problem faced by the STVECM is slightly differ-

ent. Although the Davies’ problem remains relatively the same as in the

STVAR, the problem in identifying the cointegration vector and its adjust-

ment parameters is subject to the additional influence from the transition

parameters. Here the cointegration vectors come forth in two combinations,

namely βα and βzαz. However, this difference does not render the iden-
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tification problem more complicated than what we have to deal with in a

linear VECM or a STVAR. As long as we can rule out the possibility that

γ = 0, we can identify β, βz, α and αz sequentially once we choose a way to

normalize β and βz.

In the rest of the section, we construct prior distributions for all the

parameters. With regards to the variance covariance matrix of the error

terms, following Zellner (1971), we set standard diffuse prior for Σ.

p(Σ) ∝ |Σ|−
n+1

2

For the purpose of our research, we need to calculate posterior model

probabilities to compare across different possible models. As the dimension

of b changes across different model specifications, to have the Bayes Factors

well defined, we are not allowed to set flat prior for b (see Bartlett (1957)

and O’Hagan (1995) for details). Therefore, following Strachan and van Dijk

(2006), we set weakly informative conditional proper prior for b as:

P (b|Σ, β, γ, c,Mω) ∝ N(0, η−1Ik)

where b = vec(B), k = 2(r + 1 + np). η is the shrinkage prior as proposed

by Ni and Sun (2003). As practiced in Koop, Leon-Gonzalez and Strachan

(2006), we draw η from the Gibbs sampler. In our case, we set the relatively

uninformative prior distribution of η as Gamma with mean µη, and degrees

of freedom νη, where µη=10, νη=0.001.

Following the arguments of Koop, Strachan, van Dijk and Villani (2006),
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we elicit the uninformative prior of β and βz indirectly from the prior ex-

pressed upon the cointegration space. In particular, following Strachan

and Inder (2004), for r ∈ (0, 4), we specify β′β = Ir and βz′βz = Ir to

express our ignorance about the cointegration space.7 Moreover, in lines

with Koop, Leon-Gonzalez and Strachan (2005), we set the prior for bβ∗ as

p(bβ∗ |η) ∼ N(0, η−1I2nr) in order to obtain a Normal form for the posterior.

To avoid the Davies’ problem in the nuisance parameter space, following

Lubrano (1999a, 1999b) and Gefang and Strachan (2007), we set the prior

distribution for γ as Gamma, which exclude a priori the point γ = 0 from

the integration range. Since the nonlinear part of b can still be a vector of

zeros as γ > 0, the prior specification of γ does not render model (1) in favor

of the nonlinear effect. In empirical work, we use Gamma(1,0.001) to allow

the data information to dominate the prior of γ.

As to the prior of c, to make more sense in the context of economic

interpretation, we elicit the conditional prior of c as uniformly distributed

between the middle 80% ranges of the transition variables.

2.3 Posterior Computation

Using the priors just identified and the likelihood functions in (8) and (11),

we obtain the full conditional posteriors as follows.

Conditional on β, βz, γ, c, and b, the posterior of Σ is Inverted Wishart

(IW) with scale matrix E′E, and degree of freedom T ; Conditional on Σ,

β, βz, γ, and c, the posterior of b is Normal with mean b = V bV
−1b̂ and

7Note that the priors over the cointegration spaces of β and βz are proper. See James
(1954), Strachan and Inder (2004) for further explanation on the uniform distribution of
the cointegration space.
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covariance matrix V b = Σ⊗ (X ′X + ηIk)−1. Conditional on Σ, b, γ, and c,

the posterior of bβ∗ is Normal with mean b̄β∗ = V β∗V
−1
β∗ b̂β∗ and covariance

matrix V β∗ = [V −1
β∗ + ηInr]−1.

To obtain the conditional posterior for η, we combine the prior and

likelihood to obtain the expression

p(η|b,Σ, γ, c, y, x) ∝ η
νη+nk−2

2 exp(−
ηνη

2µη
− 1

2
b′bη) (12)

Thus with a Gamma prior, the conditional posterior distribution of η is

Gamma with degrees of freedom νη = nk + νη, and mean µη =
νηµη

νη+µηb′b .

The posterior distributions for the remaining parameters, γ and c, have

nonstandard forms. However, we can use Metropolis-Hastings algorithm

(Chib and Greenberg, 1995) within Gibbs to estimate γ, and the Griddy

Gibbs sampler (Ritter and Tanner, 1992) to estimate c.

Following Koop, Leon-Gonzalez and Strachan (2005), we construct the

collapsed Gibbs sampler as following.

1. Initialize (b,Σ, bβ , γ, c);

2. Draw Σ|b, bβ, γ, c from IW (E′E, T );

3. Draw b|Σ, bβ, γ, c from N(b, V b);

4. Calculate α∗ = (αα′)−
1
2α, αz∗ = (αzαz′)−

1
2αz;

5. Create x̃0;

6. Draw bβ∗ |Σ, b, γ, c, x̃0 from N(bβ∗ , V β∗);

15



7. construct κ = (β∗′β∗)
1
2 , calculate β = β∗κ−1. Construct α = κα∗.

Use the same procedure to derive βz and αz;

8. Draw γ|Σ, b, bβ , c using M-H algorithm;

9. Draw c|Σ, b, bβ , γ using Griddy-Gibbs sampler;

10. Repeat steps 2 to 9 for a suitable number of replications.

We consider a wide range of models to investigate the causal effects from

money to output. Alternative models are distinguished by the number of

the long run cointegration relationship, the lag length of the autoregressive

process, the existence of the nonlinear effects, and the transition variable

triggering regime changes.

Similar to Rothman, van Dijk and Frances (2001), we specify that if

money does not Granger-cause output, the lagged money variables do not

enter the equation for output, and money can not be identified as the tran-

sition variable triggering regime changes. Moreover, enlightened by Hill

(2007), we define that if money does not Granger-cause output, the lagged

money does not enter the equations for price and interest rate.8 In terms of

long-run causality, following Hall and Wickens (1993), Hall and Milne (1994)

and Granger and Lin (1995), we specify that if money does not appear in

any cointegration relationships which enter the output equation, money is

not long-run causal (or weakly causal) for output.9

8As explained in Hill (2007), the situation that A causes B and B causes C implies A
eventually causes C.

9See Hall and Wickens (1993), Hall and Milne (1994) and Granger and Lin (1995) for
details.
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Bayesian methods provide us a formal approach to evaluating the sup-

port for alternative models by comparing posterior model probabilities.

These posterior probabilities can be used to select the best model for fur-

ther inference, or to use the information in all or an important subset of the

models to obtain an average of the economic object of inference by Bayesian

Model Averaging. The posterior odds ratio - the ratio of the posterior model

probabilities - is proportional to the Bayes factor. Once we know the Bayes

factors and prior probabilities, we can compute the posterior model proba-

bilities.

The Bayes Factor for comparing one model to a second model where

each model is parameterized by ζ = (ζ1, ζ2) and ψ respectively, is

B12 =
∫
`(ζ)p(ζ)d(ζ)∫
`(ψ)p(ψ)d(ψ)

,

where `(.) is the likelihood function and p(.) is the prior density of the

parameters for each model.

If the second model nests within the first at the point ζ2 = ζ∗, then,

subject to further conditions, we can compute the Bayes factor B12 via the

Savage-Dickey density ratio (see, for example, Koop and Potter (1999a),

Koop, Leon-Gonzalez and Strachan (2006) for further discussion in this

class of models). For the simple example discussed here, the Savage-Dickey

density ratio is:

B12 =
p(ζ2 = ζ∗|Y )
p(ζ2 = ζ∗)

,

where the numerator is the marginal posterior density of ζ2 for the unre-

stricted model evaluated at the point ζ2 = ζ∗, and the denominator is the

17



prior density of ζ2 also evaluated at the point ζ2 = ζ∗.

Since the conditional posterior of b is Normal, it is easy to incorporate

the estimation of the numerator of the Savage-Dickey density ratio in the

Gibbs sampler. As to the denominator of the Savage-Dickey density ratio,

using the properties of the Gamma and Normal distributions, we derive the

marginal prior for a sub-vector of b evaluated at zeros as

{(
µη

πνη
)ω/2Γ(

ω + νη

2
)}/[Γ(

νη

2
)]

where Γ(.) is the Gamma function, and ω is the number of elements in b

restricted to be zeros.

Note that Bayes factors enable us to derive the posterior probabilities

for restricted models nested in different unrestricted models. A simple re-

striction in our application to choose is the point where all lag coefficients

are zero, i.e., Γh = Γz
h = 0, at which point we have the model with p = 0.

This restricted model is useful as it nests within all models. Once we have

the Bayes factor for each model to the zero lag model, via simple algebra

we can back out the posterior probabilities for all models.

Taking a Bayesian approach we have a number of options for obtaining

inference. If a single model has dominant support, we can model the data

generating process via this most preferred model. However, if there is con-

siderable model uncertainty then it would make sense to use Bayesian Model

Averaging and weight features of interest across different models using pos-

terior model probabilities (as suggested by Leamer (1978)).
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3 Empirical Results

In empirical work, we allow the cointegration rank of the unrestricted model

(1) to vary from 1 to 3.10 For unrestricted models with a specific cointegra-

tion rank, we allow for 5 types of possible transition variables to trigger the

regime changes, namely the lagged annual output growth, the lagged annual

money growth, the lagged annual inflation rates, the lagged annual changes

in interest rates and lagged annual growth rates in oil prices, respectively.

Among these models, both the maximal order of the autoregressive process

and longest lag length of the transition indicator are allowed to be 6. In

total, we investigate the causal effects from money to output in the postwar

US data by estimating 90 unrestricted STVECM models.

Altogether, we run 90 Gibbs sampling schemes to derive our interests

of concern. Each Gibbs sampler is run for 12,000 passes with the first

2,000 discarded. The convergence of the sequence draws is checked by the

Convergence Diagnostic measure introduced by Geweke (1992). We use the

MATLAB program from LeSage’s Econometrics Toolbox (LeSage, 1999) for

the diagnostic.

3.1 Model Comparison Results

In this section, we report the results relating to the posterior model proba-

bilities associated with a set of 2766 possible models nested in the original
10We don’t consider unrestricted models with rank 0 since they can be derived by im-

posing zero restrictions on the long-run adjustment parameters of the unrestricted models
with rank 1, 2 or 3. In addition, we rule out the possibility that the cointegration rank is
equal to 4 for that can only happen when the time series it, mt, pt and rt are stationary.

19



90 unrestricted models.11 Assuming the 2766 models are mutually inde-

pendent, in calculating the Bayes Factors, we have each of the 2766 models

receive an a priori equal weight.

We find compelling evidence that money does not long-run cause output

in the postwar US data. First, assuming all the 2766 models are mutually

independent and exhaustive, we find money long-run non-causality mod-

els jointly account for 95.16% of the posterior mass.12 Second, assuming all

models nested in the unrestricted models with the same number of cointegra-

tion ranks are independent and exhaustive, we observe that money long-run

non-causality models are predominant in each of the three cases. Specif-

ically, for models nested in the unrestricted STVECM models with only

one cointegration relationship, money long-run non-causality models jointly

account for 96.06% of the posterior probabilities; for models nested in the

unrestricted STVECM models with two cointegration relationships, overall,

money long-run non-causality models receive 97.68% of the posterior mass;

for models nested in the unrestricted STVECM models with three stationary

cointegration relationships, money long-run non-causality models altogether

get 95.16% of the posterior probability. Finally, if we assume models nested

in each of the 90 unrestricted STVECM models are independent and ex-

haustive, we find that in each cases, money long-run non-causality models
11Altogether, we examine 66 linear models and 2700 nonlinear models. Namely 6 linear

VARs, 6 linear VARs with money Granger non-causality restriction, 18 linear VECMs,
18 linear VECMs with money Granger non-causality restriction, 18 linear VECMs with
money long-run non-causality restriction, 540 nonlinear VARs, 540 nonlinear VARs with
money Granger non-causality restriction, 540 nonlinear VECMs, 540 nonlinear VECMs
with money Granger non-causality restriction, and 540 nonlinear VECMs with money
long-run non-causality restriction.

12In the remainder of the paper, we use money long-run non-causality model to indicate
the restricted model where money does not long-run cause output.
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are constantly overwhelmingly supported over other types of models.13

Assuming models nested within STVECMs with the same number of

cointegration ranks (from 1 to 3) to be exhaustive, we reports the top 10

models with the highest posterior model probabilities in table 1. Note that

the top 10 models of all the 2766 models are exactly the same as the top

10 models nested in the STVECM models with three cointegration rela-

tionships, for nonlinear models of rank 3 get nearly 100% of the posterior

mass among all the 2766 models. Table 1 reinforces the substantial support

for money long-run non-causality models. It is worth noting that the most

preferred models for all cases are nonlinear money long-run non-causality

models. Another interesting finding is that there is no pronounced model

uncertainty if we focus on all the 2766 possible models or a subset of mod-

els nested within the unrestricted STVECM models with 2 or 3 stochastic

trends. Yet, more evidence of model uncertainty emerges if we pre-impose

the cointegration rank of the unrestricted models to be 1. Finally, note

that the most preferred model among all the possible 2766 models is the

restricted money long-run non-causality STVECM of rank 3, order 6, and

with lagged 2 inflation rates as the transition indicator.

Overall, we find little support for models indicating money is not Granger-

causal for output. The posterior mass for all models (linear types of VAR,

VECM models and nonlinear types of STVAR, STVECM models) with zero

restrictions on the lagged money in the equations for output, price and

interest rates is nearly negligible. Furthermore, observing that the total
13The model comparison results for models nested in each of the 90 unrestricted

STVECM models are available upon request.
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posterior model probability associated with the unrestricted STVECMs and

the restricted money long-run non-causality STVECMs is almost 100%, we

proclaim that money nonlinearly Granger-causes output, which is in accord

with the in-sample evidence in Rothman, van Dijk and Frances (2001).

Given the substantial support for nonlinear models, it is interesting to

examine which transition variable plays a more important role in triggering

regime changes. Examining all the possible nonlinear models, we find that

lagged annual inflation rates consistently predominate over other candidate

transition variables in driving regime changes. All together, nonlinear mod-

els with lagged inflation rates as transition variables receive 89.17% of the

posterior mass. The next important triggers for regime changes are lagged

annual output growth rates. Note that nonlinear models with regime shift-

ing governed by the lagged annual output growth rates account for 10.83%

of the posterior mass. Last, compared with lagged inflation and output

growth, lagged changes in money, interest rates and oil prices play trivia

roles in triggering regime changes.

To highlight the nonlinear feature of the interrelationship among money,

output, prices and interest rates, in figure 1 we plot the values of the smooth

transition function over time for the most preferred model chosen from all the

2766 candidate models.14 Observe that although the plot is quite volatile,

the values of the transition function are almost always bounded by 0.4 and

0.6 throughout the time. This result implies that the regime changes in

the postwar US money-output relationship are quite modest, which is in

line with the findings of Primiceri (2005) and Sargent, Williams and Zha
14The whole set of the time profiles of the transition functions are available upon request.
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(2006). However, given the compelling support for nonlinear models over

linear models, it is worth stressing that we find it improper to model the

post-war US money-output relationship in linear models.

Table 2 contains the estimates of the cointegration vectors and transi-

tion parameters for the most preferred models nested in the unrestricted

STVECM models of rank 1, 2, 3, respectively. Recall that the most pre-

ferred model among the whole set of 2766 candidate models is exactly the

same most preferred model selected from all the possible models nested in

the unrestricted STVECM models of rank 3.

To aid in interpretation, in table 2, we normalize the cointegration vec-

tors on output and money, respectively. Assuming that the cointegration

rank is 1, we find the parameters for output, money and price levels appear

to have reasonable economic interpretations. For example, inflation brings

about (nominal) higher output level. Yet, it is not so straightforward to

explain why effects of interest rates are quite different between the lower

and upper regimes. Focusing on the model with 2 cointegration relation-

ships, we find that in each regimes, the first cointegrating vectors can be

explained as the (log) quasi-velocity of money as defined in Rothman, van

Dijk and Frances (2001), while it is hard to find an economic theory to ex-

plain the second long-run equilibrium relationship. For the most preferred

model among all the possible 2766 models (or the most preferred model

among all the models nested in STVECMs of rank 3), we find it even more

difficult to find a theory-based explanation for the long-run stationery in-

terrelationships. Yet, it is clear that there are enormous differences in the

cointegration vectors between the upper and lower regimes.
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The estimated values of the smoothing parameter γ presented in table 2

are relatively small. With the speed of the transition determined by γ, small

value of γ indicates that the transition between regimes is rather smooth. As

to the estimated value of c, recall that for all cases, the transition variable

is the lagged inflation rates. In our sample, the mean of inflation rates is

0.0352. Given the threshold c is greater than 0.05 for each cases, it is seen

that the upper regimes only become active when the transition variable is

very large.

Finally, it is illuminating to look into the model comparison results in the

linear framework. Assuming the 66 linear models are exhaustive, we find

that the unrestricted linear VECM of rank 3 and order 6 receives nearly

100% of the posterior mass. Thus, models denoting long-run money non-

causality are no longer supported in the linear frameworks. Furthermore, we

find unrestricted VECM of order 6 dominates money long-run non-causality

models when we pre-specify the rank of the cointegration space to be 1 or

2. Nevethless, these results prove that ignoring nonlinear effects can lead to

quite misleading conclusions, such as money is long-run causal for output.

3.2 Impulse Response Analysis

To shed further light on the causal effects from money to output, we ana-

lyze the impulse responses of output given a shock to money. The nonlinear

STVECM allows for asymmetries in the behaviour of the money-output

linkages. In this study, we are interested in two types of asymmetric effects.

First, whether positive and negative shocks to money have unbalanced ef-
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fects on real output. Second, whether big and small money shocks have

disproportionate effects.

It is acknowledged that the impulse response functions of the nonlinear

models are history- and shock- dependent (e.g. Potter (1994), Koop, Pe-

saran and Potter (1996)). We use the generalized impulse response function

proposed in Koop, Pesaran and Potter (1996) to examine the response of

output to a money shock. In particular, we examine the generalized impulse

response functions of GIP for a shock, υt, and a history, ωt−1 as follows

GIP (n, υt, ωt−1) = E[Pt+n|υt,ωt−1
]− E[Pt+n|ωt−1] (13)

where n is the time horizon. By averaging out the future shocks, in (13),

we treat the impulse responses as an average of what might happen given

what has happened. Using Bayesian approach, we calculate the general-

ized impulse responses by averaging out the history uncertainties, future

uncertainties and parameter uncertainties.

In each replication of the Gibbs Sampler after the initial burning runs, we

calculate the generalized impulse response functions for all the alternative

models as follows.

1. Randomly draw an ωt−1 in the observed sample as the history.

2. For a pre-specified shock hits money, randomly draw the corresponding

shocks hit the other three variables at time t from Σ.

3. Set the maximum horizon as n and randomly sample n+1 four by one

vectors of innovations from Σ.
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4. Calculate the expected realizations of output using the shocks calcu-

lated in step 2 and the last n innovations in step 3.

5. Calculate the shock-independent expected realizations of output using

all the n+ 1 innovations in step 3.

6. Take the difference of the results from step 4 and step 5 to generate

the impulse responses of output for the current draw.

At the end of the Gibbs sampling scheme, we derive the generalized

impulse response functions for each possible model by integrating out all

the parameter uncertainties. Note that if there is a great deal of model

uncertainty, we can also average across models to derive the impacts of

money on output weighting by the posterior model probabilities.

We set the magnitudes of the initial shocks amounting to ±1 and ±2

times the standard deviation of monthly money growth rates, namely ±1

unit and ±2 units of shocks. The time horizon of the impulse responses is

set as 600 months (50 years). Given the large number of models and four

different shocks, we only present the impulse response functions for the most

preferred model among all the 2766 models in figures 2-3. For comparison,

both the impulse response functions of output (nominal output) and real

output are provided. The following observations are noteworthy in figures

2-3.

1. Positive and negative money shocks of the same magnitude appear

to have asymmetric affects on both nominal output and real output.

Observe that the time path of the impulse responses to positive shocks
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never mirror that of the impulse responses to negative shocks.

2. Impacts on both nominal output and real output appear to vary dis-

proportionately with the size of the shock to money.

3. Impacts on nominal output appear to steadily increase in the same

direction of the initial shocks in the first 10 years. After that, the

impact responses become more volatile.

4. Compared with the responses of nominal output, the impact responses

of real output to a money shock are rather volatile. More strikingly,

the accumulated effect on real output appear to be negative in the

next 50 years after a shock to money, regardless of the size and sign

of the shock.

4 Conclusion

This paper investigates the causal effects from money to output using post-

war US data. We develop a Bayesian approach to catch the interrelationship

among money, output, prices and interest rates in a STVECM model. Dif-

ferent from similar nonlinear modeling method in the literature, we jointly

estimate the cointegration relationship and nonlinear effects in a single step

without pre-imposing any theory based restrictions.

Our model comparison results indicate that the postwar US money-

output relationship is nonlinear. Yet, we find that the transition between

regimes is rather smooth, and it is improper to use any abrupt transition

framework to model the money-output linkage. Through model compari-
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son, we find substantial evidence in favor of money long-run non-causality

for output. In addition, we find little evidence against Granger causality

from money to output. More precisely, our result strongly support that

money nonlinearly Granger-causes output during the postwar period in the

US.

Our impulse response analysis sheds further light on the nonlinear causal

effects from money to output. An important finding that leaps out is that

although a positive money shock can increase nominal output, we have to

be cautious in using money as a policy instrument, for it appears that a

shock to money will have negative accumulative effects on real output over

the next fifty years, regardless of the size and sign of the shock.
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[58] Teräsvirta, T. (1994), Specification, estimation and evaluation of
smooth transition autoregressive models, Journal of the American Sta-
tistical Association , 89(425), 208-18.
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