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Econometric models have traditionally depended of linear time-invariant
structures. Structural changes have been accommodated by postulating
structural breaks in which one locally invariant structure is succeeded
by another, or by allowing for instantaneous switching between alternative
regimes.

To accommodate structural changes of a more varied nature, it is appropriate
to pursue a wavelets analysis.

In a wavelets analysis, a temporal data sequence is decomposed into its
frequency-specific components, of which the amplitudes can vary through time.
Thus, a wavelets analysis reveals the structure of the data in both its time and
its frequency dimensions.
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Spectral Structures in Econometric Data

The aggregate temporal structure can be revealed by the time plot of the
data. The aggregate frequency composition of the data is revealed by the
periodogram.

The periodogram is the plot of the squared amplitude coefficients ρ2
j = α2

j +
β2

j ; j = 0, 1, . . . , [T/2] derived from the Fourier decomposition of the data
sequence x0, x1, . . . , xT−1, whereby the data are represented in terms of
trigonometric functions:

xt = α0 +
[T/2]∑
j=1

{αj cos(ωjt) + βj sin(ωjt)} .

Here, [T/2] is the integral part of T/2. The frequency values ωj = 2πj/T ; j =
0, 1, . . . , [T/2] are equally spaced in the interval [0, π]. There are as many
Fourier coefficients αj , βj as there are data points.

In order to decompose the data into frequency-specific components, an
appropriate set of frequency bands must be determined. The bands can be
determined in view of the periodogram of the data.
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Figure 1. International airline passengers: monthly totals (thousands of passengers)
January 1949–December 1960: 144 observations.

3



POLLOCK: Wavelets and Structural Change

0

0.1

0.2

0.3

0

−0.1

−0.2

−0.3

0 25 50 75 100 125

Figure 2. The seasonal fluctuation in the airline passenger series, represented by the
residuals from fitting a quadratic function to the logarithms of the series.
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Figure 3. The periodogram of the seasonal fluctuations in the airline passenger series.
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Figure 4. The power spectrum of the vibrations transduced from the casing of an electric

motor in the process of a routine maintenance inspection. The units of the horizontal axis

are hertz. The first peak at 16.6 hertz corresponds to a shaft rotation speed of 1000 rpm.

The prominence of its successive harmonics corresponds to the rattling of a loose shaft.
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The Fourier Analsysis of the Data:

According to the Shannon–Nyquist sampling theorem, given an appropriate
rate of sampling, a continuous signal x(t) with t ∈ [0, T ] that is limited to
the frequency interval [0, π] can be represented completely by a set of sampled
ordinates x0, x1, . . . , xT−1. Thus

x(t) =
T−1∑
j=0

ξje
iωjt =

[T/2]∑
j=0

{αj cos(ωjt) + βj sin(ωjt)} ,

where ξj = (αj − iβj)/2 and ξ−j = (αj + iβj)/2.

In that case, the Fourier ordinates ξj are from the discrete Fourier transform
of T points sampled in the time domain, and there is

x(t) =
T−1∑
j=0

ξje
iωjt ←→ ξj =

1
T

T−1∑
t=0

xte
−iωjt.
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Trigonometric Functions and Sinc Functions

Putting the expressions for the Fourier ordinates into the finite Fourier series
expansion of the time function and commuting the summation signs gives

x(t) =
T−1∑
j=0

{
1
T

T−1∑
k=0

xkeiωjk

}
eiωjt =

1
T

T−1∑
k=0

xk

T−1∑
j=0

eiωj(t−k).

The inner summation gives rise to the Dirichlet Kernel:

φ◦
n(t) =

T−1∑
t=0

eiωjt =
sin([n − 1/2]ω1t)

sin(ω1t/2)
.

Thus, the Fourier expansion can be expressed in terms of the Dirichlet kernel,
which is a circularly wrapped sinc function:

x(t) =
1
T

T−1∑
t=0

xkφ◦
n(t − k).
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Sinc Function and the Dirichlet Kernels

The Dirichlet kernel is a periodic function that is supported on the circum-
ference of a circle of length T . The sinc function is the limiting case of the
Dirichlet kernel as T → ∞. We may analyse the sinc function in lieu of the
kernel.

The sinc function is the Fourier transform of the square function φ(ω)
supported on the frequency interval [−π, π]:

φ(t) =
1
2π

∫ π

−π

eiωdω =
sin(ωt)

πt
.

Sampling this function at the integer points gives the discrete unit impulse
function δ(t). The set of impulse functions {δ(t− j); j = 0,±1,±2, . . .} at unit
displacements forms a basis for temporal sequences. The sinc function at unit
displacements forms a basis for continuous functions limited to the frequency
interval [0, π].

The condition φ(ω) = φ2(ω), which is the idempotency of the frequency-
domain function, implies that the time-domain sinc function φ(t) is its own
autocorrelation function: sinc functions at unit displacements are sequentially
othogonal.
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Figure 5. The sinc function φ(t).
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Shannon Wavelet and Scaling Functions

The basis of sinc functions at unit displacements can be replaced by a combined
basis of scaling functions φ(1)(t−2j) and wavelets ψ(1)(t−2j) that reside within
the frequency bands [0, π/2] and [π/2, π]. These are displaced versions of

φ(1)(t) =
sin(πt/2)

πt
and ψ(1)(t) =

sin(πt) − sin(πt/2)
πt

=
2
πt

cos(3πt/4) sin(πt/4).

The displacements are by two sample intervals; and the functions are both
laterally and sequentially orthogonal.

More generally, a set of functions that span the frequency interval [α, β] is
provided by displaced versions of the function

ψ(t) =
1
πt

{sin(βt) − sin(α)} =
2
πt

cos{(α + β)t/2} sin{(β − α)t/2}

=
2
πt

cos(γt) sin(δt),

where γ = (α + β)/2 is the centre of the pass band and δ = (β − α)/2 is half
its width.
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Figure 6. The scaling function φ(1)(t) (top) and the wavelet function ψ(1)(t).
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Figure 7. A wavelet within a frequency band of width π/2 running from 3π/8 to 7π/8.
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Wavelets on Finite Supports

Shannon wavelets are supported on a doubly-infinite interval, and they con-
verge slowly.

The problem of an infinite support may be overcome by circular wrapping,
which is the result of sampling in the frequency domain.

The problem of slow convergence may be overcome by defining wavelets on
finite supports. Functions with a finite support are unbounded in frequency
and, therefore, non-analytic.

The supports of the Daubechies wavelets have a width of only three sample
intervals, and they can be generated only via indefinite recursions. The recur-
sions are based on the so-called dilation equations, which express a wavelet or
scaling function at a given resolution in terms of scaling functions of twice the
resolution:

φ(t) = 21/2
M−1∑
k=0

gkφ(2t − k), ψ(t) = 21/2
M−1∑
k=0

hkφ(2t − k).

These recursions are defined by the scaling-function coefficients gk, which con-
stitute a half-band lowpass filter, and by the wavelet coefficients hk, which
constitute a half-band highpass filter.
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Figure 8. The Daubechies D4 scaling function calculated via a recursive method.
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Figure 9. The Daubechies D4 wavelet function calculated via a recursive method.
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Conditions of Orthogonality

The scaling functions displaced one from another by an even number 2m
of points are sequentially orthogonal. The conditions of orthonormality are
reflected in the filter coefficients. Thus

p0 =
M−1∑
k=0

g2
k = 1 and p2m =

∑
k

gkgk+2m = 0.

The wavelet filter coefficient obey analogous conditions of orthogonality. The
two sets of filter coefficients are mutually, i.e. laterally, orthogonal:∑

k

gkhk+2m = 0.

This condition can be realised by setting

hk = (−1)kgM−1−k, which implies that gk = (−1)k+1hM−1−k.

An example is provided by the case where M = 4. Then, there are
g0,

g1,

g2,

g3,

h0 = g3,

h1 = −g2,

h2 = g1,

h3 = −g0.
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Complementary Filters: Sequential Orthogonality

The z-transforms of the lowpass and highpass filters in the case of a filter span
of M = 4 are, respectively,

G(z) = g0 + g1z + g2z
2 + g3z

3 and

H(z) = g3 − g2z + g1z
2 − g0z

3 = −z3G(−z−1).

The corresponding autocovariance generating functions are G(z)G(z−1) =
P (z) and H(z)H(z−1) = G(−z)G(−z−1) = P (−z).

The condition of sequential orthogonality for the scaling function is equivalent
to the condition that P (z) + P (−z) = 2, which gives

G(z)G(z−1) + G(−z)G(−z−1) = G(z)G(z−1) + H(z)H(z−1) = 2.

This amounts to the condition that G(z) and H(z) constitute complementary
filters—the filter gain being 2 rather than unity.

Setting z = exp{iω} with ω ∈ [−π, π] within H(z)H(z−1) and G(−z)G(−z−1)
gives the squared gains of the filters.
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The Squared Gains of the Filters
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Figure 10. The squared gains of the complementary lowpass and highpass filters.
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Complementary Filters: Lateral Orthogonality

The cross-covariance generating function formed from the coefficients of the
highpass and lowpass filters is G(z)H(z−1) = Q(z).

The condition for lateral orthogonality is that

Q(z) + Q(−z) = G(z)H(z−1) + G(−z)H(−z−1) = 0.

Given that

G(−z) = g0 − g1z + g2z
2 − g3z

3 = −z3H(z−1) and

H(−z−1) = g3 + g2z
−1 + g1z

−2 + g0z
−3 = z−3G(z),

it follows that the condition for lateral orthogonality is automatically satisfied
by choosing G(z) and H(z) to be complementary filters.
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Figure 11. The consequence of dilating the gain functions of the complementary lowpass

and highpass filters by a factor of 2 is to create an uniform spectral density function on the

interval [−π, π] of the kind that pertains to a white-noise process.
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Spectral Dilation

The complementarity of the filters has an additional spectral implication re-
lating to the sequential orthogonality of the wavelets/scaling functions and the
corresponding filter coefficients at two-point displacements.

Let P (t) ←→ P (ω) be the autocorrelation function and its Fourier transform.
The condition that P (2t) = 0 for t ∈ {±1,±2, . . .}, which is the condition of
sequential orthogonality, is equivalent to the condition that P (ω/2) = 2 when
ω ∈ [0, π], which is that the frequency-domain function dilated by a factor of
2 has a uniform white-noise spectrum.

In fact, some account must also be taken of the negative frequency range.
Thus, the true condition is that

P (ω/2) + P (π + ω/2) = 2 for ω ∈ [−π, π].

The condition relies on the fact that the centres of P (ω) and P (π +ω) are sep-
arated by π radians. In other cases, such as that of the filter with a frequency
bandwidth of π/2, running from 3π/8 to 7π/8, i.e. with a centre at 5/8π, a
dilation by a factor of 4 is required in order to achieve a uniform spectrum.
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A Dyadic Wavelets Decomposition

There is liable to be a disparity between the frequency-limited nature of a signal
f(t) and the unbounded frequency content of wavelets on finite supports. A
synthesis based on such wavelets is bound to be approximation:

f(t) �
T−1∑
k=0

ykφ0(t − k).

The T amplitude coefficients that are associated with the basis functions
φ0(t − k) are the sampled values.

The purpose of a wavelets analysis is to transform the T data values into a
hierarchy of T coefficients that are associated with an alternative basis, which is
ordered both according to the temporal locations of the wavelets and according
to their frequency contents.

The hierarchy of wavelets is described by a so-called mosaic diagram that
defines a partitioning of the time-frequency plane. This is illustrated for a
sample of size T = 128 = 27. The height of a cell corresponds to a bandwidth
in the frequency domain, whereas its width denotes a temporal duration.
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Figure 12. The partitioning of the time–frequency plane according to a multiresolution
analysis of a data sequence of 128 = 27 points.
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The Pyramid Algorithm

The Pyramid Algorithm begins by filtering the data sequence of T points via a
complementary pair of highpass and lowpass filters to generate two components
of length T .

The components are downsampled by selecting alternate elements to give two
sequences of length T/2. The downsampled high-frequency component con-
tains the amplitude coefficients of the level-1 wavelets

The downsampled low-frequency component is subjected to a second round
of filtering and sub sampling to generate high-frequency and low-frequency
sequences of length T/4.

The downsampled high-frequency component contains the amplitude coeffi-
cients of the level-2 wavelets. The downsampled low-frequency component
becomes the subject of the next round of filtering.

The process continues until it exhausts the available data. The effect is to
convert the data into set to T amplitude coefficients that can be associated
with the hierarchy of wavelets and with the final scaling function or functions.
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A Regression Analogy

A discrete dyadic wavelets analysis entails an orthonormal matrix transform
Q that delivers a vector β = Q′y of wavelet amplitude coefficients. The data
can be synthesised via the inverse transform y = Q′β = QQ′y. A frequency-
specific component of the data is yj = QjQ

′
jy, where Qj contains columns of

Q.

For an analogy, consider an ordinary normal regression model N(y, Xβ, σ2I)
estimated by OLS. There is

y − Xβ = ε = Pε + (I − P )ε with P = X(X ′X)−1X ′.

Define a partitioned orthonormal matrix C = [C1, C2] such that P = C1C
′
1

and (I − P ) = C1C
′
1. Then, there are η1 = C ′

1ε ∼ N(0, σ2Ik) and η2 = C ′
2ε ∼

N(0, σ2IT−K), and we may form

ε′C1C
′
1ε

σ2
=

η1η
′
1

σ2
=

(β − b)′X ′X(β − b)
σ2

∼ χ2(k) and

ε′C2C
′
2ε

σ2
=

η2η
′
2

σ2
=

(y − Xb)′(y − Xb)
σ2

=
e′e

σ2
∼ χ2(T − k).

The vector η = [η′
1, η

′
2]

′ is analogous to the vector β of wavelets amplitude
coefficients.
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Circulant Matrices

The circulant matrix that is the analogue of the matrix lag operator is KT =
[e1, e2, . . . , eT−1, e0]. This is obtained from the matrix IT = [e0, e1, . . . , eT−1]
by displacing the leading column to the end of the array.

An example is provided by K4 and its powers:

K4 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , K2
4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , K3
4 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

The matrices K0
T = IT , KT , . . . , KT−1

T form a basis for the set of all circulant
matrices of order T

There is a one-to-one correspondence between the set of all polynomials of
degree less than T and the set of all circulant matrices of order T . If α(z) is a
polynomial of degree less that T , then the corresponding circulant matrix is

A = α(KT ) = α0IT + α1KT + · · · + αT−1K
T−1
T .
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Upsampling and Downsampling Matrices

The downsampling matrix V removes alternate elements from a vector, begin-
ning with second element. The upsampling matrix Λ = V′ interpolates zeros
between the elements of a vector. These matrices are exemplified by

V =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 and Λ =



1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0


.
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Downsampling and Mirror Image Reversals

The spectrum or the periodogram of a real-valued data sequence is a symmetric
function of the frequency interval [−π, π]. The portions on the subintervals
[−π, 0] and [0, π] being mirror images.

Downsampling alters the frequency content of a temporal sequence. A low-
frequency content that is confined to the interval [−π/2, π/2] will be mapped
onto the full Nyquist interval [−π, π].

The portions on the intervals [−π, 0] and [0, π] are dilated versions of what was
previously on the intervals [−π/2, 0] and [0, π/2] respectively.

A high-frequency content that is confined to [−π,−π/2] ∪ [π, π/2] will also be
mapped onto the interval [−π, π].

The portion previously on the interval [−π,−π/2] will be found in dilated form
of the interval [0, π] and the portion previously on the interval [π/2, π] will be
found, in dilated form, of the interval [−π, 0].

Thus, the high frequency content of [0, π] will be replaced by a dilated version
of its mirror image. A lowpass filter will be required in order to isolate its
high-frequency content.
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The Effects of Downsampling on the Periodogram
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Figure 13. In the process of downsampling, the high frequency content of [0, π] will be
replaced by a dilated version of its mirror image.
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A Circulant Filter Matrix

The highpass filter that is to be applied to the data in the first round of the
wavelets decomposition has the following matrix representation:

H(1) =



h0 0 0 0 0 h3 h2 h1

h1 h0 0 0 0 0 h3 h2

h2 h1 h0 0 0 0 0 h3

h3 h2 h1 h0 0 0 0 0
0 h3 h2 h1 h0 0 0 0
0 0 h3 h2 h1 h0 0 0
0 0 0 h3 h2 h1 h0 0
0 0 0 0 h3 h2 h1 h0


.

Premultiplying this by the down sampling matrix is a matter of deleting alter-
nate rows:

VH(1) =


h0 0 0 0 0 h3 h2 h1

h2 h1 h0 0 0 0 0 h3

0 h3 h2 h1 h0 0 0 0
0 0 0 h3 h2 h1 h0 0

 .
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The First Round of the Pyramid Algorithm

When this matrix is combined with the matrix VG(1), which is the down
sampled version of the lowpass filter matrix, and when the data vector y is
mapped through the combined matrix, the result is



β10

β11

β12

β13

γ10

γ11

γ12

γ13


=



h0 0 0 0 0 h3 h2 h1

h2 h1 h0 0 0 0 0 h3

0 h3 h2 h1 h0 0 0 0
0 0 0 h3 h2 h1 h0 0

g0 0 0 0 0 g3 g2 g1

g2 g1 g0 0 0 0 0 g3

0 g3 g2 g1 g0 0 0 0
0 0 0 g3 g2 g1 g0 0





y0

y1

y2

y3

y4

y5

y6

y7


.

The transformation can be represented, in summary notation, by[
β(1)

γ(1)

]
=

[
VH(1)

VG(1)

]
y.
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The Second Round of the Pyramid Algorithm

In the second round of the wavelets decomposition, the coefficients associated
with the level-1 wavelets are preserved and the coefficients associated with the
level-1 scaling functions are subject to a further decomposition:

β10

β11

β12

β13

β20

β21

γ20

γ21


=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 h0 h3 h2 h1

0 0 0 0 h2 h1 h0 h3

0 0 0 0 g0 g3 g2 g1

0 0 0 0 g2 g1 g0 g3





β10

β11

β12

β13

γ10

γ11

γ12

γ13


.

The summary notation for this isβ(1)

β(2)

γ(2)

 =

 I 0
0 VH(2)

0 VG(2)

[
β(1)

γ(1)

]
.
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The Completed Analysis

The third and final transformation can represented equally by

[
γ30

β30

]
=

[
h0 h3 h2 h1

g0 g3 g2 g1

]
γ20

γ21

γ20

γ21


or by [

γ30

β30

]
=

[
h0 + h2 h3 + h1

g0 + g2 g3 + g1

] [
γ20

γ21

]
.

The vector of amplitude coefficients associated with the wavelet on the jth
level is

β(j) = VH(j)VG(j−1) · · ·VG(1)y = Q′
(j)y.

Here, Q′
(j)is formed from a set of adjacent rows of Q′.

The component vector wj = [w0j , w1j , . . . , wT−1,j ]′ of the decomposition of
y = w1 + · · · + wn + vn is synthesised as follows:

wj = Q(j)β(j) = G′
(1)Λ · · ·G′

(j−1)ΛH ′
(j)Λβ(j).
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The Flow Diagram of the Analysis Section

H (z) 2

G (z) 2 H (z) 2

G (z) 2

Figure 14. The analysis section of a dyadic filter bank, expressed in terms of z-transform
polynomials.
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The Flow Diagram of the Synthesis Section

2 D (z)

+2 E(z) 2 D (z)

+2 E(z)

Figure 15. The synthesis section of a dyadic filter bank, expressed in terms of z-
transform polynomials.
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The Flow Diagram of the Two-Channel Filter Bank

H (z) 2 2 E(z)

+

G (z) 2 2 D (z)

Figure 16. In the two-channel filter bank, perfect reconstruction can be achieved by
setting E(z) = H(z−1) and D(z) = G(z−1).
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Perfect Reconstruction

The signals that emerge from the two branches of the filter bank are

w(z) =
1
2
E(z){H(z)x(z) + H(−z)x(−z)} and,

v(z) =
1
2
D(z){G(z)x(z) + G(−z)x(−z)}.

Combining them gives

y(z) =
1
2
{D(z)G(−z) + E(z)H(−z)}x(−z),

+
1
2
{D(z)G(z) + E(z)H(z)}x(z).

The term in x(−z) is due to aliasing; and it can be eliminated by setting

D(z) = z−(M−1)H(−z) = G(z−1), E(z) = −z−(M−1)G(−z) = H(z−1).

In that case, y(z) = x(z), and there is perfect reconstruction.
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A Dyadic Wavelet Packet Analysis

In a regular dyadic wavelets packet analysis, the bands that partition the fre-
quency interval [0, π] are of equal width. Their number is constrained to be of
the form q = T/2m, where T = 2n is the sample size.

The bands are obtained by successive divisions of both the highpass and the
lowpass outputs of the two-channel filter bank.

The mirror-image reversals that affect the output of the highpass band af-
ter downsampling implies that, in the second round of filtering, its lowpass
content will be extracted by the filter H(z), which is nominally a highpass
filter, and that its highpass content will be extracted by G(z), which is
nominally a lowpass filter.

The effect of the mirror-image reversals in subsequent rounds of filtering can
be illustrated via the relevant mosaic diagram.

Adjacent bands of equal width that are produced by a regular decomposition
can be combined. This is achieved by halting the process of subdivision within
selected channels.
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1 2

1 2 2 1

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

0 8 16 24 32

Figure 17. The scheme for constructing compound filters in the dyadic case. The
diagram highlights the construction of the filter ψ23/32(ω). The bold line demarcates
an ordinary dyadic octave analysis.
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0

π/6

π/3

π/2

2π/3

5π/6

π

0 24 48 72 96 120 144

Figure 18. The time–frequency plane for 144 = 32 × 24 data points partitioned with
24 frequency intervals and 6 time periods. The non-dyadic mosaic is relevant to the
analysis of the seasonal fluctutions of the airline passenger data.
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A Two-Phase Two-Channel Architecture

Consider a two-channel architecture that separates the odd and even phases of
the data vector:

β10

β11

β12

β13

γ10

γ11

γ12

γ13


=



h0 0 0 h2

h2 h0 0 0
0 h2 h0 0
0 0 h2 h0

g0 0 0 g2

g2 g0 0 0
0 g2 g0 0
0 0 g2 g0




y0

y2

y4

y6

 +



0 0 h3 h1

h1 0 0 h3

h3 h1 0 0
0 h3 h1 0

0 0 g3 g1

g1 0 0 g3

g3 g1 0 0
0 g3 g1 0




y1

y3

y5

y7

 .

This can be represented, in summary notation, by[
β
γ

]
=

[
He

Ge

]
ye +

[
KHo

KGo

]
yo,

where ye = [y0, y2, y4, y6]′ = Vy and yo = [y1, y3, y5, y7]′ = VKy. Also,

Ge = g0IT/2 + g2KT/2 and Go = g1IT/2 + g3KT/2.
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The synthesis section can also be reformulated as follows:



y0

y2

y4

y6

y1

y3

y5

y7


=



h0 h2 0 0
0 h0 h2 0
0 0 h0 h2

h2 0 0 h0

0 h1 h3 0
0 0 h1 h3

h3 0 0 h1

h1 h3 0 0




β0

β1

β2

β3

 +



g0 g2 0 0
0 g0 g2 0
0 0 g0 g2

g2 0 0 g0

0 g1 g3 0
0 0 g1 g3

g3 0 0 g1

g1 g3 0 0




γ0

γ1

γ2

γ3

 .

In summary notation, this becomes[
ye

yo

]
=

[
He′

Ho′K ′

]
β +

[
Go′

Go′K ′

]
γ.

Perfect reconstruction is achieved, since the orthogonality conditions imply that[
He′ Go′

Ho′K ′ Go′K ′

] [
He KHo

Ge KGo

]
= 2

[
I 0
0 I

]
.
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2

z−1

2

2 +

2

z

Figure 19. An alternative architecture for the two-channel filter bank separates the
data points bearing even indices from those bearing odd indices.
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A Triadic Multiphase Analysis

Consider a highpass filter f(z) of six coefficients of which the nominal passband
is the interval [2π/3, π]. Then,

F (z) = f0 + f1z + · · · + f5z
5

= (f0 + f3z
3) + z(f1 + f4z

3) + z2(f2 + f5z
3)

= F0(z) + zF1(z) + z2F2(z).

From the data sequence y(t) = {y0, y1, y2, · · ·} are derived the following three
subsampled data sequences:

y0(t) = {y0, y3, y6, · · ·},
y1(t) = {y1, y4, y7, · · ·},
y2(t) = {y3, y5, y8, · · ·},

together with their z-transforms y(z), y0(z),y1(z), and y2(z). Then,

F (z)y(z) = F0(z)y0(z) + zF1(z)y1(z) + z2F2(z)y2(z).
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The RHS can be rendered in matrix notation as follows
f0 0 0 f3

f3 f0 0 0
0 f3 f0 0
0 0 f3 f0




y0

y3

y6

y9

 +


0 0 f4 f1

f1 0 0 f4

f4 f1 0 0
0 f4 f1 0




y1

y4

y7

y10

 +


0 f5 f2 0
0 0 f5 f2

f2 0 0 f5

f5 f2 0 0




y2

y5

y8

y11


In summary notation, this is δ = F0y0 + KF1y1 + K2F2y2. There are three
such transformations:β

γ
δ

 =

H0 KH1 K2H2

G0 KG1 K2G2

F0 KF1 K2F2

 y0

y1

y2

 .

The synthesis stage entails the inverse mapping y0

y1

y2

H0 KH1 K2H2

G0 KG1 K2G2

F0 KF1 K2F2

−1 β
γ
δ

 .

The object is to ensure that the synthesis matrix is the transpose of the analysis
matrix.
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z−1

3

3 +

3 +

z

z−1
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z

Figure 20. A three-channel filter bank can be constructed that separates the data into
three phases.
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Triadic Filters: Sequential Orthogonality

Let ξ(t) ←→ ξ(ω) denote the autocorrelation function of any one of the triadic
filters together with its Fourier transform. Then, the relevant condition of
sequential orthogonality is that ξ(3t) = 0 if t �= 0. Define λ = 3ω. Then,

ξ(3t) =
1
2π

∫ π

−π

ξ(ω)eiω(3t)dω =
1
6π

∫ 3π

−3π

ξ(λ/3)eiλtdλ

=
1
6π

{∫ −π

−3π

ξ(λ/3)eiλtdλ +
∫ π

−π

ξ(λ/3)eiλtdλ +
∫ 3π

π

ξ(λ/3)eiλtdλ

}
=

1
6π

∫ −π

−π

1∑
j=−1

ξ([2πj + λ]/3)eiλtdλ

Therefore, the condition of orthogonality is equivalent to the condition that the
superimposition of the squared gain functions of the three filters constitutes a
constant function in the frequency domain:

ξ([−2π/3] + ω) + ξ(ω) + ξ([(2π/3] + ω) = c.

When dilated by a factor of three, the squared gain of each of the filters also
constitutes a constant function.
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Figure 21. The triadic squared gain functions, which can be superimposed and added
to create a constant function.
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Figure 22. The triadic squared gain functions dilated by a factor of 3. Each of these
generates a constant function when the superimposed ordinates are added.
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