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This paper describes a methodology for trend estimation which relies upon

the finite-sample implementation of the classical Wiener–Kolmogorov the-

ory of signal extraction in which provisions are made for dealing with a non-

stationary signal component. It is argued that de-trending filters should be

selected primarily on the basis of their frequency-response characteristics.

1. Introduction

The problem of trend estimation in econometrics has had a long history, and
the techniques which can be deployed have been evolving gradually over many
years. The forces of evolution have been twofold. On one hand is the gradual
improvement in statistical and computational techniques which has been ac-
companied by improvements in the processing power of computers and in the
accessibility of software programs. On the other hand are the methodological
developments within the discipline of econometrics.

The econometric approach to trend estimation is based upon the notion
that a time series is composed of several components of independent origin
which are combined by addition or by multiplication. Usually, a multiplicative
combination can be reduced to an additive one by the simple expedient of
taking logarithms.

The components of the time series can be regarded as Fourier combina-
tions of trigonometrical functions—i.e. of sines and cosines—whose frequencies
fall within specified ranges. Over the range of the frequencies which pertain
to a particular component, one can define a spectral density function which
represents the squared amplitudes of the constituent trigonometrical functions.

If the frequency ranges of the components are completely segregated, then
it is possible, in principle, to achieve a definitive separation of the time series
into its independent components. If the frequency ranges of the components
overlap, then it is possible to achieve a tentative separation in which trigonomet-
rical functions of the same frequencies are present in two or more components
of the time series. In each estimated component, the functions acquire the am-
plitudes which are indicated by the appropriate spectral density function. Since
the estimates of such overlapping components originate from the same empir-
ical data sequence, they are bound to be correlated with each other—which
contradicts the theoretical assumptions regarding the components.

In recent years, the mainstay of econometric trend estimation has been the
Wiener–Kolmogorov theory of signal extraction (See [10] and [17]). The theory
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shows how to construct linear filters which preserve components of certain
frequencies and which attenuate or nullify components at other frequencies.
The effects of such filters are commonly described in terms of metaphors which
borrow concepts from the physics of sound and light. Filtering a data series is
akin to filtering light through a coloured lens.

The Wiener–Kolmogorov theory was developed for purposes which were
quite different from those envisaged in econometric trend estimation. It was ap-
plied originally to stationary signals on which the observations are so abundant
that they can be treated as if they constitute series which stretch indefinitely
in both directions from any chosen point in time.

Econometric series are, usually, of a strictly limited duration, and, often,
they manifest strong trends. It has been recognised, for some time, that trended
or nonstationary sequences present no essential difficulties to the theory of
linear filtering. In particular, if the observable time series is the sum of a
nonstationary signal component and a stationary noise component, then the
signal and the noise can be separated with no more difficulty than in the case
of a stationary signal. See, for example, Pierce [13] and Bell [1].

The problems which are due to the limited durations of economic series
are more difficult to handle. One approach has been to extend the data set
in both directions using forecast and backcast values. By providing a set of
plausible pre-sample values, one can stabilise the filter in the run-up to the
data series so that its output of processed values is not seriously affected by
the problem of the initial conditions. By providing post-sample values which
represent a plausible future, one can facilitate the reverse-time filtering which is
associated with phase-neutral methods which employ rational infinite-impulse-
response filters—which are feedback filters in other words. An example of this
kind of bidirectional filtering involving feedback was provided by Burman [3].

In this paper, we shall present a solution to the start-up problem which
does not require any extra-sample values. The solution appears to be a defini-
tive one. Other, similar, solutions which have been proposed recently have
made use of sophisticated variants of the Kalman filter and of the associated
smoothing algorithms. Thus, for example, Koopman, Harvey et al. [11] have
used the diffuse Kalman filter algorithm of De Jong [5], whilst Gómez and
Maravall [6] have proposed another adaptation of the Kalman filter. These
algorithms are complicated, and it may be fair to suggest that they are fully
understood only by a small group of analysts.

The difficulties are due to the general and all-encompassing nature of the
algorithms. The simpler approach which we offer here deals in terms of the
specific features of the problem at hand. Our approach can be depicted as a
special case of Kalman filtering. It can also be assimilated to another branch
of mathematics which deals with problems of smoothing and graduation which
has found extensive application in industrial design via the Reinsch smoothing
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spline [15].
In this paper, we shall examine three distinct approaches to the estimation

of econometric trends. The first approach rests upon the model-based method
of seasonal adjustment which has been advocated by Hillmer and Tiao [9]. This
entails the so-called canonical decomposition of a seasonal ARIMA model. The
second approach rests upon the so-called structural time-series model which
has been proposed by Harvey and Todd [8] and which has been expounded at
length by Harvey in a book [7]. The third approach is based upon a model
which suppresses the seasonal component which is present in the two previous
approaches.

We shall also draw attention to certain problems with arise from the man-
ner in which a seasonal time series is usually modelled by placing complex roots
of unit modulus in the autoregressive component of an ARMA model.

2. Filtering Nonstationary Sequences

The observable sequence, which is a function mapping from the set of integers
I = {t = 0,±1,±2, . . .} onto the real line, may be represented by

(1) y(t) = ξ(t) + η(t).

This consists of two components which are assumed to be mutually uncorre-
lated. The first of these, which is the trend component, is modelled by an
autoregressive integrated moving-average (ARIMA) process which can be writ-
ten as

(2) ξ(t) =
µ(L)

∇d(L)α(L)
ν(t).

Here α(L) and µ(L) are, respectively, an autoregressive and a moving-average
operator with roots which lie outside the unit circle, whilst ∇d(L) = (1 − L)d

is the dth power of the difference operator. The sequence ν(t) is generated by
a white-noise process with V {ν(t)} = σ2

ν .
The second component of the observable sequence is the residue which is

represented by a seasonal autoregressive moving-average (SARMA) model in
the form of

(3) η(t) =
θ(L)

S(L)φ(L)
ε(t).

Here φ(L) and θ(L) are, respectively, an autoregressive and a moving-average
operator with roots which lie outside the unit circle, whilst S(L) = 1 + L +
· · ·+Ls−1 stands for a polynomial in the lag operator which has complex roots
of unit modulus whose arguments correspond to a seasonal frequency and to
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its harmonics. The sequence ε(t) is generated by a white-noise process with
V {ε(t)} = σ2

ε .
The residual component η(t) lumps together all the elements which are

not comprised by the trend. In a structural model, η(t) is presented as a sum
of statistically independent components which may include a cyclical compo-
nent, a seasonal component and an irregular white-noise component. If each of
the components is represented by an ARMA process—which may have autore-
gressive roots of unit modulus—then the sum must also be an ARMA process
taking the form of (3).

Consider the operator

(4) δ(L) = ∇d(L)S(L)α(L)φ(L),

which is the product of the denominators of (2) and (3). This is a polynomial
function of the lag operator of a degree which will be denoted by p. Multiplying
y(t) by δ(L) reduces it to a stationary process which is a sum of moving-average
components. This can be written as

(5) q(t) = ζ(t) + κ(t),

where

q(t) = δ(L)y(t) = δ(L)ξ(t) + δ(L)η(t),(6)

ζ(t) = δ(L)ξ(t) = ψT (L)ν(t), and(7)

κ(t) = δ(L)η(t) = ψR(L)ε(t).(8)

Here we have defined

(9) ψT (L) = S(L)φ(L)µ(L) and ψR(L) = ∇d(L)α(L)θ(L).

On substituting (7) and (8) into (5) we obtain

(10) q(t) = ψT (L)ν(t) + ψR(L)ε(t),

which is an expression which we shall have occasion to use later.
Our objective is to obtain a decomposition

(11) y(t) = x(t) + h(t),

in which

(12) x(t) = E
{
ξ(t)|y(t)} and h(t) = E

{
η(t)|y(t)}
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are estimates of the trend component and of the residue, respectively.
At first sight, this purpose seems to be hindered by the fact that, in general,

the sequences in (11) are nonstationary; for the Wiener–Kolmogorov theory of
signal extraction relates to stationary processes. However, it is straightforward
to show that the filter which serves to estimate the components ζ(t) and κ(t)
from the stationary sequence q(t) = δ(L)y(t) can be applied equally to the
nonstationary sequence y(t) in pursuance of the estimates of the corresponding
components ξ(t) and η(t).

Our immediate object, however, is to devise a linear filter βT (L) which can
be applied to the stationary sequence q(t) to obtain an estimate of ζ(t) in the
form of

(13) z(t) = E
{
ζ(t)|q(t)

}
= βT (L)q(t).

The complementary filter βR(L) = 1−βT (L) can be applied likewise to q(t) to
obtain an estimate of κ(t) in the form of

(14) k(t) = E
{
κ(t)|q(t)

}
= βR(L)q(t).

Thus the aim is to decompose q(t) = δ(L)y(t) as

(15) q(t) = z(t) + k(t).

From such estimates, we can recover the estimates x(t) = δ−1(L)z(t) and h(t) =
δ−1(L)k(t) of the nonstationary signal or trend sequence ξ(t) and of the residual
sequence η(t).

3. Minimum-Mean-Square-Error Filters

The coefficients of the optimal linear signal-extraction filter βT (L) =
∑
j βjL

j

are estimated by invoking the minimum-mean-square-error criterion. The er-
rors in question are the elements of the sequence e(t) = ζ(t)− z(t), where z(t)
is given by equation (13). The principle of orthogonality, by which the criterion
is fulfilled, indicates that the errors must be uncorrelated with the elements in
the information set It = {qt−k; k = 0,±1,±2, . . .}. Thus

(16)

0 = E
{
qt−k(ζt − zt)

}
= E(qt−kζt)−

∑
j

βjE(qt−kqt−j)

= γqζk −
∑
j

βjγ
qq
k−j ,
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for all k. The equation may be expressed, in terms of the z transform, as

(17) γqζ(z) = γqq(z)βT (z),

where βT (z) stands for an indefinite two-sided Laurent series comprising both
positive and negative powers of z.

Given the assumption that the elements of the noise sequence κ(t) are
independent of those of the signal ζ(t), it follows that

(18) γqq(z) = γζζ(z) + γκκ(z) and γqζ(z) = γζζ(z),

where

(19) γζζ(z) = σ2
νψT (z)ψT (z−1) and γκκ(z) = σ2

εψR(z)ψR(z−1).

It follows from (17) that

(20) βT (z) =
γζζ(z)
γqq(z)

=
ψT (z)ψT (z−1)
ψ(z)ψ(z−1)

,

where

(21) ψ(z)ψ(z−1) = ψT (z)ψT (z−1) + λψR(z)ψR(z−1) with λ =
σ2
ε

σ2
ν

.

Here we have a sum of two positive definite functions which is itself a postive
definite function. Therefore the sum can be factorised as ψ(z)ψ(z−1).

Since, by assumption, the polynomials ψT (z) and ψR(z) have no roots
of unit modulus in common, the polynomial ψ(z)ψ(z−1) will not have any
unit roots, which must be the case if the filter is to be stable and capable of
implementation. Its roots will come in reciprocal pairs; and, once these are
available, they can be assigned unequivocally to the factors ψ(z) and ψ(z−1).
Those roots which lie outside the unit circle belong to ψ(z) and those which lie
inside belong to ψ(z−1).

By setting z = eiω, one can derive the frequency-response function of the
filter which is used in estimating the signal ζ(t). The effect of the filter is
to multiply each of the frequency components of q(t) by the fraction of its
variance which is attributable to the signal ζ(t). The same principle applies to
the estimation of the noise or residue component κ(t).

The residue-estimation filter is just the complementary filter

(22) βR(z) = 1− βT (z) = λ
ψR(z)ψR(z−1)
ψ(z)ψ(z−1)

.
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It will assist the subsequent exposition if we present more explicit expres-
sions for the two filters. Thus, on substituting the expression for ψT (z) from
(9) into (20) we get,

(23) βT (L) = S(L−1)
{
φ(L−1)µ(L−1)µ(L)φ(L)

ψ(L−1)ψ(L)

}
S(L).

Likewise, on substituting the expression for ψR(z) from (9) into (22) we get

(24) βR(L) = λ∇d(L−1)
{
α(L−1)θ(L−1)θ(L)α(L)

ψ(L−1)ψ(L)

}
∇d(L).

In summarising the development so far, we find that the formulae for
estimating the components of the stationary sequence q(t) of (5) are

(25)
z(t) = βT (L)q(t) = βT (L)δ(L)y(t) and

k(t) = βR(L)q(t) = βR(L)δ(L)y(t).

The error sequence which is associated equally with the estimates of ζ(t)
and κ(t) is given by

(26)

e(t) = ζ(t)− z(t)

= ψT (L)ν(t)− βT (L)
{
ψT (L)ν(t) + ψR(L)ε(t)

}
= βR(L)ψT (L)ν(t)− βT (L)ψR(L)ε(t).

Here, the second equality derives from the expression ζ(t) = ψT (L)ν(t) from
(7) and the expression z(t) = βT (L)q(t) from (13). Into the latter expression,
we must substitute the expression for q(t) from (10).

From the estimates z(t) and k(t), we can recover the estimates x(t) and
h(t) of the components of y(t) = ξ(t) + η(t). The estimates are

(27)
x(t) = δ−1(L)z(t) = βT (L)y(t) and

h(t) = δ−1(L)k(t) = βR(L)y(t).

Thus x(t) and h(t) may be obtained by applying the filters directly to y(t)
rather than to its transformed version q(t). Alternatively, if the filters are
applied to the stationary sequence q(t), then the estimates can be recovered
from z(t) and k(t) by use of the inverse operator δ−1(L); and there is liable to
be some computational advantages in taking this approach. The reason is that
the elements of q(t) are bound to have a smaller numerical range that those of
y(t).
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The error sequence which is associated equally with the estimates of the
trend ξ(t) and of the residue η(t) is given by

(28)
δ−1(L)e(t) = δ−1(L)ζ(t)− δ−1(L)z(t)

= δ−1(L)βR(L)ψT (L)ν(t)− δ−1(L)βT (L)ψR(L)ε(t).

It will be found that the factors ∇d(L) and S(L), which contain roots of unit
modulus, can be eliminated from δ−1(L)βR(L)ψT (L) and δ−1(L)βT (L)ψR(L)
by cancellations between the numerators and denominators of these operators.
Thus the sequence δ−1(L)e(t) of the cumulated errors is seen to be the product
of a stationary process. This is, of course, a crucial outcome; for, were it not
the case, then it would be incorrect to describe x(t) and h(t) as the minimum-
mean-square-error estimates; and the estimates would be useless.

Given the complementary nature of the estimates x(t) and h(t), only one
of them needs to be computed. The second component can be obtained by
subtracting the first component from y(t). Let us devote our effort to finding
h(t), for the reason that it is more likely to be stationary that is x(t).

Reference to (24) shows that the computation of h(t) = βR(L)y(t) can be
broken down into four stages:

d(t) = ∇d(L)y(t),(29)

f(t) =
α(L)θ(L)
ψ(L)

d(t),(30)

g(t) =
α(L−1)θ(L−1)

ψ(L−1)
f(t),(31)

h(t) = λ∇d(L−1)g(t).(32)

We should note that the seasonal operator S, which seems to be missing from
these expressions, is, in fact, buried within ψ.

The first stage (29) involves the successive differencing of the sequence
y(t). If there are no seasonal roots and the seasonal operator is, in fact, the
identity operator S = I, then the differencing will be sufficient to reduce the
sequence to stationarity. The second stage (30) represents a process of feedback
filtering which runs in the direction of time. The filter α(L)θ(L)/ψ(L) is stable
in consequence of the condition that all of the roots of ψ(z) lie outside the unit
circle. The third stage (31) is the reverse of the second stage and it represents
a process of feedback filtering which runs in reversed time. The final stage (32)
is the reverse of the first stage.

We may observe that the filter βR(z) is phase neutral in the sense that
it induces neither lead nor lags in the processed series h(t). The same is true
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of the trend-estimation filter βT (z). These results are the consequence of the
symmetry of the filters. In effect, the reverse-time processes of (31) and (32)
serve to eliminate any lags which may be induced by the processes (29) and
(30) by inducing equal and opposite reverse-time lags.

The equations (29)–(32) presuppose that the sequences which are to be
filtered are defined for all positive and negative integers. In practice, the se-
quences are finite and, in econometric applications, they are liable to be of
strictly limited duration. Therefore there can be a serious mismatch between
the assumptions from which the filters are derived and the circumstances in
which they are applied.

One way of coping with the limitations of the observations on the data
sequence y(t) is to supplement them by pre-sample and post-sample values
obtained by the normal methods of forecasting. Then the additional extra-
sample values can be used in a run-up to the filtering process wherein the filter
is stabilised by providing it with a plausible history, if it is working in the
direction of time, or with a plausible future, if it is working in reversed time.
For short series, the quality of the estimates of the trend and the residue are
liable to be heavily dependent upon the quality of these extrapolations which
need to be close to the true values.

If both the trend and the residue were truly generated by nonstationary
stochastic processes, then the errors of the extrapolations would also be non-
stationary. In that case, the replacement of the extra-sample values by their
forecasts would not be a viable option. Notice, however, that such problems
do not arise when the seasonal operator S is absent from the process, depicted
in equation (3), which generates η(t). In that case, the sequence ∇d(L)y(t),
which is found in equation (29), will be stationary; and its pre-sample values
may be represented by its zero-valued unconditional expectation. Likewise, the
post-sample values of f(t), which are required in the run-up to the reverse-time
filtering process, depicted by equations (31) and (32), could also be represented
by zeros.

In fact, the seasonal fluctuations which are present in econometric data
series bear only a limited resemblance to the sort of nonstationary stochastic
process depicted by equation (3). In particular, whenever the operator S con-
tains unit roots, the quasi-cyclical process η(t) will be theoretically unbounded.
Also, the phase of its cycles will vary in a haphazard manner. By contrast, the
seasonal fluctuations in economic data are closely bounded and almost con-
stant in amplitude, and their peaks and troughs are likely to occur perennially
in specific months of the year.

There is, however, a close resemblance between seasonal fluctuations in
econometric series and the trajectories of the forecast functions of seasonal
ARIMA models which tend towards perfectly regular cycles which are linear
combinations of trigonometrical functions. The ability of seasonal ARIMA
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models accurately to forecast the seasonal cycles ensures the viability, in prac-
tice, of the Wiener–Kolmogorov filters which are based on the formulations of
structural time-series models.

4. Extracting Signals from Finite Samples

In this section, we shall develop an approach to trend estimation which deals
explicitly with the fact that a data series is of a finite duration. It will be left
largely to the reader to trace the manifest connections between this approach
and the approach, pursued in the previous section, which begins by assuming
that the data series is of an infinite duration.

Let us imagine, therefore, that there are only T observations of the process
y(t) of equation (1) which run from t = 0 to t = T − 1. These are gathered in
a vector

(33) y = ξ + η.

To find the finite-sample the counterpart of equation (5), we need to represent
the operator δ(L) of (4) in the form of a matrix. The matrix, which is of order
(T − p) × T and which contains the full set of coefficients of the polynomial
δ(z) in each successive row, is in the form of ∆′ = [∆′1,∆

′
2], where

(34) ∆′1 =



δp . . . δ1
...

. . .
...

0 . . . δp
0 . . . 0
...

...
0 . . . 0
0 . . . 0


, ∆′2 =



1 . . . 0 0 . . . 0 0
...

. . .
...

...
...

...
δp−1 . . . 1 0 . . . 0 0
δp . . . δ1 1 . . . 0 0
...

. . . . . .
...

...
0 . . . δp δp−1 . . . 1 0
0 . . . 0 δp . . . δ1 1


.

Observe that, if y were a vector of T values of a polynomial of degree d − 1,
taken at equally-spaced intervals, then we should have ∆′y = 0. Here, d is the
order of the difference operator ∇d(L), which is a factor of δ(L).

Premultiplying equation (33) by ∆′ gives

(35)
q = ∆′y = ∆′ξ + ∆′η

= ζ + κ,

where ζ = ∆′ξ and κ = ∆′η. The first and second moments of the vector ζ
may be denoted by

(36) E(ζ) = 0 and D(ζ) = σ2
νΩT ,
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and those of κ by

(37) E(κ) = 0 and D(κ) = σ2
εΩR,

where ΩT and ΩR are symmetric Toeplitz matrices with a limited number of
nonzero diagonal bands. The generating functions for the coefficients of these
dispersion matrices are, respectively, the functions γζζ(z) and γκκ(z) of (19).

The optimal predictor z of the vector ζ = ∆′ξ is given by the following
conditional expectation:

(38)
E(ζ|q) = E(ζ) + C(ζ, q)D−1(q)

{
q − E(q)

}
= ΩT (ΩT + λΩR)−1q = z,

where λ = σ2
ε/σ

2
ν . The optimal predictor k of κ = ∆′η is given, likewise, by

(39)
E(κ|q) = E(κ) + C(κ, d)D−1(q)

{
q − E(q)

}
= λΩR(ΩT + λΩR)−1q = k.

It may be confirmed that z + k = q.
The estimates are calculated, first, by solving the equation

(40) (ΩT + λΩR)g = q

for the value of g and, thereafter, by finding

(41) z = ΩT g and k = λΩRg.

The solution of equation (40) is found via a Cholesky factorisation which sets
ΩT +λΩR = GG′, where G is a lower-triangular matrix. The system GG′g = q
may be cast in the form of Gh = q and solved for h. Then G′g = h can be
solved for g.

Our object is to recover from z an estimate x of the trend vector ξ. This
would be conceived, ordinarily, as a matter of pursuing a simple recursion which
is based upon the equation

(42) xt = zt − δ1xt−1 − · · · − δpxt−p,

with the index t running from t = 0 to t = T − 1. The difficulty is in discov-
ering the appropriate initial conditions x−1, . . . , x−p with which to begin the
recursion.

We can circumvent the problem of the initial conditions by seeking the
solution to the following problem:

(43) Minimise (y − x)′Σ−1(y − x) Subject to ∆′x = z,

11



D.S.G. POLLOCK: METHODOLOGY FOR TREND ESTIMATION

where Σ is a positive definite matrix which defines an appropriate metric. This
entails the minimisation of a generalised sum of square of residuals which are
the deviations of the trend vector x from the data vector y. The constraint
is that the transformed value z = ∆′x of the trend vector must equal the
conditional expectation z = E(ζ|q) specified in (38).

If the process which generates η is stationary, which is to say that there
are no seasonal unit roots in the denominator of equation (3), then η has a
well-defined dispersion matrix, and we should have D(η) = σ2

εΣ. In that case,
(43) becomes a conventional generalised least-squares criterion.

The problem of (43) is addressed by evaluating the Lagrangean function

(44) L(x, µ) = (y − x)′Σ−1(y − x) + 2µ′(∆′x− z).

We may describe this as the restricted least-squares criterion function.
By differentiating the function with respect to x and setting the result to

zero, we obtain the condition

(45) Σ−1(y − x)−∆µ = 0.

Premultiplying by ∆′Σ gives

(46) ∆′(y − x) = ∆′Σ∆µ.

But, from (40) and (41), it follows that

(47)
∆′(y − x) = q − z

= λΩRg;

whence we get

(48)
µ = (∆′Σ∆)−1∆′(y − x)

= λ(∆′Σ∆)−1ΩRg.

Putting the final expression for µ into (45) gives

(49)
x = y − Σ∆µ

= y − λΣ∆(∆′Σ∆)−1ΩRg.

This is our solution to the problem of estimating the trend vector ξ. In the
case where the residual sequence η(t) is generated by a stationary process, we
may set σ2

εΣ = D(η). Then ∆′Σ∆ = ΩR, and the solution becomes

(50) x = y − λΣ∆g.
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Notice that there is no need to find the value of z explicitly, since the value of
x can be expressed more directly in terms of g = Ω−1

T z, which is obtained by
solving equation (40).

If the residual sequence η(t) is nonstationary, then its dispersion matrix is,
of course, undefined; and we must find an alternative value for Σ. The problem
with this dispersion matrix is attributable to the seasonal operator S(L) of
equation (3) which gives rise to a process which, in theory, is unbounded in
amplitude. Since the problem arises out of a theoretical assumption of manifest
falsity, we should have no qualms about attributing to Σ whatever value seems
reasonable. One choice would be to set Σ = I.

We should also observe that, if y were a vector of T values of a polynomial
of degree d−1, taken at equally-spaced intervals, then we should have g = 0 and
therefore x = y. That is to say, a polynomial time trend of degree less that d is
unaffected by the filter; and this is the most appropriate outcome. If we were to
handle the finite-sample problem by any other method, then this result would
not be forthcoming, albeit that we might expect it to hold approximately.

It is notable that there is a criterion function which will enable us to derive
the equation of the trend estimation filter in a single step. The function is

(51) L(x) = (y − x)′Σ−1(y − x) + λx′∆Ω−1
T ∆′x,

where λ = σ2
ε/σ

2
ν as before. We may describe this as the penalised least-

squares criterion function. After minimising this function with respect to x,
we may use the identity ∆′x = z, which comes from equation (47), and the
identity Ω−1

T z = g, which comes from equation (41). Then it will be found that
criterion function is minimised by the value specified in (50).

The criterion becomes intelligible when we allude to the assumptions that
y ∼ N(ξ, σ2

εΣ) and that ∆′ξ = ζ ∼ N(0, σ2
νΩT ); for then it plainly resembles

a combination of two independent chi-square variates. The first term of the
criterion concerns the goodness of fit of the interpolated trend to the data.
The second term imposes a penalty for any roughness in the trend.

This kind of composite criterion function is familiar from the case of the
Reinsch smoothing spline [15]. (See de Boor [4], as well) In that context,
λ becomes the smoothing parameter which can be adjusted in pursuit of an
appropriate trade-off between smoothness and goodness of fit. In the present
context, λ, which is specified in (21), is the ratio of the variances of two mutually
independent white-noise processes, of which one drives the residue process and
the other drives the trend.

5. Trend Extraction via Canonical Decompositions

In an influential article, Hillmer and Tiao [9] have given a complete account
of an ARIMA-model-based approach to seasonal adjustment. Their article
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proposes a procedure for decomposing a time series into additive components
which represent the trend, the seasonal fluctuations, and an irregular noise
component. Maravall and Pierce [12] have also analysed these procedures.

In principle, this methodology can be applied to any properly specified
seasonal ARIMA model which fits the data. In practice, however, they have
provided detailed algebraic decompositions for three models which have been
used often to model seasonal economic data. Amongst these is the well-know
airline-passenger model of Box and Jenkins [2] which is specified by the equation

(52) (1− L)(1− Ls)y(t) = (1− θ1L)(1− θ2L
s)ε(t).

In its original application, the model was fitted to the logarithms of a series of
monthly observations; and it is usual to take logarithms whenever the trend and
the amplitude of the fluctuations surrounding it are growing in an exponential
manner.

It is straightforward to explain the role played by the various autoregres-
sive and moving-average factors of this model. The autoregressive factors
are subject to the identity (1 − L)(1 − Ls) = (1 − L)2S(L), where S(L) =
1 +L+L2 + · · ·+Ls−1 is the so-called seasonal sum. Here the factor (I −L)2

pertains to a second-order random walk. Its effect, within an equation of the
form (1− L)2y(t) = ε(t), would be to generate a trend, for which the optimal
forecast is a linear extrapolation based only on the two most recent observa-
tions.

The factor S(L), which has the roots λj = exp{i2πj/s}; j = 1, . . . , s−1, is
responsible for the pseudo-cyclical seasonal behaviour of the output generated
by equation (52). Its effect, within an equation of the form S(L)y(t) = ε(t),
would be to generate a rough cycle which, in the long run, is bounded neither
in amplitude nor in phase. The forecast function associated with such a model
would be a regular cycle synthesised from s/2 sinusoids whose amplitudes and
phase angles are determined by the s− 1 observations from the most recently
observed seasonal cycle together with a zero-mean condition.

The factors 1−θ1L and 1−θ2L
s in the moving-average part of equation (52)

serve to counteract some of the effects of the autoregressive unit-root factors
∇(L) = I − L and ∇s(L) = I − Ls. The seasonal moving-average operator is
subject to the factorisation

(53)
1− θ2L

s = (1− θ1/s
2 L)S(θ1/s

2 L)

= (1− θ1/s
2 L)(1 + θ

1/s
2 L+ · · ·+ θ

{s−1}/s
2 Ls−1).

The leading term of this factorisation joins with the term 1 − θ1L in coun-
teracting the random-walk operator (1 − L)2. Their effect is to diminish the
power of the random walk at nonzero frequencies, thereby creating a smoother
trend. The factor 1−θ2L

s, taken as a whole, has the effect of counteracting the
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Figure 1. The gain function of the trend-extraction filter based

on a partial-fraction decomposition of the airline passenger model.
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Figure 2. The gain function of the canonical trend-extraction

filter based on the airline passenger model.
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power of the seasonal process except in the vicinities of the seasonal frequencies
w = 2πj/s; j = 1, . . . , s/2. Thus, as θ2 → 1, the widths of the spectral spikes,
which are located at these frequencies, are diminished, which both regularises
the seasonal cycles which are generated by the model and reduces their phase
drift.

Our analysis suggests an alternative way of deploying the parameters θ1

and θ2. For if the equation (52) were replaced by the equivalent equation

(54) (1− L)2S(L)y(t) = (1− θ1L)2S(θ1/s
2 L)ε(t),

then the effects of varying θ1 would be confined to the trend component and
the effects of varying θ2 would be confined to the seasonal component.

The model-based procedure for isolating the components of a data series
has three stages. The first stage is to find a partial-fraction decomposition of
the autocovariance generating function of the seasonal ARMA model which has
been fitted to the data. This takes the form of

(55)

(1− θ1z)(1− θ2z
s)(1− θ2z

−s)(1− θ1z
−1)

(1− z)(1− zs)(1− z−s)(1− z−1)

=
QT (z)

(1− z)2(1− z−1)2
+

QS(z)
S(z)S(z−1)

+ θ1θ2.

When z = eiω, the term on the LHS of this equation represents the spectral
density function of the airline passenger model, whilst the terms of the RHS
represent the spectral density functions of its various components. The third
term on the RHS represents the uniform spectrum of a white-noise component
with a variance of 2πθ1θ2. It is obtained as a quotient when the numerator
of the LHS is divided by the denominator to obtain a proper rational function
which is decomposed into the remaining terms of the RHS.

The principle of canonical decomposition is that the variance of the white-
noise component should be maximised by assigning to it any white-noise el-
ements which are present in the other two partial-fraction components. This
operation of reassignment represents the second stage of the procedure. The
outcome is that the revised seasonal and trend components will acquire spec-
tral density functions which are zero-valued somewhere in the frequency range
[0, π]. In particular, the trend spectrum will attain the value of zero at the
so-called Nyquist frequency of π.

Detailed algebraic expressions for the elements of equation (55) and for the
elements of the revised canonical decomposition have been provided by Hillmer
and Tiao [9]. Such derivations call for care and stamina; and it is easier to
rely upon a computational approach for finding the coefficients of the partial
fractions, which is essentially a matter of solving a set of linear equations.
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The third and final stage of the procedure for isolating the components of
the data is to form the appropriate filters and to apply them to the data series.
The recommended techniques for applying such filters have been discussed at
length already in Section 4 of this paper. Here we shall do no more than present
the gain function of the model-based filter for extracting the trend component.
This is given in Figure 2.

The profile of the gain of the filter contains a sequence of notches which
are at the seasonal frequency of ω = π/6 and at the harmonic frequencies
of πj/6; j = 2, 3, . . . , 6. These notches, which serve to exclude the seasonal
component from the trend, are the effects of the zeros of the filter.

Apart from the notches, the profile shows a gradual transition from the
value of unity at the frequency ω = 0 to the value of zero at the Nyquist fre-
quency of ω = π. Thus the estimated trend comprises a wide range of frequen-
cies. This feature is at variance with a common definition of a trend which pro-
poses that it should contain only a limited set of low-frequency components—
with the maximum frequency falling short of the seasonal frequency of ω = π/6.

It is clear from Figure 1 that an estimated trend which is based only on
the partial fraction decomposition of the seasonal ARMA model, and which
pays no heed to the principal of canonical decomposition, is liable to embody
a significant proportion of high-frequency noise.

6. Trend Estimation via Structural Time-Series Models

The structural time-series model, which has been proposed by Harvey and Todd
[8], can be written in the form of

(56) y(t) =
ζ(t− 1)
∇2(L)

+
η(t)
∇(L)

+
ω(t)
S(L)

+ ε(t),

where ζ(t), η(t), ω(t) and ε(t) are mutually independent white-noise processes.
By combining the leading terms on the RHS, the equation may be rewritten as

(57) y(t) =
ξ(t)
∇2(L)

+
ω(t)
S(L)

+ ε(t),

where

(58) ξ(t) = ∇(L)η(t) + ζ(t− 1) = (1− µL)ν(t)

follows a first-order moving-average process.
The first term on the RHS of (57) represents the trend and the second

term represents the seasonal fluctuations. It can be seen that the trend follows
an integrated moving-average IMA(2, 1) model which is a second-order random
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Figure 3. The gain function of the trend-extraction filter based on

a structural time-series model fitted to the airline passenger data.
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Figure 4. The gain function of a canonical version of the

trend-estimation filter based on a structural times-series model.
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walk driven by a first-order moving-average forcing function. A similar trend
process is implicit in the airline passenger model described by equation (52).

The attraction of the structural model is that it is already decomposed into
the appropriate components. The decomposition is not a canonical one, but
there is no reason why white-noise elements should not be subtracted from the
trend and the seasonal components and reassigned to the irregular component.

Figure 3 displays the gain of the trend-extraction filter based on a struc-
tural model which has been estimated from the airline-passenger data of Box
and Jenkins [2]. It is clear that the filter will include in the estimated trend
a substantial amount of high-frequency noise which would be excluded by the
canonical model-based filter represented in Figure 2. In consequence, the esti-
mated trend will have a very rough appearance.

Figure 4 displays the gain of an amended filter derived by eliminating the
white-noise element from the model of the trend. The profile of the amended
filter is similar to that of the canonical filter displayed in Figure 2.

7. Trend Extraction via Square-Wave Filters

The third approach to trend estimation which we shall consider is commonly
described as the model-free approach. Since many of the filters in question can
be derived from a model of a stochastic process, it is perhaps misleading to de-
scribe them as model-free. Nevertheless, such models are usually regarded only
as heuristic devices; and they do not always purport realistically to represent
the sequences which are to be filtered.

In an heuristic model of the sort which is used in deriving an estimate
of the trend, we are liable to find only stylised representations of the other
components. For, if the frequency range which defines the trend is segregated
from frequency ranges of the remaining components, and if the intention is to
suppress these components, then it should be unnecessary to represent them
with much realism.

The question of whether or not the trend is segregated from the other com-
ponents depends partly on how we choose to define it and partly on the nature
of the series itself. Figure 5 shows the logarithms of the airline passenger data
together with an interpolated linear trend. Figure 6 shows the periodogram
of the data, whilst Figure 7 shows the periodogram of the interpolated linear
trend.

There may be some surprise at the fact that the periodogram of the linear
trend is not wholly confined to the zero frequency. Its form is explained once
it is recognised that the underlying Fourier synthesis, whose coefficients are
incorporated in the periodogram, is an approximation to a periodic sawtooth
function, of which the linear function defined on the interval [0, T ) is but one
segment.

As we have shown in Section 4, a linear trend will be preserved by any
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Figure 5. The logarithms of 144 monthly observations on the number

of international airline passengers with an interpolated linear trend.
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Figure 6. The periodogram of the airline passenger data.
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Figure 7. The periodogram of the linear trend which

has been fitted to the airline passenger data.
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Figure 8. The gain of the 6th order Butterworth lowpass

filter with a nominal cut-off frequency of ωc = π/9 degrees.

of the finite-sample filters which embodies the assumption that d = 2 in the
equation (2) which represents the trend component. There is evidence that
the trend component of the airline passenger data contains some additional
elements whose frequencies lie in the interval between zero and the seasonal
frequency of ω = π/6. Indeed, this is evident in the periodogram of the residual
sequence obtained by fitting the linear function.

We are therefore motivated to find a linear filter which will estimate the
trend by preserving those elements, which are additional to the linear trend,
whose frequencies are bounded by a value ωc which is slightly below the seasonal
frequency. At the same time, the filter should suppress all elements which
are not part of the linear trend whose frequencies exceed this value. Such
a filter should be effective not only in the present circumstances but also in
circumstances where it is quite inappropriate to model the trend by fitting an
analytic function.

One filter which serves the purpose of isolating a well-defined range of
frequencies is the so-called Butterworth square-wave filter (See, for example,
Pollock [14]). The filter can be derived from an heuristic model represented by
the equation

(59)
y(t) = ξ(t) + η(t)

=
(1 + L)n

(1− L)d
ν(t) + (1− L)n−dε(t).
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Figure 9. The airline passenger data with an interpolated trend

estimated by a Butterworth filter with n = 6 and ωc = π/9.
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Figure 10. The residual sequence obtained by de-trending

the airline passenger data with a Butterworth filter.
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Figure 11. The periodogram of the residuals obtained by

de-trending the airline passenger data with a Butterworth filter.
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The Wiener–Kolmogorov form of the resulting trend-extraction filter is

(60) ψT (L) =
(1 + L)n(1 + L−1)n

(1 + L)n(1 + L−1)n + λ(1− L)n(1− L−1)n
,

where λ = σ2
ε/σ

2
ν = {1/ tan(ωc)}2n.

Figure 8 shows the gain of the filter, whilst Figures 9–11 show the effects
of applying the finite-sample version of the filter to the airline passengers data.
In this case, the parameters of the filter are d = 2, n = 6 and ωc = π/9. It is
evident from Figure 8, which represents the gain of the filter, that the trend
which is seen in Figure 9 is composed of a set of elements which fall within a
strictly limited frequency range. This definition of a trend contrasts markedly
with the definitions which are implicit in the two model-based approaches to
trend estimation where the trend is composed of a broad range of frequencies
excluding only the seasonal frequency and its harmonics.

8. Summary and Conclusions

In this paper, we have endeavoured to provide an account of some of the prin-
cipal methods of econometric trend estimation which are based upon statistical
models of the processes generating the data. We have shown that there is a
single mathematical framework which can accommodate quite disparate ap-
proaches to the problem.

Trend estimation is often regarded as a difficult task which is beset by
technical complexity. The complications have two sources. In the first place,
there are the difficulties of the structural ARMA model-based approach of
Hillmer and Tiao [9] which depends upon the partial-fraction decomposition of
a reduced-form seasonal ARIMA model. Matters are greatly simplified when
the alternative structural approach of Harvey and Todd [8] is pursued which
represents the structural components explicitly and which avoids the need to
recover them from an ARIMA model. The difficulties disappear altogether if
one adopts an heuristic model, such as the model which underlies the square-
wave filter, which contains only a simplified and stylised representation of the
trend-free components.

The second source of difficulty concerns the need to adapt the classical
Wiener–Kolmogorov theory of signal extraction so that it can be applied to data
series which are both heavily trended and of strictly limited duration. Recently,
a number of solutions to the finite-sample problem have been proposed within
the context of the Kalman filter. In this paper, we are proposing a simple
solution which appears to be definitive. The solution can be accommodated
within the framework of the Kalman filter, but it also has some other, quite
separate, antecedents.

We have taken a liberal approach to the matter of how a trend is best
defined. Our own prescription, that it should comprise a set of elements falling
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within a limited range of frequencies, is clearly at variance with the definitions
which are implicit in the two approaches which we have examined which are
based on structural models. If a de-trended series is to be used as an explana-
tory variable in a further analysis, then there may be some advantages in the
method of de-trending which has least effect upon the trend-free components.
Such considerations would favour the square-wave de-trending filter.
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