Consumption and Income: A Spectral Analysis

D.S.G. Pollock

Abstract The relationship between aggregate income and consumption in the
United Kingdom is analysed anew. This entails a close examination of the struc-
ture of the data, using a variety of spectral methods that depend on the concepts
of Fourier analysis. It is found that fluctuations in the rate of growth of consump-
tion tend to precede similar fluctuations in income, which contradicts a common
supposition. The difficulty is emphasised of uncovering from the aggregate data a
structural equation representing the behaviour of consumers.

1 Introduction: The Evolution of the Consumption Function

Over many years, the aggregate consumption function has provided a context in
which problems of econometric modelling have been debated and from which sig-
nificant innovations in methodology have emerged. Whereas such innovations have
advanced the subject of econometrics, none of them has been wholly appropriate to
the aggregate consumption function itself. This may be one of the reasons why the
consumption function has remained a focus of attention.

The vestiges of our misconceptions tend to linger in our minds long after we have
consciously amended our beliefs. Our view of the consumption function is partic-
ularly prone to the effects of ideas that have not been properly discarded despite
their inapplicability. Therefore, in setting a context for our discussion, it is helpful
to recount some of the history of the consumption function.

The first difficulties that were encountered in modelling the aggregate consump-
tion function arose from a conflict between Keynesian theory and the empirical
findings of Kuznets [12] and others. Whereas the theory of Keynes [11] postulated
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average and marginal propensities to consume that declined with income, it was
discovered that income and consumption had maintained a rough proportionality
over many years.

At the same time, the econometricians were conscious that there is a double
relationship between income and consumption, which follows from the fact that
consumption expenditures are a major factor in determining the level of aggregate
income. The failure to take account of the second relationship might lead to biases
in the estimated coefficients of the consumption function.

Using a static analysis, Haavelmo [7] demonstrated that the estimated marginal
propensity to consume was subject to an upward basis that was directly related to
the variance of the innovations in consumption and inversely related to the variance
of the innovations in income. The latter were attributed to autonomous changes in
the rate of investment.

However, Haavelmo also envisaged, in common with other analysts, “that the
active dynamic factor in the business cycle is investment, with consumption assum-
ing a passive lagging role.” (These are the words of Alvin Hansen [9], as quoted by
Haavelmo.) This notion was used by others in reconciling the Keynesian formula-
tion with the empirical findings. The manner in which they did so greatly stimulated
the development of dynamic econometric modelling.

Models in which consumption displayed a laggardly response to income were
provided by Duesenberry [2], who propounded the relative income hypothesis, by
Modigliani and Brumberg [14], who propounded the life-cycle hypothesis—see
Modigliani [13], also—and by Friedman [3], who propounded the permanent in-
come hypotheses. According to these models, rapid increases in income will give
rise, in the short run, to less-than-proportional increases in consumption, which is in
accordance with the Keynesian view. Over longer periods, consumption will gradu-
ally regain the long-run relationship with income that was revealed in the empirical
findings.

The idea that consumption reacts in a passive and laggardly fashion to the forces
impacting upon it also suggested that it might be reasonable to ignore the problem
of simultaneous equation bias, to which Haavelmo had drawn attention. The biases
would be small if the innovations or disturbances in consumption behaviour were
relatively small and if consumers were reacting preponderantly to events of the past.

The two suppositions, upon which the interpretations of the dynamic models
largely depended, which were the inertial nature of consumer’s behaviour and the
relative insignificance of the consumption innovations, have become established
preconceptions, despite the lack of evidence to support them. In fact, the evidence
that we shall uncover strongly suggests that, in the U.K., the business cycle has been
driven by the fluctuations in consumers’ expenditure.

For almost two decades, beginning in the mid fifties, successes in modelling the
consumption function were seen as grounds for congratulating the econometricians.
However, the observations of Granger and Newbold [6] and others on the spurious
nature of regression relationships between trended economic variables led many
to suspect that the success might be illusory. Whereas such regressions account
remarkably well for the level of consumption, they often perform poorly in the far
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more stringent task of predicting changes in the level of consumption from one
period to another. Moreover, as Granger and Newbold [6] emphasised, the standard
inferential procedures of linear regression analysis are valid only in application to
data that have finite-valued asymptotic moment matrices. The moment matrices of
trended variables, such as income and consumption, are unbounded.

An apparent resolution of these difficulties came in the late 1970’s with the ad-
vent of the error-correction formulation of the consumption function. It was under-
stood that a dynamic regression model in the levels of income and consumption can
be expressed, via a linear reparametrisation, as a model that comprises the differ-
ences of the variables together with a stationary error term expressing the current
disproportion between income and consumption. Such a model, in which all of the
variables appear to be from stationary sequences, is amenable to the standard infer-
ential procedures.

The paper of Davidson et al. [1], which adopted an error-correction formulation,
succeeded in re-establishing the traditional consumption function within a viable
econometric framework. For a model in which the dependent variable was a differ-
enced sequence, it achieved a remarkably high value for the coefficient of determi-
nation. It also heralded the incipient notion of a cointegrating relationship between
trended variables, which has subsequently proved to be of major importance.

Some doubts have remained concerning the error-correction formulation of the
dynamic consumption function. For a start, it is questionable whether the equation
is a structural equation that truly represents the behaviour of consumers in the ag-
gregate, as it purports to do. There may be insufficient grounds for ignoring the
problems of simultaneous equation bias. There have also been doubts about the sta-
tistical significance of the error-correction term, which is included in the equation.
We shall raise these doubts anew.

Enough time has elapsed since the publication of the article of Davidson et al. [1]
for the data series to have more than doubled in length. In spite of the various eco-
nomic vicissitudes that are reflected in the extended data set, their model continues
to fit remarkably well, with newly estimated coefficients that are not vastly different
from the original ones. One of the purposes of the present paper is to examine the
basis for this apparent success. The principal purpose is to determine whether the
time-honoured presuppositions about the nature of the income-consumption rela-
tionship, which were inherited by the consumption function of Davidson et al. [1],
have any empirical support.

2 The Data and the Four-Period Difference Filter

In evaluating any model, we should begin by inspecting the data. The data series
of income and consumption—which is the expenditure on nondurable goods—have
two prominent characteristics. The first characteristic is their non-stationarity. Over
the extended data, the logarithms of the data, which are plotted in Fig. 1, show
upward trends that are essentially linear. The second characteristic of the data series
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Fig. 1 The quarterly series of the logarithms of income (upper) and consumption (lower) in the
U.K,, for the years 1955 to 1994, together with their interpolated trends

is that they both show evident patterns of seasonal variation, which play on the backs
of the rising trends.

The seasonal pattern is more evident in the consumption series than it is in the
income series. Therefore, we incline to the view that, rather than being transferred
from the income stream, the seasonal fluctuations in consumption have their origin
in an independent influence that impinges on both income and consumption. This
motivates us to look at ways of deseasonalising the data that will remove the effect.

Models like that of Davidson et al. [1] seek to explain an annual growth rate
in consumption that is derived from quarterly data. The dependent variable of the
model is obtained by passing the logarithms of the consumption series, which we
shall denote by y(t), through a four-period difference filter of the form V4 =1—
L* = (1 = L)(1 + L+ L?> +L?). Here, L is the lag operator, which has the effect
that Ly(z) = y(t — 1), where y(¢) = {y;;t =0+ 1,£2,...} is a series of observations
taken at three-monthly intervals. The filter removes from y(¢) both the trend and the
seasonal fluctuations; and it removes much else besides.

The squared gain of the filter is depicted in Fig. 2. The operator nullifies the com-
ponent at zero frequency and it diminishes the power of the elements of the trend
whose frequencies are in the neighbourhood of zero. This is the effect of V=1—L,
which is a factor of V4. The filter also removes the elements at the seasonal fre-
quency of /2 and at its harmonic frequency of 7, and it attenuates the elements in
the neighbourhoods of these frequencies. This is the effect of the four-point summa-
tion operator S4 = 1+ L+ L? 4 L3, which is the other factor of V. It is also apparent
that the filter amplifies the cyclical components of the data that have frequencies in
the vicinities of 7/4 and 37 /4; and, as we shall discover later, this is a distortion
that can have a marked effect upon some of the estimates that are derived from the
filtered data.
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Fig. 2 The squared gain of the four-period difference filter V4 = 1 — L* (continuous line and left
scale) and the frequency selection of the deseasonalised detrended data (broken line and right scale)
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Fig. 3 The periodogram of the logarithms of consumption in the U.K., for the years 1955 to 1994

The effect of the filter upon the logarithmic consumption series can be see by
comparing the periodograms of Figs. 3 and 4. The periodogram of the sample
comprised by the vector y = [yg,y1,---,y7—1]’ is the sequence of the coefficients
p} = Otj2 + B2, scaled by T /2, that come from the Fourier expression

(T/2]
= Z pjcos(wjt — 6;) (1)
=0

(7/2]
= {alicos(a]it)+Bjsin(wjt)},
j=0
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Fig. 4 The periodogram of the filtered series V4y(¢) representing the annual growth rate of con-
sumption

where T is the sample size and [T /2] is the integral part of 7' /2. Here, @; =27 /T is
the frequency of a sinusoid that takes j periods to complete a cycle. Its amplitude is
pj» whilst pjz /2 is its power which is, in other words, its contribution to the variance
of the sample.

In the second expression, the parameters are &; = p;cos6; and ; = p;sin6;,
with By = 0 and By /2 = 0if T is an even number. We shall describe p; cos(®;t — 6;)
as the jth sinusoidal element in the Fourier decomposition of the sample. (For a
detailed exposition, see Pollock [17]).

The most striking effect of the filtering is the diminution of the power at the fre-
quencies in the vicinity of zero, which is where the elements of the trend component
are to be found, and in the vicinities of 7/2 and 7, where the seasonal elements and
their harmonics are to be found. The degree of the amplification of the elements in
the vicinities of /4 and 37 /4, which is evident in Fig. 4, can be judged in compar-
ison with a periodogram of the detrended data, presented in Fig. 5, which has been
obtained by fitting a linear trend.

The methods for detrending and deseasonalising the data that we shall propose
are designed to remove the minimum amount of information from the processed
series. They avoid the distortions that are induced by the differencing operator.

3 The Error-Correction Model and its Implications

The consumption function of Davidson et al. [1] was calculated originally on a
data set from the U.K. running from 1958 to 1970, which was a period of relative
economic quiescence. When the function is estimated for an extended data period,
running from 1956 to 1994, it yields the following results:
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Vay(t) = 0.70V4x(t) — 0.156VVyx(t) +0.068{x(t — 4) — y(t —4)} +e(t)
(0.40) (0.60) (0.15) )
R?=0.77  D-W =0.920.

Here y(¢) and x(r) represent, respectively, the logarithms of the consumption
sequence and the income sequence, without seasonal adjustment. The numbers
in parentheses below the estimated coefficients are standard errors. The operators
V=1-Land V4 =1 —L* are, respectively, the one-period and the four-period dif-
ference operator. Therefore, V4y(¢) and V4x(¢) represent the annual growth rates of
consumption and income, whilst V| V4x(¢) represents the acceleration or decelera-
tion in the growth of income.

This specification reflects an awareness of the difficulty of drawing meaningful
inferences from a regression equation that incorporates nonstationary variables. The
difference operators are effective in reducing the sequences x() and y(z) to station-
arity. The synthetic sequence x(r —4) — y(t — 4) is also presumed to be stationary
by virtue of the cointegration of x(¢) and y(z); and its role within the equation is to
provide an error-correction mechanism, which tends to eliminate any disproportion
that might arise between consumption and income.

The specification also bears the impress of some of the earlier experiences in
modelling the consumption function that we have described in the introduction. The
variable V| V4x(¢) with its associated negative-valued coefficient allows the growth
of consumption to lag behind the growth of income when the latter is accelerating.
This is the sort of response that the analysts of the late 1940°s and 1950’s, who were
intent on reconciling the Keynesian formulations with the empirical findings, were
at pains to model.

We can evaluate the roles played by the terms of the RHS of equation (2) by mod-
ifying the specification and by observing how the coefficients of the fitted regression
are affected and how the goodness of fit is affected.

The first modification is to replace x(t —4) — y(t — 4) by a constant dummy vari-
able. The result is a slight change in the estimates of the remaining parameters of
the model and a negligible loss in the goodness of fit. This suggests that we can
dispense with the error-correction term at little cost:

V() = 0.006 +0.682V4x(1) — 0.160VV4x(1) + e(t) (3)
(0.001) (0.53) (0.66)
R>=0.76 D-W =0.93.

In this connection, we should note that several analysts, including Hylleberg et al.
[10], have found that the logarithmic series of consumption and income in the U.K.
fail a test for cointegration. This seems to fly is the face of the evident relatedness of
the two quantities. However, the finding may be taken as an indication that the rela-
tionship is not readily amenable to the linear dynamics of a simple error-correction
mechanism.
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We should also mention that, in a recent paper, Fenandez-Corugedo et al. [5]
have found evidence for an error-correction mechanism within a vector autoregres-
sive system of four equations. Their system has non-durable consumption, labour
or non-assets income, the stock of assets and the relative price of durables to non-
durables as its variables. However, the factor loadings on the single cointegrating
vector indicate that the correction mechanism is present only in the equation of the
assets. It is not present in the consumption equation.

The second modification is to eliminate both the error-correction term and the
acceleration term V| V4x(¢) and to observe how well the annual growth in consump-
tion is explained by the annual growth of income. In this case, we observe that the
coefficient of determination of the fitted regression is 0.72, compared with 0.77 for
the fully specified model, while the error sum of squares increases to 0.053 from
0.044. We conclude from this that the acceleration term does have some effect:

Vay(t) = 0.769V4x(t) + (1) )
R>=0.72 D-W=1.15.

The fact that the acceleration term enters the consumption function with a nega-
tive coefficient seem to suggest that the response of consumption to rapid changes
in income is laggardly more often that not. This would fit well with the various
hypotheses regarding consumer behaviour that have been mentioned in the intro-
duction. However, the significance of the estimated coefficient is not very great and
it is considerably reduced when the coefficient is estimated using only the first third
of the data. We shall reconsider the acceleration term at the end of the paper, where
we shall discover that its effect is reversed when we analyse the relationship between
the trends depicted in Fig. 1.

4 A Fourier Method for Detrending the Data

We have seen how the difference operator 1 — L and the four-point summation op-
erator Sy = 1+ L+ 12+ L3 are liable to remove a substantial part of the information
that is contained in the data of the consumption series. In this section and the next,
we shall propose alternative devices for detrending and for deseasonalising the data
that leave much of the information intact. Our basic objective is to remove from the
data only those Fourier elements that contribute to the trend or to the seasonality,
and to leave the other components of the data unaffected.

A normal requirement for the use of the standard methods of statistical Fourier
analysis is that the data in question should be generated by stationary processes, and
this requirement is a hardly ever satisfied in econometric analysis. To understand
the problems that can arise in applying Fourier methods to trended data, one must
recognise that, in analysing a finite data sequence, one is making the implicit as-
sumption that it represents a single cycle of a periodic function that is defined over
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the entire set of positive and negative integers. This function may be described as
the periodic extension of the data sequence.

In the case of a trended sequence, there are bound to be radical disjunctions in the
periodic function where one replication of the data sequence ends and another be-
gins. Thus, for example, if the data follow a linear trend, then the function that is the
subject of the Fourier analysis will have the appearance of the serrated edge of a saw
blade. The saw tooth function has a spectrum that extends across the entire range
of frequencies, with ordinates whose absolute values are inversely proportional to
the corresponding frequencies—see for example, Hamming [8]. These effects of the
trend are liable to be confounded with the spectral effects of the other motions that
are present in the data.

The problem is resolved by using an approach that is familiar from the forecast-
ing of ARIMA processes. We begin by differencing the data sequence as many times
d as may be necessary to reduce it to a state of stationarity. The income and con-
sumption data need to be differenced twice, giving d = 2. We proceed to eliminate
the low-frequency sinusoidal elements from the differenced data. Then, by cumu-
lating or ‘integrating’ the resulting sequence as many times as the original data has
been differenced, we will obtain the detrended version of the data. The trend of the
data can be obtained, likewise, by cumulating the sum of the low-frequency ele-
ments that have been extracted from the differenced data.

To represent these processes, we need to employ the matrix versions of the dif-
ference operator and of the summation or cumulation operator, which is its inverse.
Let the identity matrix of order T be denoted by

It =eg,ei,...,er—1], )

where ¢; represents a column vector that contains a single unit preceded by j zeros
and followed by T — j — 1 zeros. Then, the finite-sample lag operator is the matrix

LT:[el,...,ETfl,O], (6)

which has units on the first subdiagonal and zeros elsewhere. The matrix that takes
the d-th difference of a vector of order 7 is given by A = (I — Lz)“.

Taking differences within a vector entails a loss of information. Therefore, if
A = [0Q.,0], where Q' has d rows, then the d-th differences of a vector y =
[v0,--.,yr—1]" are the elements of the vector g = [g4,...,g7—1]" that is found in

the equation
[i,*}:[%:}y. )

The vector g, = Qy in this equation, which is a transform of the vector [yo, ..., ys_1]
of the leading elements of y, is liable to be discarded.

The inverse of the difference matrix is the matrix A~! = X = [S,, S]. This has the
effect that
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The vector y can be recovered from the differenced vector g only if the vector g, of
initial conditions is provided.

The elements of the vector g = [g4,...,g7—1] of the differenced data have the
following Fourier expression:

(T/2]
g =Y, {¥jcos(wjt)+8;sin(wjr)}. )
i=d

Jj=

Let ¢ be the cut-off frequency that separates the Fourier elements of the trend
component from the remainder. Then, by setting ¥;,6; = 0 when ®; > ¢, we
generate the elements of z = [zy4,...,zr—1]', which is the differenced trend com-
ponent, whereas, by setting ¥;,8; = 0 when ®; < @, we generate the elements of
k= [kg,...,kr—1]', which is the remainder.

The vector z requires to be cumulated to form x = S,.z, + Sz, which is the estimate
of the tend. The initial conditions in z, should be chosen so as to ensure that the trend
is aligned with the data as closely as possible. The criterion is

Minimise (y— S.z: — Sz)'(y — S«z+ — Sz)  with respect to  z,. (10)
The solution for the starting values is
ze = (8.8)7'SL(y— Sz). (11)

The cut-off point w¢ marks the highest frequency amongst the Fourier elements
that constitute the trend. The decision of where to place this point should be guided
by an appraisal of the spectral structure of the data. Fig. 5 shows the periodogram
of the residual sequence obtained by fitting a linear trend through the logarithms of

0.1
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0 | /-JIL 1

0 /4 /2 3n/4 I

Fig. 5 The periodogram of the residuals obtained by fitting a linear trend through the logarithmic
consumption data of Fig. 1
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Fig. 6 The detrended consumption series

the consumption series by least-squares regression. The regression residuals contain
exactly the same information as does the twice differenced data sequence; and their
periodogram serves to reveal the low-frequency spectral structure of the data. Within
the peridogram of the twice-differenced data, this structure is so severely attenuated
as to be virtually invisible.

We choose to place the cut-off point at wc = 7/8 radians, which is in a dead
space of the periodogram where there are no ordinates of any significant size. Given
that the observations are at quarterly intervals, this implies that the trend includes
all cycles of four years duration of more. The detrended consumption series is show
in Fig. 6. A similar analysis of the income data suggests that the same cut-off point
is appropriate. The trends in the consumption and income series that have been
calculated on this basis are depicted in Fig. 1.

5 A Fourier Method for Deseasonalising the Data

As well as removing the trend from the data, we also wish to remove the seasonal
fluctuations. This can be done in much the same way. At its simplest, we can define
the differenced seasonal component to consist only of those sinusoidal elements,
extracted from the differenced data {gy,...,gr—1}, that are at the seasonal frequency
and at the harmonically related frequencies. Let N = T — d, where d is the degree
of differencing. Then, in the case of quarterly data, and on the supposition that N is
an even number, the component would be described by the equation

Tt . Tt
Uy = Oy /4 €OS (?)—&—ﬁNMsm (?)—f—aN/z(—])’, (12)
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wherein
2 mt
ayja = - Ygrcos (5). (13)
t
2 . (Tt
ﬁN/4 = N;gt sin (?) )
1
Qv = NZg,(—l)t.
t

In fact, this scheme is equivalent to one that uses seasonal dummy variables with
the constraint that their associated coefficients must sum to zero. It will generate a
pattern of seasonal variation that is the same for every year.

A more complex pattern of seasonality, which will vary gradually over the years,
could be obtained by adopting a linear stochastic model with unit roots at the sea-
sonal frequencies or by combining such a model with a “deterministic” trigono-
metrical or dummy-variable model in the manner suggested by Osborn et al. [16].
However, the desired effect can also be achieved by comprising within the Fourier
sum a set of sinusoidal elements whose frequencies are adjacent to the seasonal
frequency and to its harmonics.

The combined effect of two elements at adjacent frequencies depends upon
whether their sinusoids are in phase, in which case they reinforce each other, or
out of phase, in which case they tend to interfere with each other destructively. Two
sinusoids whose frequencies are separated by 0 radians will take a total of T =27/6
periods to move from constructive interference to destructive interference and back
again. By this device, a pattern can be generated that evolves over the length of the
sample.

It remains to describe how the seasonal elements that have been extracted from
the differenced data are to be cumulated to provide an estimate of the seasonal com-
ponent. It seems reasonable to chose the starting values so as to minimise the sum
of squares of the seasonal fluctuations. Let w = S,u, + Su be the cumulated sea-
sonal component, where u, is a vector of d starting values and u is the vector of
the seasonal component that has been extracted from the differenced data. Then the
criterion is

Minimise  (Sius + Su)’(S,us +Su) with respect to  u,. (14)
The solution for the starting values is
u, = —(8.8,) 'S Su. (15)

Figure 7 shows the estimated seasonal component of the consumption series.
The seasonal series is synthesised from the trigonometric functions at the seasonal
frequency of /2 and at its harmonic frequency of 7, together with a handful of
elements at the adjacent non-seasonal frequencies. It comprises two elements below
7/2 and one above, and it also comprises one element below 7. These choices have
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Fig. 7 The estimated seasonal component of the consumption series

resulted from an analysis of the periodogram of Fig. 5. Figure 2 indicates, via the
dotted lines, the frequencies that are present in the detrended and deseasonalised
data.

The seasonal component of consumption accounts for the 93 percent of the vari-
ation of the detrended consumption series. When the seasonal component is esti-
mated for the income series using the same set of frequencies, it accounts for only
46 percent of the variance of the corresponding detrended series.

6 A Re-appraisal of the Income—Consumption Relationship

In the previous section, we have described some new techniques for detrending the
data and for extracting the seasonal component. We have discovered that the sea-
sonal fluctuations in consumption are of a greater amplitude than those of the in-
come series. They also appear to be more regular. It is also the case that Hylleberg
et al. [10] failed to find cointegration between the two logarithmic series at the sea-
sonal frequencies. These circumstances persuade us to reject the notion that the
fluctuations have been transferred from income to consumption. It seems more rea-
sonable to treat the seasonal fluctuations in both series as if they derive from external
influences. Therefore, in seeking to establish a relationship between the detrended
series, it is best to work with the deseasonalised versions.

When we turn to the deseasonalised and detrended consumption series, we find
that its variance amounts to only 7 percent of the variance of the detrended series.
It is hardly worthwhile to attempt to model this series. Indeed, the periodogram
of Fig. 5 also makes it clear that there is very little information in the data of the
consumption sequence that is not attributable either to the trend or to the seasonal
component.
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If it is accepted that the seasonal component needs no further explanation, then
attention may be confined to the trend. The use of ordinary linear statistical methods
dictates that any explanation of the consumption trend is bound to be in terms of data
elements whose frequencies are bounded by zero and by the cut-off point of /8
radians. That is to say, the trend in consumption can only be explained by similar
trends in other variables.

Therefore, we turn to the essential parts of the income and the consumption se-
ries, which are their trends. We take the annual differences of the logarithmic trends
by applying the operator V4 = I — L*; and the results are a pair of smooth series
that represent the annual growth rates of income and consumption. By combining
the two series in one graph, which is Fig. 8, we are able to see that, in the main, the
fluctuations in the growth in consumption precede similar fluctuations in the growth
of income.

It may be recalled the income-acceleration term VV4x(¢) enters the consumption
functions of equations (1) and (2) with a negative coefficient. This is in spite of
the clear indication of Fig. § that the consumption-growth series leads the income-
growth series. However, when the smoothed growth series V4$(¢) and V4£(z) of
Fig. 8 are used in these equations in place of V4x(t) and V4y(¢), the sign on the
coefficient of the acceleration term is reversed:

Va$(1) = 0.006 +0.689V42(r) 4+ 1.055V V42 () +e(1) (16)
(0.001) (0.44) (0.170)
R>=0.87.

The explanation of this anomaly must lie in the nature of the gain of the four-
period difference filter V4 = I — L4, which is represented in Fig. 2. The effect of
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Fig. 8 The annual differences of the trend of the logarithmic consumption series (solid line) and
of the trend of the logarithmic income series (broken line)
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the filter is to amplify some of the minor components of the data that lie in the
dead spaces of the periodogram of Fig. 5 on either side of the frequencies /4
and 37 /4. Thus it can be concluded that, notwithstanding its specious justification,
the negative acceleration term is an artefact of the differencing filter. This finding
conflicts with the belief that consumption responds in a laggardly fashion to rapid
changes in income.

The perception that the series of the annual growth rate in consumption is lead-
ing the corresponding series in income can be reaffirmed within the context of a bi-
variate vector autoregressive model. The model must be applied to the unsmoothed
growth rates obtained by taking the four-period differences of the logarithms of the
two series. It cannot be applied directly to the smoothed growth-rate series of Fig. 8,
which have band-limited spectra. The reason is that an autoregressive model presup-
poses a spectral density function that is nonzero everywhere in the frequency range
except on a set of measure zero.

The bivariate vector autoregressive model takes the form of

r p
Vay(t) = cy+ ) 0iVay(t —i)+ ) BiVax(r — i) +£(2), (17)
i=1 i=1
)4 )4
Vax(t) = co+ Y WiVax(t —i) + Y 8Vay(t —i) + (7). (18)
i=1

i= i=1

The terms ¢, and ¢, stand for small constants, which are eliminated from the model
when the differenced series are replaced by deviations about their mean values.
The deviations may be denoted by 7(z) = Vay(t) — E{V4y(¢)} and %(t) = Vax(¢) —
E{V4x(t)}. The expected values can be represented by the corresponding sample
means.

In the case of p = 2, the estimated equations are

F(t) = 0.515(t — 1)+ 0.345(t —2) + 0.27%(t — 1) — 0.38%(t — 2) + e(¢),

(0.86) (0.87) (0.73) (0.72) (19)
%(t) = 0.52%(t — 1) — 0.10%(t — 2) + 0.165(t — 1) + 0.255(t — 2) + h(z).
(0.93) (0.92) (0.11) (0.11) (20)

To facilitate the analysis of the model, it is helpful to write the equations (17)
and (18) in a more summary notation that uses polynomials in the lag operator to
represent the various sums. Thus

¢(L)y(r) = B(L)x(1) = &(2), @D
—6(L)y(t) + w(L)x(t) = n (1), 22)
where ¢(L) =1—¢L—---—¢pLP, B(L) = BiL+---+B,LP, y(L) =1—yiL—

o~ —ypLP and §(L) = S| L+---+ 5,LP.
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The notion that the sequence j(¢) is driving the sequence %(¢) would be
substantiated if the influence of the innovations sequence £(t) upon J(¢) were
found to be stronger than the influence of 7)(¢) upon the corresponding sequence
X(t). The matter can be investigated via the moving-average forms of the equations,
which express %(¢) and 7(¢) as functions only of the innovations sequences £(¢) and
N(¢). The moving-average equations, which are obtained by inverting equations
(21) and (22) jointly, are

5(1) = ‘,’j((fieo) n ﬁggn(t), 23)
%) = iggem n ﬁggn@, o4

where 7(L) = §(L)w(L) — B(L)3(L).

Since there is liable to be a degree of contemporaneous correlation between in-
novations sequences, the variance of the observable sequences 7(¢) and %(¢) will not
equal the sum of the variances of the components in £(¢) and 1 (¢) on the RHS. The
problem can be overcome by reparametrising the two equations so that each is ex-
pressed in terms of a pair of uncorrelated innovations. Such a procedure has been
adopted by Geweke [4], for example.

Consider the innovation sequence 1 (¢) within the context of equation (23), which
is for §(¢). We may decompose 1(z) into a component that lies in the space spanned
by &(¢) and a component §(¢) that is in the orthogonal complement of the space.
Thus

n0) = et + {n(t) - ‘c’,’gem} @)
- ‘;—’gewcm,

where 62 = V{&(t)} is the variance of the consumption innovations and 68217 =
C{&(t),n(r)} is the covariance of the consumption and income innovations. Substi-
tuting (25) in equation (23) and combining the terms in £(¢) gives

(1) = f[‘ggsm n ﬁggm 26)
where p
a(L) = y(L)+ 5 B(L). 27)

We may describe the sequence £(z) as the auto-innovations of ¥(¢) and () as the
allo-innovations.
By a similar reparametrisation, the equation (24) in %(¢) becomes

%) = Z((j))nm n igé(r), 28)
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Fig. 9 The spectrum of the consumption growth sequence V4y(¢) (the outer envelope) and that of
its auto-innovation component {¢t(L)/7(L)}€(z) (the inner envelope)

where
YL) = $(L)+ ‘(’;’gw, 29)
E(t) = e(1) - ‘;i% (1),

and where 7 (¢) and &(z) are mutually uncorrelated. These are, respectively, the
auto-innovations and the allo-innovations of %(z).

The relative influences of €(¢) on §(¢) and of 17(¢) on (z) can now be assessed by
an analysis of the corresponding spectral density functions. Figure 9 shows the spec-
trum of j(¢) together with that of its auto-innovation component {c(L)/7(L)}£(z),
which is the lower envelope. Figure 10 shows the spectrum of %(¢) together with that
of its auto-innovation component {y(L)/m(L)}n(z).

From a comparison of the figures, it is clear that the innovation sequence £(t)
accounts for a much larger proportion of §(¢) than 1(¢) does of %(¢). Thus, the con-
sumption growth series appears to be driven largely by its auto innovations. These
innovations also enter the income growth series to the extent that the latter is not ac-
counted for by its auto innovations. Figure 10 shows that the extent is considerable.

The fact the consumption innovations play a large part in driving the bivari-
ate system implies that the consumption function of Davidson et al. [1], which is
equation (2), cannot be properly construed as a structural econometric relationship.
For it implies that the estimates are bound to suffer from a simultaneous-equations
bias. Nevertheless, in so far as the mechanisms generating the data remain un-
changed, the above-mentioned function will retain its status as an excellent predictor
of the growth rate of consumption that is based on a parsimonious information set.
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Fig. 10 The spectrum of the income growth sequence V4x() (the outer envelope) and that of its
auto-innovation component {y(L)/7(L)}n(¢) (the inner envelope)

7 Conclusions

The traditional macroeconomic consumption function depicts a delayed response
of consumption spending to changes in income; and many analysts would expect
this relationship to be readily discernible in the macroeconomic data. Instead, the
data seem to reflect a delayed response of aggregate income to autonomous changes
in consumption. Although the two responses can easily coexist, it is the dominant
response that is liable to be discerned in the data at first sight.

A crucial question is whether both responses can be successfully disentangled
from the macroeconomics data. The construction of a bivariate autoregressive model
is the first step in the process of their disentanglement. However, given the paucity
of the information contained in the data, one is inclined to doubt whether the process
can be carried much further. Indeed, the efforts that have been devoted to the microe-
conomic analysis of consumer behaviour in the last twenty years can be construed
as a reaction to limited prospects facing macroeconomic investigations.

Much has already been accomplished in the microeconomic analysis of con-
sumer behaviour; and an excellent account of some of the numerous influ-
ences that affect consumer behaviour directly has been provided recently by
Muellbauer and Latimore [15]. However, what is lacking is a methodology that
would enable the consumption behaviour of identifiable social and economic groups
to be aggregated into a macroeconomic consumption function.

We have found that, within a bivariate autoregressive system designed to ex-
plain the growth rates on income and consumption, the innovations sequence of the
consumption equation dominates the corresponding innovations sequence of the in-
come equation. Thus the fluctuations in the growth rate of consumption have been
depicted mainly as the result of autonomous influences.
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Although the innovations sequences are an artefact of the statistical analysis, they
are not entirely devoid of worldly connotations. By a detailed study of the historical
circumstances, we should be able to relate the consumption innovations to the fiscal
policies of the central governments, the state of the financial markets, the rate of
inflation, the political and social climate, and to much else besides. Although some
of these influences have been included in macroeconomic consumption functions,
it seems that, in the main, there has been a remarkable oversight of the circumstan-
tial details in most attempts at explaining the aggregate level of consumption. The
present analysis is, regrettably, no exception.
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