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Abstract. An account is given of a variety of linear filters which can be used for extracting
trends from economic time series and for generating de-trended series. A family of rational
square-wave filters is described which enable designated frequency ranges to be selected
or rejected. Their use is advocated in preference to other filters which are commonly used
in quantitative economic analysis.

1. Introduction: The Variety of Linear Filters

Whenever we form a linear combination of successive elements of a discrete-
time signal y(t) = {yt; t = 0,±1,±2, . . .}, we are performing an operation
which is described as linear filtering. Such an operation can be represented
by the equation

x(t) = ψ(L)y(t) =
∑

j

ψjy(t − j), (1)

wherein
ψ(L) = { · · · + ψ−1L

−1 + ψ0I + ψ1L + · · · }, (2)

is described as the filter.
The effect of the operation it to modify the signal y(t) by altering the

amplitudes of its cyclical components and by advancing or delaying them
in time. These modifications are described, respectively, as the gain effect
and the phase effect of the filter. The gain effect is familiar through the
example of the frequency-specific amplification of sound recordings which
can be achieved with ordinary domestic sound systems. A phase effect in
the form of a time delay is bound to accompany any signal processing that
takes place in real time.

In quantitative economic analysis, filters are used for smoothing data se-
ries, which is a matter of attenuating or even discarding the high-frequency
components of the series and preserving the low-frequency components.
The converse operation, which is also common, is to extract and discard
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the low-frequency trend components so as to leave a stationary sequence
of residuals, from which the dynamics of short-term economic relationships
can be estimated more easily.

As it stands, the expression under (2) represents a Laurent series com-
prising an indefinite number of terms in powers of the lag operator L and
its inverse L−1 = F whose effects on the sequence y(t) are described by the
equations Ly(t) = y(t − 1) and L−1y(t) = Fy(t) = y(t + 1).

In practice, ψ(L) often represents a finite polynomial in positive powers
of L which is described as a one-sided moving-average operator. Such a
filter can only impose delays upon the components of y(t).

Alternatively, the expression ψ(L), might stand for the series expan-
sion of a rational function δ(L)/γ(L); in which case the series is liable to
comprise an indefinite number of ascending powers of L, beginning with
L0 = I. Such a filter is realised via a process of feedback, which may be
represented by the equation

γ(L)x(t) = δ(L)y(t), (3)

or, more explicitly, by

x(t) = δ0y(t) + δ1y(t − 1) + · · · + δdy(t − d) (4)
−γ1x(t − 1) − · · ·− γgx(t − g).

Once more, the filter can only impose time delays upon the components of
x(t); and, because the filter takes a rational form, there are bound to be
different delays at the various frequencies.

Occasionally, a two-sided symmetric filter in the form of

ψ(L) = δ(F )δ(L) = ψ0I + ψ1(F + L) + · · · + ψd(F d + Ld) (5)

is employed in smoothing the data or in eliminating its seasonal compo-
nents. The advantage of such a filter is the absence of a phase effect. That
is to say, no delay is imposed on any of the components of the signal.
The so-called Cramér–Wold factorisation which sets ψ(L) = δ(F )δ(L),
and which must be available for any properly-designed filter, provides a
straightforward way of explaining the absence of a phase effect. For the
factorisation enables the transformation of (1) to be broken down into two
operations:

(i) z(t) = δ(L)y(t) and (ii) x(t) = δ(F )z(t). (6)

The first operation, which runs in real time, imposes time delays on every
component of x(t). The second operation, which works in reversed time,
imposes an equivalent reverse-time delay on each component. The reverse-
time delays, which are advances in other words, serve to eliminate the
corresponding real-time delays.
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The processed sequence x(t) may be generated via a single application
of the two-sided filter ψ(L) to the signal y(t), or it may be generated in
two operations via the successive applications of δ(L) to y(t) and δ(F ) to
z(t) = δ(L)y(t). The question of which of these techniques has been used
to generate y(t) in a particular instance should be a matter of indifference.

The final species of linear filter that may be used in the processing of
economic time series is a symmetric two-sided rational filter of the form

ψ(L) =
δ(F )δ(L)
γ(F )γ(L)

. (7)

Such a filter must, of necessity, be applied in two separate passes run-
ning forwards and backwards in time and described, respectively, by the
equations

(i) γ(L)z(t) = δ(L)y(t) and (ii) γ(F )x(t) = δ(F )z(t). (8)

Such filters represent a most effective way of processing economic data in
pursuance of a wide range of objectives.

The essential aspects of linear filtering are recounted in numerous texts
devoted to signal processing. Two that are worthy of mention are by Haykin
(1989) and by Oppenheim and Shafer (1989). The text of Pollock (1999)
bridges the gap between signal processing and time-series analysis.

In this paper, we shall concentrate on the dual objectives of estimating
economic trends and of de-trending data series. However, before we present
the methods that we wish to advocate, it seems appropriate to provide a
critical account of some of the methods that are in common use.

2. Differencing Filters

The means of reducing time series to stationarity, which has been employed
traditionally in quantitative economics, has been to take as many differences
of the series as are necessary to eliminate the trend and to generate a
series that has a convergent autocovariance function. A sequence of d such
operations can be represented by the equation

x(t) = (I − L)dy(t). (9)

This approach to trend-elimination has a number of disadvantages, which
can prejudice the chances of using the processed data successfully in esti-
mating economic relationships.

The first of the deleterious effects of the difference operator, which is
easily emended, is that it induces a phase lag. Thus, when it is applied
to data observed quarterly, the operator induces a time lag of one-and-
a-half months. To compensate for the effect, the differenced data may be
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Figure 1. The frequency-response functions of the lowpass filter ψS(z) = 1
4 (z+2+z−1),

the highpass filter ψD(z) = 1
4 (−z + 2 − z−1) and the binomial filter

ψB(z) = 1
64 (1 + z)3(1 + z−1)3.

shifted forwards in time to the points that lie midway between the obser-
vations. When applied twice, the operator induces a lag of three months.
In that case, the appropriate recourse in avoiding a phase lag is to apply
the operator both in real time and in reversed time. The resulting filter is

(I − F )(I − L) = −F + 2I − L, (10)

which is a symmetric two-sided filter with no phase effect.
As Figure 1 shows, this filter serves to attenuate the amplitude of the

components of y(t) over a wide range of frequencies. It also serves to increase
the amplitude of the high-frequency components. If the intention is only to
remove the trend from the data, then the amplitude of these components
should not be altered. In order not to affect the high-frequency components,
the filter coefficients must be scaled by a factor of 0.25.

To understand this result, one should consider the transfer-function of
the resulting filter, which is obtained by replacing the lag operator L by
the complex argument z−1 to give

ψD(z) =
1
4
( − z + 2 − z−1). (11)

The effect of the filter upon the component of the highest observable frequency—
which is the so-called Nyquist frequency of ω = π—is revealed by setting
z = exp{iπ}, which creates the filter’s frequency-response function. This is

ψD(eiπ) =
1
4

{
2 − (eiπ + e−iπ)

}
(12)
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=
1
4

{
2 − 2 cos(π)

}
= 1.

Thus, the gain of the filter, which is the factor by which the amplitude of
a cyclical component is altered, is unity at the frequency ω = π, which is
what is required.

The condition that has been fulfilled by the filter may be expressed
most succinctly by writing |ψD(−1)| = 1, where the vertical lines denote
the operation defined by

|ψ(z)| =
√

ψ(z)ψ(z−1), (13)

which, in the case where z = exp{iω}, amounts to taking the complex
modulus. In that case, z is located on the unit circle; and, when it is
expressed as a function of ω, |ψ(exp{iω})| becomes the so-called amplitude-
response function, which indicates the absolute value of the filter gain at
each frequency.

In the case of the phase-neutral differencing filter of (10), as in the case
of any other phase-free filter, the condition ψ(z) = ψ(z−1) is fulfilled. This
condition implies that the transfer function ψ(z) = |ψ(z)| is a non-negative
real-valued function. Therefore, the operation of finding the modulus is
redundant. In general, however, the transfer function is a complex-valued
function ψ(z) = |ψ(z)| exp{iθ(ω)} whose argument θ(ω), evaluated at a
particular frequency, corresponds to the phase shift at that frequency.

Observe that the differencing filter also obeys the condition |ψD(1)| = 0.
This indicates that the gain of the filter is zero at zero frequency, which
corresponds to the fact that it annihilates a linear trend, which may be
construed as a zero-frequency component.

The adjunct of the highpass trend-removing filter ψD(z) is a comple-
mentary lowpass trend-estimation or smoothing filter defined by

ψS(z) = 1 − ψD(z) =
1
4
(z + 2 + z−1). (14)

As can be seen from Figure 1, the two filters ψS(z) and ψD(z) bear a relation
of symmetry, with is to say that, when they are considered as functions on
the interval [0,π], they represent reflections of each other about a vertical
axis drawn through the frequency value of ω = π/2. The symmetry con-
dition can be expressed succinctly via the equations ψS(−z) = ψD(z) and
ψD(−z) = ψS(z).

The differencing filter ψD(z) = 1
4(1 − z)(1 − z−1) and its complement

ψS(z) = 1
4(1 + z)(1 + z−1) can be generalised in a straightforward manner

to generate higher-order filters. Thus, we may define a binomial lowpass
filter via the equation

ψB(z) =
1
4n

(1 + z)n(1 + z−1)n. (15)
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This represents a symmetric two-sided filter whose coefficients are equal to
the ordinates of the binomial probability function b(2n; p = 1

2 , q = 1
2). The

gain or frequency response of this filter is depicted in Figure 1 for the case
where 2n = 6.

An n increases, the profile of the coefficients of the binomial filter tends
increasingly to resemble that of a Gaussian normal probability density
function. The same is true of the profile of the frequency-response function
defined over the interval [−π,π], which is the Fourier transform of the
sequence of coefficients. In this connection, one might recall that the Fourier
(integral) transform of a Gaussian distribution is itself a Gaussian distribu-
tion. As n increases, the span of the filter coefficients widens. At the same
time, the dispersion of the frequency-response function diminishes, with
the effect that the filter passes an ever-diminishing range of low-frequency
components.

It is clear that, for the family of binomial filters, the symmetry of the
relationship between the highpass and lowpass filters prevails only in the
case of n = 1. Thus, if ψC(z) = 1−ψB(z), then, in general, ψC(z) "= ψB(−z).
This is to be expected from the characterisation that we have given above.

It remains to conclude this section by demonstrating the effect that
the simple differencing filter of equation (10) is liable to have on a typical
economic time series. An example is provided by a series of monthly mea-
surements on the U.S. money stock from January 1960 to December 1970.
Over the period in question, the stock appears to grow at an accelerating
rate.

Figure 2 shows the effect of fitting a polynomial of degree five in the
temporal index t to the logarithms of the data. This constitutes a rough-
and-ready means of estimating the trend.

The periodogram of the residuals from the polynomial regression is dis-
played in Figure 3. Here, there is evidence of a strong seasonal component
at the frequency of ω = π/6. Components of a lesser amplitude are also
evident at the harmonic frequencies of ω = π/3, π/2, 2π/3, and there is a
barely perceptible component at the frequency of ω = 5π/6.

Apart from these components, which are evidently related to an annual
cycle in the money stock, there is a substantial low-frequency component,
which spreads over a range of adjacent frequencies and which attains its
maximum amplitude at a frequency that corresponds to a period of roughly
four years. This component belongs to the trend; and the fact that it is ev-
ident in the periodogram of the residuals is an indication of the inadequacy
of the polynomial as a means of estimating the trend.

Figure 4 shows the periodogram of the logarithmic money-stock se-
quence after is has been subjected to the differencing filter of (10). As
might be expected, the effect of the filter has been to remove the low-
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Figure 2. The logarithms of 132 monthly observations on the U.S. money stock with
an interpolated polynomial time trend of degree 5.
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Figure 3. The periodogram of the residuals from fitting a 5th degree polynomial time
trend to the logarithms of the U.S. money stock.
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Figure 4. The periodogram of a sequence obtained by applying the second-order
differencing filter to the logarithms of the U.S. money stock.
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frequency trend components. However, it also has an effect which spreads
into the mid and high-frequency ranges. In summary, we might say that the
differencing filter has destroyed or distorted much of the information that
would be of economic interest. In particular, the pattern of the seasonal
effect has been corrupted. This distortion is liable to prejudice our ability
to build effective forecasting models that are designed to take account of
the seasonal fluctuations.

One might be tempted to use the lowpass binomial filter, defined under
(15), as a means of extracting the trend. However, as Figure 1 indicates,
even with a filter order of 6, there would be substantial leakage from
the seasonal components into the estimated trend; and we should need
to deseasonalise the data before applying the filter.

In the ensuing sections, we shall describe alternative procedures for
trend extraction and trend estimation. The first of these procedures, which
is the subject of the next section, is greatly superior to the differencing
procedure. Nevertheless, it is still subject to a variety of criticisms. The
procedure of the ultimate section is the one which we shall recommend.

3. Notch Filters

The binomial filter ψB(z), which we have described in the previous section,
might be proposed as a means of extracting the low-frequency components
of an economic time series, thereby estimating the trend. The complemen-
tary filter, which would then serve to generate the de-trended series, would
take the form of ψC(z) = 1 − ψB(z).

Such filters, however, would be of limited use. In order to ensure that a
sufficiently restricted range of low-frequency components are passed by the
binomial filter, a large value of n would be required. This would entail a
filter with numerous coefficients and a wide time span. When a two-sided
filter of 2n + 1 coefficients reaches the end of the data sample, there is a
problem of overhang. Either the final n sample elements must remain un-
processed, or else n forecast values must be generated in order to allow the
most recent data to be processed. The forecasts, which could be provided
by an ARIMA model, for example, might be of doubtful accuracy.

In applied economics, attention is liable to be focussed on the most
recent values of a data series; and therefore a wide-span symmetric filter,
such as the binomial filter, is at a severe disadvantage. It transpires that
methods are available for constructing lowpass filters which require far fewer
parameters.

To describe such methods, let us review the original highpass differenc-
ing filter of equation (10). Such a filter achieves the effect of annihilating a
trend component by placing a zero of the function ψ(z) on the unit circle at
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Figure 5. The pole–zero diagram of the real-time components of the notch filter ψN

(left) and of the Hodrick–Prescott filter ψP = 1 − ψN (right) in the case where λ = 64.
The poles are marked by crosses and, in the case of the notch filter, the double zero at
z = 1 is marked by concentric circles.

the point z = 1, which corresponds to a frequency value of ω = 0. Higher-
order differencing filters are obtained by placing more than one zero at this
location. However, the effect of the zeros is likely to be felt over the entire
frequency range with the deleterious consequences that we have already
illustrated with a practical example.

In order to limit the effects of a zero of the filter, the natural recourse is
to place a pole in the denominator of the filter’s transfer function located
at a point in the complex plane near to the zero. The pole should have
a modulus that is slightly less than unity. The effect will be that, at any
frequencies remote from the target frequency of ω = 0, the pole and the
zero will virtually cancel, leaving the frequency response close to unity.
However, at frequencies close to ω = 0, the effect of the zero, which is on
the unit circle, will greatly outweigh the effect of the pole, which is inside
it, and a narrow notch will be cut in the frequency response of the transfer
function.

The device that we have described is called a notch filter. It is commonly
used in electrical engineering to eliminate unwanted components, which are
sometimes found in the recordings of sensitive electrical transducers and
which are caused by the inductance of the alternating current of the mains
electrical supply. In that case, the zero of the transfer function is placed, not
at z = 1, but at some point on the unit circle whose argument corresponds
to the mains frequency Also, the pole and the zero must be accompanied
by their complex conjugates.

The poles in the denominator of the electrical notch filter are commonly
placed in alignment with the corresponding zeros. However, the notch can
be widened by placing the pole in a slightly different alignment. Such a re-
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course is appropriate when the mains frequency is unstable. Considerations
of symmetry may then dictate that there should be a double zero on the
unit circle flanked by two poles. If µ denotes a zero and κ denotes a pole,
then this prescription would be met by setting

µ1, µ2 = eiω and κ1,κ2 = ρeiω±ε with 0 < ρ< 1, (16)

where ω denotes the target frequency and ε denotes a small offset. The
accompanying conjugate values are obtained by reversing the sign of the
imaginary number i.

The concept of a notch filter with offset poles leads directly to the idea
of a rational trend-removal filter of the form

δ(z−1)
γ(z−1)

=
(1 − z−1)2

(1 − κz−1)(1 − κ∗z−1)
, (17)

where κ = ρ exp{iε} is a pole which may be specified in terms of its modulus
ρ and its argument ε, and where κ∗ = ρ exp{−iε} is its conjugate. To
generate a phase-neutral filter, this function must be compounded with
the function δ(z)/γ(z), which corresponds to the same filter applied in
reversed time. Although only two parameters ρ and ε are involved, the
search for an appropriate specification for the filter is liable to be difficult
and time-consuming in the absence of a guiding design formula.

A notch filter, which has acquired considerable popularity amongst
economists, and which depends on only one parameter, is given by the
formula

ψN (z) =
δ(z)δ(z−1)
γ(z)γ(z−1)

=
(1 − z)2(1 − z−1)2

(1 − z)2(1 − z−1)2 + λ−1
. (18)

The placement of its poles and zeros within the complex plane is illustrated
in Figure 5. The complement of the filter, which is specified by

ψP (z) = 1 − ψN (z) =
λ−1

(1 − z)2(1 − z−1)2 + λ−1
(19)

is know to economists as the Hodrick–Prescott smoothing filter.
The filter was presented originally by Hodrick and Prescott (1980) in a

widely circulated discussion paper. The paper was published as recently as
(1997). Examples of the use of this filter have been provided by Kydland
and Prescott (1990), King and Rebelo (1993) and by Cogley and Nason
(1995).

The Hodrick–Prescott filter has an interesting heuristic. It transpires
that it is the optimal estimator of the trajectory of a second-order random
walk observed with error. Its single adjustable parameter λ−1 corresponds
to the signal-to-noise ratio, which is the ratio of the variance of the white-
noise process that drives the random walk and the variance of the error
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Figure 6. The frequency-response function of the notch filter ψN for various values of
the smoothing parameter λ.
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Figure 7. The frequency-response function of the Hodrick–Prescott smoothing filter ψP

for various values of the smoothing parameter λ.
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Figure 8. The trajectory in the complex plane of a pole of the norch filter ψN . The pole
approaches z = 1 as λ−1 → 0.
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that obscures its observations. It is usual to describe λ as the smoothing
parameter.

The filter is also closely related to the Reinsch (1976) smoothing spline,
which is used extensively in industrial design. With the appropriate choice
of the smoothing parameter, the latter represents the optimal estimator of
the underlying trajectory of an integrated Wiener process observed with
error.

The effect of increasing the value of λ in the formula for the smoothing
filter is to reduce the range of the low-frequency components that are passed
by the filter. The converse effect upon the notch filter is to reduce the
width of the notch that impedes the passage of these components. These
two effects are illustrated in Figures 6 and 7, which depict the frequency-
response functions of the two filters. Figure 8 shows the trajectory of the
poles of the filter as a function of the value of λ.

In order to implement either the smoothing filter or the notch filter, it is
necessary to factorise their common denominator to obtain an expression
for γ(z). Since z2γ(z)γ(z−1) is a polynomial of degree four, one can, in
principle, find analytic expressions for the poles which are in terms of the
smoothing parameter λ. Alternatively, one may apply the iterative proce-
dures which are used in the obtaining the Cramér–World factorisation of a
Laurent polynomial. This is, in fact, how Figure 8 has been constructed.

The Hodrick–Prescott smoothing filter has been subjected to criticisms
from several sources. In particular, it has been claimed—by Harvey and
Jaeger (1993) amongst others—that thoughtless de-trending using the filter
can lead investigators to detect spurious cyclical behaviour in economic
data. The claim can only be interpreted to mean that, sometimes, the
notch filter will pass cyclical components which ought to be impeded and
attributed to the trend. One might say, in other words, that in such cir-
cumstances, the trend has been given a form which is too inflexible. This
problem, which cannot be regarded as a general characteristic of the filter,
arises from a mismatch of the chosen value of the smoothing parameter
with the characteristics of the data series. However, it must be admitted
that it is often difficult to find an appropriate value for the parameter.

A more serious shortcoming of the filter concerns the gradation between
the stopband, which is the frequency range which is impeded by the filter,
and the passband which is the frequency range where the components of
a series are unaffected by the filter. This gradation may be too gentle for
some purposes, in which case there can be no appropriate choice of value
for the smoothing parameter.

In order to construct a frequency-selective filter which is accurately
attuned to the characteristics of the data, and which can discriminate ad-
equately between the trend and the residue, a more sophisticated method-
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ology may be called for. We shall attempt to provide this in the ensuing
sections of the paper.

4. Rational Square-Wave Filters

In the terminology of digital signal processing, an ideal frequency-selective
filter is one for which the frequency response is unity over a certain range of
frequencies, described as the passband, and zero over the remaining frequen-
cies, which constitute the stopband. In a lowpass filter ψL, the passband
covers a frequency interval [0,ωc] ranging from zero to a cut-off point. In
the complementary highpass filter ψH , it is the stopband which stands on
this interval. Thus

|ψL(eiω)| =
{

1, if ω < ωc

0, if ω > ωc

and |ψH(eiω)| =
{

0, if ω < ωc

1, if ω > ωc.
(20)

In this section, we shall derive a pair of complementary filters that
fulfil this specification approximately for a cut-off frequency of ωc = π/2.
Once we have designed these prototype filters, we shall be able to apply
a transformation that shifts the cut-off point from ω = π/2 to any other
point ωc ∈ [0,π].

The idealised conditions of (20), which define a periodic square wave,
are impossible to fulfil in practice. In fact, the Fourier transform of the
square wave is an indefinite sequence of coefficients defined over the posi-
tive and negative integers; and, in constructing a practical moving-average
filter, only a limited number of central coefficient can be taken. In such a
filter, the sharp disjunction between the passband and the stopband, which
characterises the ideal filter, is replaced by a gradual transition. The cost of
a more rapid transition is bound to be an increased number of coefficients.

A preliminary step in designing a pair of complementary filters is to
draw up a list of specifications that can be fulfilled in practice. We shall be
guided by the following conditions:

(i) ψL(z) + ψH(z) = 1, Complementarity (21)

(ii) ψL(−z) = ψH(z), ψH(−z) = ψL(z), Symmetry

(iii) ψL(z−1) = ψL(z), ψH(z−1) = ψH(z), Phase-Neutrality

(iv) |ψL(1)| = 1, |ψL(−1)| = 0, Lowpass Conditions

(v) |ψH(1)| = 0, |ψH(−1)| = 1. Highpass Conditions
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There is no reference here to the rate of the transition from the passband
to the stopband. In fact, the condition under (iv) and (v) refer only to the
end points of the frequency range [0,π], which are the furthest points from
the cut-off.

Observe that the symmetry condition ψL(−z) = ψH(z) under (ii) ne-
cessitates placing the cut-off frequency at ωc = π/2. The condition implies
that, when it is reflected about the axis of ωc = π/2, the frequency response
of the lowpass filter becomes the frequency response of the highpass filter.
This feature is illustrated by Figure 10.

It will be found that all of the conditions of (21) are fulfilled by the
highpass differencing filter ψD defined under (11) in conjunction with the
complementary lowpass smoothing filter ψS = 1 − ψD defined under (14).
However, we have already rejected ψD and ψS on the grounds that their
transitions between the passband to the stopband are too gradual.

In order to minimise the problem of spectral leakage whilst maintain-
ing a transition that is as rapid as possible, we now propose to fulfil the
conditions of (21) via a pair of rational functions that take the forms of

ψL(z) =
δL(z)δL(z−1)
γ(z)γ(z−1)

and ψH(z) =
δH(z)δH(z−1)
γ(z)γ(z−1)

. (22)

The condition of phase neutrality under (iii) is automatically satisfied by
these forms. We propose to satisfy the lowpass and highpass conditions
under (iv) and (v) by specifying that

δL(z) = (1 + z)n and δH(z) = (1 − z)n. (23)

Similar specifications are also to be found in the binomial filter ψB of (15)
and in the notch filter ψN of (18).

Given the specifications under (22), it follows that the symmetry condi-
tion of (ii) will be satisfied if and only if every root of γ(z) = 0 is a purely
imaginary number. It follows from (i) that the polynomial γ(z) must fulfil
the condition that

γ(z)γ(z−1) = δL(z)δL(z−1) + δH(z)δH(z−1). (24)

On putting the specifications of (23) and (24) into (22), we find that

ψL(z) =
(1 + z)n(1 + z−1)n

(1 + z)n(1 + z−1)n + (1 − z)n(1 − z−1)n
(25)

=
1

1 +
(

i
1 − z

1 + z

)2n
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and that

ψH(z) =
(1 − z)n(1 − z−1)n

(1 + z)n(1 + z−1)n + (1 − z)n(1 − z−1)n
(26)

=
1

1 +
(

i
1 + z

1 − z

)2n .

These will be recognised as instances of the Butterworth filter, which is
familiar in electrical engineering—see, for example, Roberts and Mullis
(1987).

The Butterworth filter, in common with the Hodrick–Prescott filter
can also be derived by applying the Wiener–Kolmogorov theory of signal
extraction to an appropriate statistical model. In that context, the filter
represents a device for obtaining the minimum-mean-square-error estimate
of the component in question. See Kolmogorov (1941) and Wiener (1950)
for the original expositions of the theory and Whittle (1983) for a modern
account.

A defining characteristic of the Wiener–Kolmogorov filters is the condi-
tion of complementarity of (21) (i). On that basis, we might also regard
the complementary binomial filters ψD(z) and ψS(z) of (11) and (15),
respectively, as Wiener–Kolmogorov filters; but they are unusual in being
represented by polynomials of finite degree, whereas filters of this class are
more commonly represented by rational functions.

Since δL(z) and δH(z) are now completely specified, it follows that γ(z)
can be determined via the Cramér–Wold factorisation of the polynomial of
the RHS of (24). However, it is relatively straightforward to obtain analytic
expressions for the roots of the equation γ(z)γ(z−1) = 0. The roots come
in reciprocal pairs; and, once they are available, they may be assigned
unequivocally to the factors γ(z) and γ(z−1). Those roots which lie outside
the unit circle belong to γ(z) whilst their reciprocals, which lie inside the
unit circle, belong to γ(z−1). Therefore, consider the equation

(1 + z)n(1 + z−1)n + (1 − z)n(1 − z−1)n = 0, (27)

which is equivalent to the equation

1 +
(

i
1 − z

1 + z

)2n

= 0. (28)

Solving the latter for

s = i
1 − z

1 + z
(29)
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is a matter of finding the 2n roots of −1. These are given by

s = exp
{ iπj

2n

}
, where j = 1, 3, 5, . . . , 4n − 1, (30)

or j = 2k − 1; k = 1, . . . , 2n.

The roots correspond to a set of 2n points which are equally spaced around
the circumference of the unit circle. The radii, which join the points to the
centre, are separated by angles of π/n; and the first of the radii makes an
angle of π/(2n) with the horizontal real axis.

The inverse of the function s = s(z) is the function

z =
i − s

i + s
=

i(s + s∗)
2 − i(s − s∗)

. (31)

Here, the final expression comes from multiplying top and bottom of the
second expression by s∗ − i = (i + s)∗, where s∗ denotes the conjugate of
the complex number s, and from noting that ss∗ = 1. On substituting the
expression for s from (29), it is found that the solutions of (28) are given,
in terms of z, by

zk = i
cos{π(2k − 1)/2n}

1 + sin{π(2k − 1)/2n} , where k = 1, . . . , 2n. (32)

The roots of γ(z−1) = 0 are generated when k = 1, . . . , n. Those of γ(z) = 0
are generated when k = n + 1, . . . , 2n.

Figure 9 shows the disposition in the complex plane of the poles and
zeros of the prototype lowpass filter ψ(z)L for the case where n = 6,
whilst Figure 10 shows the gain of this filter together with that of the
complementary filter ψ(z)H .

5. Frequency Transformations

The object of the filter ψL(z) is to remove from a time series a set of
trend components whose frequencies range from ω = 0 to a cut-off value of
ω = ωc. The prototype version of the filter has a cut-off at the frequency
ω = π/2. In order to convert the prototype filter to one that will serve the
purpose, a means must be found for mapping the frequency interval [0,π/2]
into the interval [0,ωc]. This can be achieved by replacing the argument z,
wherever it occurs in the filter formula, by the argument

g(z) =
z − α

1 − αz
, (33)

where α = α(ωc) is an appropriately specified parameter.

bcMS-08.tex; 10/03/2006; 21:02; p.16



TREND ESTIMATION AND DE-TRENDING 17

" i

i

"1 1
Re

Im

" i

i

"1 1
Re

Im

Figure 9. The pole–zero diagrams of the lowpass square-wave filters for n = 6 when the
cut-off is at ω = π/2 (left) and at ω = π/8.
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Figure 10. The frequency-responses of the prototype square-wave filters with n = 6 and
with a cut-off at ω = π/2.
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Figure 11. The frequency-responses of the square-wave filters with n = 6 and with a
cut-off at ω = π/8.
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The function g(z) fulfils the following conditions:

(i) g(z)g(z−1) = 1, (34)

(ii) g(z) = z if α = 0,

(iii) g(1) = 1 and g(−1) = −1,

(iv) Arg{g(z)} ≥ Arg{z} if α > 1,

(v) Arg{g(z)} ≤ Arg{z} if α < 1.

The conditions (i) and (ii) indicate that, if g(z) "= z, then the modulus of
the function is invariably unity. Thus, as z encircles the origin, g = g(z)
travels around the unit circle. The conditions of (iii) indicate that, if z = eiω

travels around the unit circle, then g and z will coincide when ω = 0 and
when ω = π—which are the values that bound the positive frequency range
over which the transfer function of the filter is defined. Finally, conditions
(iv) and (v) indicate that, if g "= z, then g either leads z uniformly or lags
behind it as the two travel around the unit circle from z = 1 to z = −1.

The value of α is completely determined by any pair of corresponding
values for g and z. Thus, from (33), it follows that

α =
z − g

1 − gz
(35)

=
g1/2z−1/2 − g−1/2z1/2

g1/2z1/2 − g−1/2z−1/2
.

Imagine that the cut-off of a prototype filter is at ω = θ and that
it is desired to shift it to ω = κ. Then z = eiκ and g = eiθ will be
corresponding values; and the appropriate way of shifting the frequency
would be to replace the argument z within the filter formula by the function
g(z) wherein the parameter α is specified by

α =
ei(θ−κ)/2 − e−i(θ−κ)/2

ei(θ+κ)/2 − e−i(θ+κ)/2
(36)

=
sin{(θ − κ)/2}
sin{(θ + κ)/2} .

To find an explicit form for the transformed filter, we may begin by
observing that, when g(z) is defined by equation (33), we have

1 − g(z)
1 + g(z)

=
{1 + α

1 − α

} {1 − z

1 + z

}
. (37)

Here there is
1 + α

1 − α
=

sin{(θ + κ)/2} + sin{(θ − κ)/2}
sin{(θ + κ)/2}− sin{(θ − κ)/2} (38)
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=
sin(θ/2) cos(κ/2)
cos(θ/2) sin(κ/2)

.

In the prototype filter, we are setting θ = π/2 and, in the transformed
filter, we are setting κ = ωc, which is the cut-off frequency. The result of
these choices is that

1 + α

1 − α
=

1
tan(ωc/2)

. (39)

It follows that the lowpass filter with a cut-off at ωc takes the form of

ψL(z) =
1

1 + λ
(

i
1 − z

1 + z

)2n (40)

=
(1 + z)n(1 + z−1)n

(1 + z)n(1 + z−1)n + λ(1 − z)n(1 − z−1)n
,

where λ = {1/ tan(ωc)}2n. The same reasoning shows that the highpass
filter with a cut-off at ωc takes the form of

ψH(z) =
1

1 +
1
λ

(
i
1 + z

1 − z

)2n (41)

=
λ(1 − z)n(1 − z−1)n

(1 + z)n(1 + z−1)n + λ(1 − z)n(1 − z−1)n
.

In applying the frequency transformation to the prototype filter, we are
also concerned with finding revised values for the poles. The conditions
under (iii) indicate that the locations of the zeros will not be affected by
the transformation. Only the poles will be altered. Consider, therefore, the
generic factor within the denominator of the prototype. This is z−iρ, where
iρ is one of the poles specified under (30). Replacing z by g(z) and setting
the result to zero gives the following condition:

z − α

1 − αz
− iρ = 0. (42)

This indicates that the pole at z = ρ will be replaced by a pole at

z =
α + iρ

1 + iρα
=

α(1 − ρ2) + iρ(1 − α2)
1 − ρ2α2

, (43)

where the final expression comes from multiplying top and bottom of its
predecessor by 1 − iρα.

Figure 11, displays the pole-zero diagram of the prototype filter and
of a filter with a cut-off frequency of π/8. It also suggests that one of the
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effects of a frequency transformation may be to bring some of poles closer
to the perimeter of the unit circle. This can lead to stability problems in
implementing the filter, and it is liable to prolong the transient effects of
ill-chosen start-up conditions.

6. Implementing the Filters

The classical signal-extraction filters are intended to be applied to lengthy
data sets. The task of adapting them to limited samples often causes diffi-
culties and perplexity. The problems arise from not knowing how to supply
the initial conditions with which to start a recursive filtering process. By
choosing inappropriate starting values for the forwards or the backwards
pass, one can generate a so-called transient effect, which is liable, in fact,
to affect all of the processed values.

Of course, when the values of interest are remote from either end of a
long sample, one can trust that they will be barely affected by the start-
up conditions. However, in many applications, such as in the processing of
economic data, the sample is short and the interest is concentrated at the
upper end where the most recent observations are to be found.

One approach to the problem of the start-up conditions relies upon the
ability to extend the sample by forecasting and backcasting. The additional
exta-sample values can be used in a run-up to the filtering process wherein
the filter is stabilised by providing it with a plausible history, if it is working
in the direction of time, of with a plausible future, if it is working in reversed
time. Sometimes, very lengthy extrapolations are called for—see Burman
(1980), for example.

The approach that we shall adopt in this paper is to avoid the start-
up problem altogether by deriving specialised finite-sample versions of the
filters on the basis of the statistical theory of conditional expectations.

Some of the more successful methods for treating the problem of the
start-up conditions that have been proposed have arisen within the context
of the Kalman filter and the associated smoothing algorithms—see Ansley
and Kohn (1985), De Jong (1991), and Durbin and Koopman (2001), for
example. The context of the Kalman filter is a wide one; and it seems that
the necessary results can be obtained more easily by restricting the context.

Let us begin, therefore, by considering a specific model for which the
square-wave filter would represent the optimal device for extracting the
signal, given a sample of infinite length. The model is represented by the
equation

y(t) = ξ(t) + η(t) (44)

=
(1 + L)n

(1 − L)2
ν(t) + (1 − L)n−2ε(t),
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where ν(t) and ε(t) are statistically independent sequences generated by
normal white-noise processes. This can be rewritten as

(1 − L)2y(t) = (1 + L)nν(t) + (1 − L)nε(t) (45)
= ζ(t) + κ(t),

where ζ(t) = (1 − L)2ξ(t) = (1 + L)nν(t) and κ(t) = (1 − L)2η(t) =
(1 − L)nε(t) both follow noninvertible moving-average processes.

The statistical theory of signal extraction, as expounded by Whittle
(1983), for example, indicates that the lowpass filter ψL(z) of equation
(40) will generate the minimum mean-square-error estimate of the sequence
ξ(t), provided that the smoothing parameter has the value of λ = σ2

ε/σ
2
ν .

The theory also indicates that the Hodrick–Prescott filter will generate the
optimal estimate in the case where ξ(t) is a second-order random walk and
η(t) is a white-noise process:

y(t) = ξ(t) + η(t) (46)

=
1

(1 − L)2
ν(t) + η(t).

Now imagine that there are T observations of the process y(t) of equa-
tion (44), which run from t = 0, to t = T − 1. These are gathered in a
vector

y = ξ + η. (47)

To find the finite-sample the counterpart of equation (45), we need to
represent the second-order difference operator (1 − L)2 in the form of a
matrix. The matrix that finds the differences d2, . . . , dT−1 of the data points
y0, y1, y2, . . . , yT−1 is in the form of

Q′ =





1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . −2 1





. (48)

Premultiplying equation (47) by this matrix gives

d = Q′y = Q′ξ + Q′η (49)
= ζ + κ,

where ζ = Q′ξ and κ = Q′η. The first and second moments of the vector ζ
may be denoted by

E(ζ) = 0 and D(ζ) = σ2
νM, (50)
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and those of κ by

E(κ) = 0 and D(κ) = Q′D(η)Q (51)

= σ2
εQ

′ΣQ,

where both M and Q′ΣQ are symmetric Toeplitz matrices with 2n + 1
nonzero diagonal bands. The generating functions for the coefficients of
these matrices are, respectively, δL(z)δL(z−1) and δH(z)δH(z−1), where
δL(z) and δH(z) are the polynomials defined in (23).

The optimal predictor z of the twice-differenced signal vector ζ = Q′ξ
is given by the following conditional expectation:

E(ζ|d) = E(ζ) + C(ζ, d)D−1(d){d − E(d)} (52)
= M(M + λQ′ΣQ)−1d = z,

where λ = σ2
ε/σ

2
ν . The optimal predictor k of the twice-differenced noise

vector κ = Q′η is given, likewise, by

E(κ|d) = E(κ) + C(κ, d)D−1(d){d − E(d)} (53)
= λQ′ΣQ(M + λQ′ΣQ)−1d = k.

It may be confirmed that z + k = d.
The estimates are calculated, first, by solving the equation

(M + λQ′ΣQ)g = d (54)

for the value of g and, thereafter, by finding

z = Mg and k = λQ′ΣQg. (55)

The solution of equation (54) is found via a Cholesky factorisation which
sets M +λQ′ΣQ = GG′, where G is a lower-triangular matrix. The system
GG′g = d may be cast in the form of Gh = d and solved for h. Then
G′g = h can be solved for g.

There is a straightforward correspondence between the finite-sample
implementations of the filter and the formulations that assume an infinite
sample. In terms of the lag-operator polynomials, equation (54) would be
rendered as

γ(F )γ(L)g(t) = d(t), where (56)

γ(F )γ(L) = δL(F )δL(L) + λδH(F )δH(L).

The process of solving equation (54) via a Cholesky decomposition corre-
sponds to the application of the filter in separate passes running forwards
and backwards in time respectively:

(i) γ(L)f(t) = d(t) (ii) γ(F )g(t) = f(t). (57)
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The coefficients of successive rows of the Cholesky factor G converge upon
the values of the coefficients of γ(z); and, at some point, it may become
appropriate to use the latter instead. This will save computer time and
computer memory.

The two equations under (55) correspond respectively to

z(t) = δL(F )δL(L)g(t) and k(t) = δH(F )δH(L)q(t). (58)

Our object is to recover from z an estimate x of the trend vector ξ.
This would be conceived, ordinarily, as a matter of integrating the vector
z twice via a simple recursion which depends upon two initial conditions.
The difficulty is in discovering the appropriate initial conditions with which
to begin the recursion.

We can circumvent the problem of the initial conditions by seeking the
solution to the following problem:

Minimise (y − x)′Σ−1(y − x) Subject to Q′x = z. (59)

The problem is addressed by evaluating the Lagrangean function

L(x, µ) = (y − x)′Σ−1(y − x) + 2µ′(Q′x − z). (60)

By differentiating the function with respect to x and setting the result to
zero, we obtain the condition

Σ−1(y − x) − Qµ = 0. (61)

Premultiplying by Q′Σ gives

Q′(y − x) = Q′ΣQµ. (62)

But, from (54) and (55), it follows that

Q′(y − x) = d − z (63)
= λQ′ΣQg,

whence we get

µ = (Q′ΣQ)−1Q′(y − x) (64)
= λg.

Putting the final expression for µ into (61) gives

x = y − λΣQg. (65)

This is our solution to the problem of estimating the trend vector ξ. Notice
that there is no need to find the value of z explicitly, since the value of x
can be expressed more directly in terms of g = Σ−1z.
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Figure 12. The data on the U.S. money stock with an interpolated trend estimated by
a lowpass square-wave filter with n = 6 and a cut off at ω = π/8.
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Figure 13. The residual sequence obtained by detrending the logarithm of the money
stock data with a square-wave filter.
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Figure 14. The periodogram of the residuals from detrending the logarithm of the U.S.
money stock data.
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It is notable that there is a criterion function which will enable us to
derive the equation of the trend estimation filter in a single step. The
function is

L(x) = (y − x)′Σ−1(y − x) + λx′QM−1Q′x, (66)

wherein λ = σ2
ε/σ

2
ν as before. This is minimised by the value specified

in (65). The criterion function becomes intelligible when we allude to the
assumptions that y ∼ N(ξ,σ2

εΣ) and that Q′ξ = ζ ∼ N(0,σ2
νM); for then

it plainly resembles a combination of two independent chi-square variates.
The effect of the square-wave filter is illustrated in Figures 12–14 which

depict the detrending of the logarithmic series of the U.S. money stock. It
is notable that, in contrast to periodogram of Figure 3, which relates to the
the residuals from fitting a polynomial trend, the periodogram of Figure
14 shows virtually no power in the range of frequencies below that of the
principal seasonal frequency.

We should point out that our derivation and the main features of our
algorithm are equally applicable to the task of implementing the Hodrick–
Prescott (H–P) filter and the Reinsch smoothing spline. In the case of the
H–P filter, we need only replace the matrices Σ and M in the equations
above by the matrices I and Q′Q respectively. Then equation (52) becomes

(I + λQ′Q)−1d = z, (67)

whilst equation (65), which provides the estimate of the signal or trend,
becomes

x = y − λQz. (68)
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