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1. Introduction

It has been traditional in economics to decompose time series—more accurately
described as temporal sequences—into a variety of components, some or all of
which may be present in a particular instance. The essential decomposition is a
multiplicative one of the form

Y (t) = T (t) × C(t) × S(t) × E(t), (1)

where
T (t) is the global trend,
C(t) is a secular cycle, or business cycle,
S(t) is the seasonal variation and
E(t) is an irregular component.

Occasionally, other cycles of relatively long durations are included.
Amongst these are the mysterious Kondratieff cycle, reflecting the ebb and flow
of human fortunes over half a century, the Shumpeterian cycle, reflecting cur-
rents and tides of technological innovation, and the demographic cycle, reflecting
the fluctuations in the procreative urges of human beings.

The factors C(t), S(t) and E(t) in equation (1) serve to modulate the trend
T (t) by inducing fluctuations in its trajectory. They take the generic form of
X(t) = 1 + ξ(t), where ξ(t) is a process that fluctuates about a mean of zero.

Typically, Y (t) and T (t) are strictly positive and, therefore, the modulating
factors, which are usually deemed to act independently of each other, must also
be bounded away from zero. This condition will be satisfied whenever the generic
factor can be expressed in an exponential form:

X(t) = 1 + ξ(t) = 1 +
∞∑

j=1

{x(t)}j

j!
= exp{x(t)}. (2)

In that case, it is appropriate to take logarithms of the expression (1) and to
work with an alternative additive decomposition instead of the multiplicative
one. This is

y(t) = τ(t) + c(t) + s(t) + ε(t), (3)

where y(t) = lnY (t), τ(t) = lnT (t), c(t) = lnC(t), s(t) = lnS(t) and ε(t) =
lnE(t). An additional assumption, which might be plausible, is that the com-
ponents c(t), s(t), and ε(t) have amplitudes that remain roughly constant over
time.

In the absence of extraneous information that correlates them with other
variables, it is impossible to distinguish the components of (3) perfectly, one from
another, unless they occupy separate frequency bands. If their bands do overlap,
then any separation of the components will be tentative and doubtful. Thus, a
sequence that is deemed to represent one of the components will comprise, to
some extent, elements that rightfully belong to the other components.

However, as we shall see, the components of an econometric data sequence
often reside within bands of frequencies that are separated by wide dead spaces
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Figure 1. The function Y (t) = β exp{rt + γ cos(ωt)} as a model of the business

cycle. Observe that, when r > 0, the duration of an expansion exceeds the duration of

a contraction.
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Figure 2. The function ln{Y (t)} = ln{β} + rt + γ cos(ωt) representing the loga-

rithmic business cycle data. The durations of the expansions and the contractions are

not affected by the transformation.
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Figure 3. The function µ+ γ cos(ωt) representing the detrended business cycle. The

durations of the expansions and the contractions are equal.
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where there are no spectral elements of any significance. The possibility of defi-
nitely separating the components is greater than analysts are likely to perceive
unless they work in the frequency domain.

The exception concerns the separation of the business cycle from the trend.
These components are liable to be merged within a single spectral structure;
and there is no uniquely appropriate way of separating them. Their separation
depends upon adopting whatever convention best suits the purposes of the anal-
ysis. No such difficulties will affect the simple schematic model of the business
cycle that we shall consider in the next section.

2. A schematic model of the business cycle

In order to extract the modulating components from the data, it is also neces-
sary to remove the trend component from Y (t). To understand what is at issue
in detrending the data, it is helpful to look at a simple schematic model com-
prising an exponential growth trajectory T (t) = β exp{rt}, with r > 0, that is
modulated by a exponentiated cosine function C(t) = exp{γ cos(ωt)} to create
a model for the trajectory of aggregate income:

Y (t) = β exp{rt + γ cos(ωt)}. (4)

The resulting business cycles, which are depicted in Figure 1, have an asymmetric
appearance. Their contractions are of lesser duration than their expansions; and
they become shorter as the growth rate r increases.

Eventually, when the rate exceeds a certain value, the periods of contraction
will disappear and, in place of the local minima, there will be only points of
inflection. In fact, the condition for the existence of local minima is that ωγ > r,
which is to say the product of the amplitude of the cycles and their angular
velocity must exceed the growth rate of the trend.

Next, we take logarithms of the data to obtain a model, represented in
Figure 2, that has additive trend and cyclical components. This gives

ln{Y (t)} = y(t) = µ + rt + γ cos(ωt), (5)

where µ = ln{β}. Since logs effect a monotonic transformation, there is no
displacement of the local maxima and minima. However, the amplitude of the
fluctuations around the trend, which has become linear in the logs, is now con-
stant.

The final step is to create a stationary function by eliminating the trend.
There are two equivalent ways of doing this in the context of the schematic model.
On the one hand, the linear trend ξ(t) = µ + rt can be subtracted from y(t) to
create the pure business cycle γ cos(ωt). Alternatively, the function y(t) can be
differentiated to give dy(t)/dt = r − γω sin(ωt). When the latter is adjusted by
subtracting the growth rate r, by dividing by ω and by displacing its phase by
−π/2 radians—which entails replacing the argument t by t − π/2—we obtain
the function γ cos(ωt) again. Through the process of detrending, the phases of
expansion and contraction acquire equal durations, and the asymmetry of the
business cycle vanishes.
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There is an enduring division of opinion, in the literature of economics,
on whether we should be looking at the turning points and phase durations of
the original data or at those of the detrended data. The task of finding the
turning points is often a concern of analysts who wish to make international
comparisons of the timing of the business cycle. There is a belief, which bears
investigating, that these cycles are becoming increasingly synchronised amongst
member countries of the European Union.

However, since the business cycle is a low-frequency component of the data,
it is difficult to find the turning points with great accuracy. In fact, the pinnacles
and pits that are declared to be the turning points often seem to be the products
of whatever high-frequency components happen to remain in the data after it
has been subjected to a process of seasonal adjustment.

If the objective is to compare the turning points of the cycles, then the trends
should be eliminated from the data. The countries that are to be compared are
liable to be growing at differing rates. From the trended data, it will appear that
those with higher rates of growth have shorter recessions with delayed onsets,
and this can be misleading.

The various indices of an expanding economy will also grow at diverse rates.
Unless they are reduced to a common basis by eliminating their trends, their fluc-
tuations cannot be compared easily. Amongst such indices will be the percentage
rate of unemployment, which constitutes a trend-stationary sequence. It would
be difficult to collate the turning points in this index with those within a rapidly
growing series of aggregate income, which might not exhibit any absolute re-
ductions in its level. A trenchant opinion to the contrary, which opposes the
practice of detrending the data for the purposes of describing the business cycle,
has been offered by Harding and Pagan (2002).

3. The methods of Fourier analysis

A means of extracting the cyclical components from a data sequence is to regress
it on a set of trigonometrical functions. The relevant procedures have been
described within the context of the statistical analysis of time series by numerous
authors, including Bloomfield (1975), Fuller (1976) and Priestley (1989).

In the Fourier decomposition of a finite sequence {xt; t = 0, 1, . . . , T − 1},
the T data points are expressed as a weighted sum of an equal number of trigono-
metrical functions of frequencies that are equally spaced in the interval [0, π].

We define [T/2] to be the integer part to T/2, which will be n = T/2, if T
is even, or (T − 1)/2, if T is odd. Then

xt =
[T/2]∑
j=0

{
αj cos(ωjt) + βj sin(ωjt)

}

=
[T/2]∑
j=0

ρj cos(ωjt − θj).

(6)

Here, ρ2
j = α2

j + β2
j and θj = tan−1(βj/αj), whilst αj = ρj cos(θj) and βj =

ρj sin(θj). The equality of (6) follows in view of the trigonometrical identity
cos(A − B) = cos(A) cos(B) + sin(A) sin(B). (7)
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The frequency ωj = 2πj/T is a multiple of the fundamental frequency ω1 =
2π/T . The latter belongs to a sine and a cosine function that complete a single
cycle in the time spanned by the data. The zero frequency ω0 is associated with
the constant function cos(ω0t) = cos(0) = 1, whereas sin(ω0t) = sin(0) = 0.

If T = 2n is an even number, then the highest frequency is ωn = π; and,
within (6), there are cos(ωnt) = cos(πt) = (−1)t and sin(ωnt) = sin(πt) = 0. If
T is an odd number, then the highest frequency is π(T − 1)/T , and there are
both a sine and a cosine function at this frequency. Counting the number of
nonzero functions in both cases shows that they are equal in number to the data
points. Therefore, there is a one-to-one correspondence between the data points
and the coefficients of the nonzero functions in the Fourier expression of (6).

In equation (6), the temporal index t ∈ {0, 1, . . . , T − 1} assumes integer
values. However, by allowing t ∈ [0, T ) to vary continuously, one can generate a
continuous function that interpolates the T data points. This method of gener-
ating the continuous function from sampled values may be described as Fourier
interpolation. It is notable that the interpolated function is analytic in the sense
that it possesses derivatives of all orders.

Although the process generating the data may contain components of fre-
quencies higher than the Nyquist frequency, these will not be detected when it
is sampled regularly at unit intervals of time. In fact, the effects on the process
of components of frequencies in excess of the Nyquist value will be confounded
with those of frequencies that fall below it.

To demonstrate this, consider the case where the process contains a com-
ponent that is a pure cosine wave of unit amplitude and zero phase and of a
frequency ω that lies in the interval π < ω < 2π. Let ω∗ = 2π − ω. Then,

cos(ωt) = cos
{
(2π − ω∗)t

}
= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)
= cos(ω∗t),

(8)

which indicates that ω and ω∗ are observationally indistinguishable. Here, ω∗ <
π is described as the alias of ω > π.

Since the trigonometrical functions are mutually orthogonal, the Fourier
coefficients can be obtained via a set of T simple inner-product formulae, which
are in the form of ordinary univariate least-squares regressions, with the values
of the sine and cosine functions at the points t = 0, 1, . . . , T −1 as the regressors.

Let cj = [c0,j , . . . , cT−1,j ]′ and sj = [s0,j , . . . , sT−1,j ]′ represent vectors of
T values of the generic functions cos(ωjt) and sin(ωjt) respectively, and let x =
[x0, . . . , xT−1]′ be the vector of the sample data and ι = [1, . . . , 1]′ a vector of
units. The ‘regression’ formulae for the Fourier coefficients are

α0 = (ι′ι)−1ι′x =
1
T

∑
t

xt = x̄, (9)

αj = (c′jcj)−1c′jx =
2
T

∑
t

xt cos(ωjt), (10)
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βj = (s′jsj)−1s′jx =
2
T

∑
t

xt sin(ωjt), (11)

αn = (c′ncn)−1c′nx =
1
T

∑
t

(−1)txt. (12)

However, in calculating the coefficients, it is more efficient to use the family of
specialised algorithms known as fast Fourier transforms, which deliver complex-
valued spectral ordinates from which the Fourier coefficients are obtained di-
rectly. (See, for example, Pollock 1999.)

The power of a sequence is the time average of its energy. It is synony-
mous with the mean-square deviation which, in statistical terms, is its variance.
The power of the sequence xj(t) = ρj cos(ωjt) is ρ2

j/2. This result can be ob-
tained in view of the identity cos2(ωjt) = {1 + cos(2ωjt)}/2, for the average of
cos(2ωjt) over an integral number of cycles is zero. The assemblage of values
ρ2

j/2; j = 1, 2, . . . , [T/2] constitutes the power spectrum of x(t), which becomes
the periodogram when scaled by a factor T . Their sum equals the variance of
the sequence. If T = 2n is even, then

1
T

T−1∑
t=0

(xt − x̄)2 =
1
2

n−1∑
j=1

ρ2
j + α2

n. (13)

Otherwise, if T is odd, then the summation runs up to (T − 1)/2, and the term
α2

n is missing.
The indefinite sequence x(t) = {xt; t = 0,±1,±2, . . .}, expressed in the

manner of (6), is periodic with a period T equal to the length of the sample.
It is described as the periodic extension of the sample, and it may be obtained
be replicating sample elements over all preceding and succeeding intervals of
T points. An alternative way of forming the periodic sequence is by wrapping
the sample around a circle of circumference T . Then, the periodic sequence is
generated by travelling perpetually around the circle.

3.1 Approximations, resampling and Fourier interpolation.

By letting t = 0, . . . , T − 1 in equation (6), the data sequence {xt; t =
0, . . . , T − 1} is generated exactly. An approximation to the sequence may be
generated by taking a partial sum comprising the terms of (6) that are associated
with the Fourier frequencies ω0, . . . , ωd, where d < [T/2]. It is straightforward
to demonstrate that this is the best approximation, in the least-squares sense,
amongst all of the so-called trigonometrical polynomials of degree d that comprise
the sinusoidal functions in question.

The result concerning the best approximation extends to the continuous
functions that are derived by allowing t to vary continuously in the interval
[0, T ). That is to say, the continuous function derived from the partial Fourier
sum comprising frequencies no higher than ωd = 2πd/T is the minimum-mean-
square approximation to the continuous function derived from (6) by letting t
vary continuously.
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Figure 4. The quarterly sequence of the logarithms of household expenditure in the

U.K. for the years 1956 to 2005, together with an interpolated linear trend.
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Figure 5. The residual deviations of the logarithmic expenditure data from the linear

trend of Figure 4. The interpolated line, which represents the business cycle, has been

synthesised from the Fourier ordinates in the frequency interval [0, π/8].
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Figure 6. The periodogram of the residual sequence of Figure 5. A band, with a

lower bound of π/16 radians and an upper bound of π/3 radians, is masking the

periodogram.
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We may exclude the sine function of frequency ωd from the Fourier sum.
Then, the continuous approximation is given by

z(t) =
d∑

j=0

{
αj cos

(
2πjt

T

)}
+

d−1∑
j=1

{
βj sin

(
2πjt

T

)}

=
d∑

j=0

{
αj cos

(
2πjτ

N

)}
+

d−1∑
j=1

{
βj sin

(
2πjτ

N

)}
,

(14)

where τ = tN/T with N = 2d, which is the total number of the Fourier co-
efficients. Here, τ varies continuously in [0, N), whereas t varies continuously
in [0, T ). On the RHS, there is a new set of Fourier frequencies {2πj/N ; j =
0, 1, . . . , d}.

The N coefficients {α0, α1, β1, . . . , αd−1, βd−1, αd} bear a one-to-one corre-
spondence with the set of N ordinates {zτ = z(τT/N); τ = 0, . . . , N−1} sampled
at intervals of π/ωd = T/N from z(t). The consequence is that z(t) is fully repre-
sented by the resampled data zτ ; τ = 0, . . . , N −1, from which it may be derived
by Fourier interpolation.

The result concerning the optimality of the approximation is a weak one; for
it is possible that the preponderance of the variance of the data will be explained
by sinusoids at frequencies that lie outside the range [ω0, . . . , ωd]. The matter
can be judged with reference to the periodogram of the data sequence, which
constitutes a frequency-specific analysis of variance.

Example. Figure 4 represents the logarithms of the data on quarterly real
household expenditure in the U.K. for the period 1956–2005, through which a
linear function had been interpolated so as to pass through the midst of the data
points of the first and the final years.

This interpolation is designed to minimise any disjunction that might oth-
erwise occur where the ends data sequence meet, when it is mapped onto the
circumference of a circle. A trend line fitted by ordinary least-squares regression
would have a lesser gradient, which would raise the final years above the line.
This would be a reflection of the relatively prosperity of the times.

The residual deviations of the expenditure data from the trend line of Figure
4 are represented in Figure 5, and their periodogram is in Figure 6. Within this
periodogram, the spectral structure extending from zero frequency up to π/8
belongs to the business cycle. The prominent spikes located at the frequency
π/2 and at the limiting Nyquist frequency of π are the property of the seasonal
fluctuations. Elsewhere in the periodogram, there are wide dead spaces, which
are punctuated by the spectral traces of minor elements of noise.

The slowly varying continuous function interpolated through the deviations
of Figure 5 has been created by combining a set of sine and cosine functions of
increasing frequencies in the manner of (14), with the frequencies extending no
further than ωd = π/8, and by letting t vary continuously in the interval [0, T ).
This is a representation of the business cycle as it affects household expenditure.
Observe that, since it is analytic, the turning points of this function can be
determined via its first derivative.
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3.2 Complex exponentials

In dealing with the mathematics of the Fourier transform, it is common to
use complex exponential functions in place of sines and cosines. This makes the
expressions more concise. According to Euler’s equations, there are

cos(ωjt) =
1
2
(eiωjt + e−iωjt) and sin(ωjt) =

−i
2

(eiωjt − e−iωjt), (15)

where i =
√
−1. Therefore, equation (6) can be expressed as

xt = α0 +
[T/2]∑
j=1

αj + iβj

2
e−iωjt +

[T/2]∑
j=1

αj − iβj

2
eiωjt, (16)

which can be written concisely as

xt =
T−1∑
j=0

ξje
iωjt, (17)

where
ξ0 = α0, ξj =

αj − iβj

2
and ξT−j = ξ∗j =

αj + iβj

2
. (18)

Equation (17) may be described as the inverse Fourier transform. The direct
transform is the mapping from the data sequence within the time domain to the
sequence of Fourier ordinates in the frequency domain. The relationship between
the discrete periodic function and its Fourier transform can be summarised by
writing

xt =
T−1∑
j=0

ξje
iωjt ←→ ξj =

1
T

T−1∑
t=0

xte
−iωjtdt. (19)

For matrix representations of these transforms, one may define

U = T−1/2[exp{−i2πtj/T}; t, j = 0, . . . , T − 1],

Ū = T−1/2[exp{i2πtj/T}; t, j = 0, . . . , T − 1],
(20)

which are unitary complex matrices such that UŪ = ŪU = IT . Then,

x = T 1/2Ūξ ←→ ξ = T−1/2Ux, (21)

where x = [x0, x1, . . . xT−1]′ and ξ = [ξ0, ξ1, . . . ξT−1]′ are the vectors of the data
and of their Fourier ordinates respectively.

10
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4. Spectral representations of a stationary process

The various equations of the Fourier analysis of a finite data sequence can also be
used to describe the processes that generate the data. Thus, within the equation

yt =
n∑

j=0

{αj cos(ωjt) + βj sin(ωjt)}

= ζ0 +
n∑

j=1

{
ζje

iωjt + ζ∗j e−iωjt
}

,

(22)

the quantities αj , βj can be taken to represent independent real-valued random
variables, and the quantities

ζj =
αj − iβj

2
and ζ∗j =

αj + iβj

2
(23)

can be regarded as complex-valued random variables.
The autocovariance of the elements yt and ys is given by

E(ytys) =
n∑

j=0

n∑
k=0

E
[
ζjζkei(ωjt+ωks) + ζjζ

∗
kei(ωjt−ωks)

+ζ∗j ζkei(ωks−ωjt) + ζ∗j ζ∗ke−i(ωjt+ωks)
]
.

(24)

The condition of stationarity requires that the covariance should be a function
only of the temporal separation |t− s| of yt and ys. For this, it is necessary that

E(ζjζk) = E(ζ∗j ζ∗k) = E(ζ∗j ζk) = E(ζjζ
∗
k) = 0, (25)

whenever j �= k. Also, the conditions

E(ζ2
j ) = 0 and E(ζ∗2j ) = 0 (26)

must hold for all j. For (25) and (26) to hold, it is sufficient that

E(αjβk) = 0 for all j, k (27)

and that

E(αjαk) = E(βjβk) =

{
0, if j �= k;

σ2
j , if j = k.

(28)

An implication of the equality of the variances of αj and βj is that the phase
angle θj is uniformly distributed in the interval [−π, π].

Under these conditions, the autocovariance of the process at lag τ = t − s
will be given by

γτ =
n∑

j=0

σ2
j cos ωjτ. (29)

11
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The variance of the process is just

γ0 =
n∑

j=0

σ2
j , (30)

which is the sum of the variances of the n individual periodic components. This
is analogous to equation (13)

The stochastic model of equation (22) may be extended to encompass pro-
cesses defined over the entire set of positive and negative integers as well as
processes that are continuous in time. First, we may consider extending the
length T of the sample indefinitely. As T and n increase, the Fourier coefficients
become more numerous and more densely packed in the interval [0, π]. Also,
given that the variance of the process is bounded, the variance of the individual
coefficients must decrease.

To accommodate these changes, we may write αj = dA(ωj) and βj =
dB(ωj), where A(ω), B(ω) are cumulative step functions with discontinuities
at the points {ωj ; j = 0, . . . , n}. In the limit, the summation in (22) is replaced
by an integral, and the expression becomes

y(t) =
∫ π

0

{cos(ωt)dA(ω) + sin(ωt)dB)ω)}

=
∫ π

−π

eiωtdZ(ω),
(31)

where
dZ(ω) =

1
2
{dA(ω) − idB(ω)} and

dZ(−ω) = dZ∗(ω) =
1
2
{dA(ω) + idB(ω)}.

(32)

Also, y(t) = {yt; t = 0,±1,±2, . . .} stands for a doubly-infinite data sequence.
The assumptions regarding dA(ω) and dB(ω) are analogous to those regard-

ing the random variables αj and βj , which are their prototypes. It is assumed
that A(ω) and B(ω) represent a pair of stochastic processes of zero mean, which
are indexed on the continuous parameter ω. Thus

E
{
dA(ω)

}
= E

{
dB(ω)

}
= 0. (33)

It is also assumed that the two processes are mutually uncorrelated and that non
overlapping increments within each process are uncorrelated. Thus

E
{
dA(ω)dB(λ)

}
= 0 for all ω, λ,

E
{
dA(ω)dA(λ)

}
= 0 if ω �= λ,

E
{
dB(ω)dB(λ)

}
= 0 if ω �= λ.

(34)

The variance of the increments is given by

V
{
dA(ω)

}
= V

{
dB(ω)

}
= 2dF (ω). (35)

12
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The function F (ω), which is defined provisionally over the interval [0, π], is de-
scribed as the spectral distribution function. The properties of variances imply
that it is a non decreasing function of ω. In the case where the process y(t) is
purely random, F (ω) is a continuous differentiable function. Its derivative f(ω),
which is nonnegative, is described as the spectral density function.

The domain of the functions A(ω), B(ω) may be extended from [0, π] to
[−π, π] by regarding A(ω) as an even function such that A(−ω) = A(ω) and by
regarding B(ω) as an odd function such that B(−ω) = −B(ω). Then, dZ∗(ω) =
dZ(−ω), in accordance with (32). From the conditions of (34), it follows that

E
{
dZ(ω)dZ∗(λ)

}
= E

{
dZ(ω)dZ(−λ)

}
= 0 if ω �= λ,

E
{
dZ(ω)dZ∗(ω)

}
= E

{
dZ(ω)dZ(−ω)

}
= dF (ω),

(36)

where the domain of F (ω) is now the interval [−π, π]
The sequence of the autocovariances of the process y(t) may be expressed

in terms of the spectrum of the process. From (36), it follows that the autoco-
variance of y(t) at lag τ = t − s is given by

γτ = C(yt, ys) = E

{ ∫
ω

eiωtdZ(ω)
∫

λ

eiλsdZ(λ)
}

=
∫

ω

∫
λ

eiωteiλsE
{
dZ(ω)dZ(λ)

}
=

∫
ω

eiωτE
{
dZ(ω)dZ∗(ω)

}
=

∫ π

−π

eiωτdF (ω).

(37)

In the case of a continuous spectral distribution function, we may write dF (ω) =
f(ω)dω in the final expression, where f(ω) is the spectral density function. If
f(ω) = σ2/2π, then there is γ0 = σ2 and γτ = 0 for all τ �= 0, which are the
characteristics of a white-noise process comprising a sequence of independently
and identically distributed random variables. Thus, a white-noise process has a
uniform spectral density function.

The second way of extending the model is to allow the rate of sampling to
increase indefinitely. In the limit, the sampled sequence becomes a continuum.
Equation (31) will serve to represent a continuous process on the understanding
that t is now a continuous variable. However, if the discrete-time process has
been subject to aliasing, then the range of the frequency integral will increase as
the rate of sampling increases.

Under any circumstances, it seems reasonable to postulate an upper limit
to the range of the frequencies comprised by a stochastic process. However,
within the conventional theory of continuous stochastic processes, it is common
to consider an unbounded range of frequencies. In that case, we obtain a spectral
representation of a stochastic process of the form

y(t) =
∫ ∞

−∞
eiωtdZ(ω). (38)
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This representation is capable, nevertheless, of subsuming a process that is lim-
ited in frequency. If the bandwidth of Z(ω) is indeed unbounded, then (38)
becomes the spectral representation of a process comprising a continuous suc-
cession of infinitesimal impacts, which generates a trajectory that is everywhere
continuous but nowhere differentiable.

Example. Figure 7 shows the spectral density function of an autoregressive
moving-average ARMA(2, 2) process y(t), described by the equation α(z)y(z) =
µ(z)ε(z), where α(z) and µ(z) are quadratic polynomials and y(z) and ε(z) are,
respectively, the z-transforms of the data sequence y(t) = {yt; t = 0,±1,±2, . . .}
and of a white-noise sequence ε(t) = {εt; t = 0,±1,±2, . . .} of independently and
identically distributed random variables.

The ARMA(2, 2) process has been formed by the additive combination
a second-order autoregressive AR(2) process and an independent white-noise
process. The autoregressive polynomial is α(z) = 1 + 2ρ cos(θ)z + ρ2z2, which
has conjugate complex roots of which the polar forms are ρ exp{±iθ}. In the
example, the modulus of the roots is ρ = 0.9 and their argument is θ = π/4
radians.

The spectral density function attains a non-zero minimum at ω = π. How-
ever, it is possible to decompose the ARMA(2, 2) process into an ARMA(2, 1)
process and a white-noise component that has the maximum variance compat-
ible with such a decomposition. This is a so-called canonical decomposition of
the ARMA process. The moving-average polynomial of the resulting ARMA(2,
1) process is 1 + z, which has a zero at ω = π. By maximising the variance of
the white-noise component, an ARMA component is derived that is as smooth
and as regular as possible.

Canonical decompositions are entailed in a method for extracting unob-
served components from data sequences described by ARIMA models, which
will be discussed in section 6.3.

Figure 7 also shows a periodogram that has been calculated from a sample
of 256 points generated by the ARMA(2, 2) process. Its volatility contrasts
markedly with the smoothness of the spectrum. The periodogram has half
as many ordinates as the data sequence and it inherits this volatility directly
from the data. A non-parametric estimate of the spectrum may be obtained
by smoothing the ordinates of the periodogram with an appropriately chosen
moving average, or by subjecting the empirical autocovariances to an equivalent
weighting operation before transforming them to the frequency domain.

4.1 The frequency-domain analysis of filtering

It is a straightforward matter to derive the spectrum of a process y(t) formed
by mapping the process x(t) through a linear filter. If

x(t) =
∫

ω

eiωtdZx(ω), (39)

14
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Figure 7. The periodogram of 256 points of a pseudo-random ARMA(2, 2) process

overlaid by the spectral density function of the process.

then the filtered process is

y(t) =
∑

j

ψjx(t − j)

=
∑

j

ψj

{ ∫
ω

eiω(t−j)dZx(ω)
}

=
∫

ω

eiωt

( ∑
j

ψje
−iωj

)
dZx(ω).

(40)

On writing
∑

ψje
−iωj = ψ(ω), which is the frequency response function of the

filter, this becomes

y(t) =
∫

ω

eiωtψ(ω)dZx(ω)

=
∫

ω

eiωtdZy(ω).
(41)

If the process x(t) has a spectral density function fx(ω), which will allow one to
write dF (ω) = f(ω)dω in equation (36), then the spectral density function fy(ω)
of the filtered process y(t) will be given by

fy(ω)dω = E
{
dZy(ω)dZ∗

y (ω)
}

= ψ(ω)ψ∗(ω)E
{
dZx(ω)dZ∗

x(ω)
}

= |ψ(ω)|2fx(ω)dω.

(42)

The complex-valued frequency-response function ψ(ω), which characterises
the linear filter, can be written in polar form as

ψ(ω) = |ψ(ω)|e−iθ(ω), (43)
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Figure 8. The squared gain of the difference operator, labelled D, and that of the

summation operator, labelled W .

The function |ψ(ω)|, which is described as the gain of the filter, indicates the ex-
tent to which the amplitude of the cyclical components of which x(t) is composed
are altered in the process of filtering.

When x(t) = ε(t) is a white-noise sequence of independently and identi-
cally distributed random variables of variance σ2, equation (42) gives rise to
the expression fy(ω) = σ2|ψ(ω)|2 = σ2ψ(ω)ψ∗(ω), which is the spectral den-
sity function of y(t). Then, it is helpful to use the notation of the z-transform
whereby ψ(ω) is written as ψ(z) =

∑
j ψjz

j ; z = e−iω. If we allow z to be an
arbitrary complex number, then we can define the autocovariance generating
function γ(z) =

∑
τ γτzτ wherein γτ = (ytyt−τ ). This takes the form of

γ(z) = σ2ψ(z)ψ(z−1). (44)

Example. Figure 8 depicts the squared gain of the difference operator ∇(z) =
1 − z, which is the curve labelled D. The squared gain of ∇(z) is obtained
by setting z = exp{−iω} within |∇(z)|2 = (1 − z)(1 − z−1) to give D(ω) =
2 − 2 cos(ω), whence W (ω) = D−1(ω) can be obtained, which is the squared
gain of the summation operator. The product of D(ω) and W (ω) is the constant
function N(ω) = 1, which also represents the spectral density function or power
spectrum of a white-noise process with a variance of σ2 = 2π. Likewise, W (ω)
represents the pseudo-spectrum of a first-order random walk.

This is not a well-defined spectral density function, since the random walk
does not constitute a stationary process of a sort that can be defined over a
doubly-infinite set of time indices. The unbounded nature of W (ω) as ω → 0 is a
testimony to the fact that the variance of the random walk process is proportional
to time that has elapsed since its start-up. The variance will be unbounded if
the start-up is in the indefinite past.

5. Stochastic accumulation

In the schematic model of the economy, we have envisaged business cycle fluctu-
ations that are purely sinusoidal; and we have considered a trend that follows an

16



D.S.G. POLLOCK: Investigating Economic Trends and Cycles

exponential growth path. In a realistic depiction of an economy, both of these
functions are liable to be more flexible and more variable through time.

Whereas, in some eras, a linear function, interpolated by least-squares re-
gression through the logarithms of the data, will serve as a benchmark about
which to measure the cyclical economic activities, the latter usually require to
be modelled by a stochastic process. It is arguable that the trend should also be
modelled by a stochastic function.

A further feature of the schematic model, which is at odds with the available
data, is the continuous nature of its functions. Whereas the processes that
generate the data can be thought of as operating in continuous time, the sampled
data are sequences of values that are indexed by dates at equal intervals. These
data are liable to be modelled via discrete-time stochastic processes. Therefore,
some attention needs be paid to the relationship between the discrete data and
the underlying continuous process.

The theory of continuous-time stochastic models has been summarised by
Bergstrom (1984, 1988), who researched the subject over a 40-year period, be-
ginning in the mid 1960’s. His posthumous contributions are to be found in
Bergstrom and Nowman (2007), where the contributions of other authors are
also referenced.

A linear stochastic process must have a primum mobile or forcing function,
which is liable to be a stationary process. For the usual discrete-time processes,
this is a white-noise sequence of independently and identically distributed ran-
dom variables. In the theory of continuous stochastic processes, the forcing func-
tion consists, almost invariably, of the increments of a Wiener process, which is
a process that has an infinite bandwidth in the frequency domain. Already, in
section 3, we have encountered a process with a limited bandwidth. Later, in
section 9, we shall consider some further implications of a limited bandwidth.

The Wiener process Z(t) is defined by the following conditions:

(a) Z(0) is finite,

(b) E{Z(t)} = 0, for all t,

(c) Z(t) is normally distributed,

(d) dZ(s), dZ(t) for all t �= s are independent stationary increments,

(e) V {Z(t + h) − Z(t)} = σ2h for h > 0.

The increments dZ(s), dZ(t) are impulses that have a uniform power spectrum
distributed over an infinite range of frequencies corresponding to the entire real
line. Sampling Z(t) at regular intervals to form a discrete-time white-noise pro-
cess ε(t) = Z(t + 1) − Z(t) entails a process of aliasing whereby the spectral
power of the cumulated increments gives rise to a uniform spectrum of finite
power over the frequency interval [−π, π].

In general,

Z(t) = Z(a) +
∫ t

a

dZ(τ), (45)
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where Z(a) is a finite starting value at time a. However, if Z(t) were dif-
ferentiable, as some forcing functions may be, then we should have dZ(t) =
{dZ(t)/dt}dt.

The simplest of stochastic differential equations is the first-order equation,
which takes the form

dx(t)
dt

− λx(t) = dZ(t) or (D − λ)x(t) = dZ(t). (46)

Multiplying throughout by the factor exp{−λt} gives

e−λtDx(t) − λe−λtx(t) = D{x(t)e−λt} = e−λtdZ(t), (47)

where the first equality follows from the product rule of differentiation. Inte-
grating D{x(t)e−λt} = e−λtdZ(t) gives

x(t)e−λt =
∫ t

−∞
e−λτdZ(τ) (48)

or

x(t) = eλt

∫ t

−∞
e−λτdZ(τ) =

∫ t

−∞
eλ(t−τ)dZ(τ). (49)

If we write x(t) = (D − λ)−1dZ(t), then we get the result that

x(t) =
1

D − λ
dZ(t) =

∫ t

−∞
eλ(t−τ)dZ(τ), (50)

from which it is manifest that the necessary and sufficient condition for stability
is that λ < 0. That is to say, the root of the equation D−λ = 0, which indicates
the rate of decay of the increments, must be less than zero.

The general solution of a differential equation should normally comprise a
particular solution, which represents the effects of the initial conditions. How-
ever, given that their effects decay as time elapses and given that, in this case,
the integral has no lower limit, no account needs to be taken of initial conditions.

When the process is observed at the integer time points {t = 0,±1,±2, . . .},
it is appropriate to express it as

x(t) = eλ

∫ t−1

−∞
eλ(t−1−τ)dZ(τ) +

∫ t

t−1

eλ(t−τ)dZ(τ)

= eλx(t − 1) +
∫ t

t−1

eλ(t−τ)dZ(τ).
(51)

This gives rise to a discrete-time equation of the form

x(t) = φx(t − 1) + ε(t), or (1 − φL)x(t) = ε(t), (52)

where

φ = eλ and ε(t) =
∫ t

t−1

eλ(t−τ)dZ(τ), (53)
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and where L is the lag operator, which has the effect that Lx(t) = x(t − 1).
The second-order equation may be expressed as follows:

(D2 + ϕ1D + ϕ2)x(t) = (D − λ1)(D − λ2)x(t) = dZ(t). (54)

Using a partial-fraction expansion, this can be cast in the form of

x(t) =
1

λ1 − λ2

{
1

D − λ1
− 1

D − λ2

}
dZ(t)

=
∫ t

−∞

{
eλ1(t−τ) − eλ2(t−τ)

λ1 − λ2

}
dZ(τ).

(55)

Here, the final equality depends upon the result under (50). If the roots λ1, λ2

have real values, then the condition of stability is that λ1, λ2 < 0. If the roots are
conjugate complex numbers, then the condition for stability is that they must lie
in the left half of the complex plane. In that case, the trajectory of x(t) will have
a damped quasi-sinusoidal motion of a sort that is characteristic of the business
cycle.

Equation (55) gives rise to a second-order difference equation. In the manner
that equation (50) leads to equation (52), we get

x(t) =
1

λ1 − λ2

{
ε1(t)

1 − κ1L
+

ε2(t)
1 − κ2L

}
=

θ0 + θ1L

1 + φ1L + φ2L
ε(t).

(56)

Here, (λ1 − λ2)(1 − κ1L)(1 − κ2L) = 1 + φ1L + φ2L, and we have defined (θ0 +
θ1L)ε(t) = (1−φ2L)ε1(t)+(1−φ1L)ε2(t), which is a first-order moving-average
process. Equation (56) depicts an ARMA(2, 1) process in discrete time. The cor-
respondence between the second-order differential equation and the ARMA(2, 1)
process has been discussed by Phadke and Wu (1974) and by Pandit and Wu
(1975).

Autoregressive models of other orders may be derived in the same manner as
the second-order model by putting polynomial functions of D of the appropriate
degrees in place of the quadratic function. The models can also be elaborated by
applying a moving-average operator or weighting function ρ(r) to the stochastic
forcing function dZ(t). This gives a forcing function in the form of

η(t) =
∫ q

0

ρ(τ)dZ(t − τ) =
∫ t

t−q

ρ(t − τ)dZ(τ). (57)

The consequence of this elaboration for the corresponding discrete-time ARMA
model is that its moving-average parameters are no longer constrained to be
functions of the autoregressive parameters alone.

In modelling a stochastic trend, it is common to adopt a first or second-
order process in which the roots are set to zeros. In that case, the stochastic
increments are accumulated without decay. Therefore, it is crucial to specify the
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initial conditions of the process. We shall denote the process that is the m-fold
integral of the incremental process dZ(t) by Z(m)(t). Then, Z(1)(t) can stand
for the Wiener process Z(t), defined previously.

If the process has begun in the indefinite past, then there will be zero proba-
bility that its current value will be found within a finite distance from the origin.
Therefore, we must impose the condition that, at any time that is at a finite
distance both from the origin and from the current time, the process Z(1)(t)
assumes a finite value. This allows us to write

Z(1)(t) = Z(1)(t − h) +
∫ t

t−h

dZ(1)(τ), (58)

where h is an arbitrary finite step in time and a = t− h is a fixed point in time.
On this basis, the value of the integrated process at time t is

Z(2)(t) = Z(2)(t − h) +
∫ t

t−h

Z(1)(τ)dτ

= Z(2)(t − h) + Z(1)(t − h)h +
∫ t

t−h

(t − τ)dZ(1)(τ).
(59)

By proceeding through successive stages, we find that the mth integral is

Z(m)(t) =
m−1∑
k=0

Z(m−k)(t − h)
hk

k!
+

∫ t

t−h

(t − τ)m−1

(m − 1)!
dZ(1)(τ). (60)

Here, the first term on the RHS is a polynomial in h, which is the distance in
time from the fixed point a, whereas the second term is the m-fold integral of
mean-zero stochastic increments, which constitutes a non-stationary process.

The covariance of the changes Z(j)(t)−Z(j)(t−h) and Z(k)(t)−Z(k)(t−h)
of the jth and the kth integrated processes derived from Z(t) is given by

C
{
z(j)(t), z(k)(t)

}
=

∫ t

s=t−h

∫ t

r=t−h

(t − r)j−1(t − s)k−1

j!k!
E

{
dZ(r)dZ(s)

}
= σ2

∫ t

t−h

(t − r)j+k−2

j!k!
dr = σ2 hj+k−1

(j + k − 1)j!k!
.

(61)

A straightforward elaboration of the model of a stochastic trend arises when
it is assumed that the expected value of the incremental process that is the forcing
function has a nonzero mean. Then, Z(t) is replaced by µdt + dZ(t). This is
the case of stochastic drift. If µ is relatively large, then it will make a significant
contribution to the polynomial component, with the effect that the latter may
become the dominant component.

5.1 Discrete-time representation of an integrated Wiener process

To derive the discretely sampled version of the integrated Wiener process,
it may be assumed that values are sampled at regular intervals of h time units.
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Then, using the alternative notation of β(t) = Z(1)(t), equation (58) can be
written as

β(t) = β(t − h) + ε(t), (62)

where ε(t) is a white-noise process. With τ(t) = Z(2)(t), equation (59) can be
written as

τ(t) = τ(t − h) + hβ(t − h) + ν(t), (63)

where ν(t) is another white-noise process. Together, the equations (62) and (63)
constitute a so-called local linear model in which τ(t) represents the level and
β(t) represents the slope parameter. On taking the step length to be h = 1, the
transition equation for this model is[

τ(t)

β(t)

]
=

[
1 1

0 1

] [
τ(t − 1)

β(t − 1)

]
+

[
ν(t)

ε(t)

]
. (64)

Using the difference operator ∇ = 1−L, the discrete-time processes entailed
in this equation can be written as

∇τ(t) = τ(t) − τ(t − 1) = β(t − 1) + ν(t),

∇β(t) = β(t) − β(t − 1) = ε(t).
(65)

Applying the difference operator a second time to the first of these and substi-
tuting for ∇β(t) = ε(t) gives

∇2τ(t) = ∇β(t − 1) + ∇ν(t)
= ε(t − 1) + ν(t) − ν(t − 1).

(66)

On the RHS of this equation is a sum of stationary stochastic processes, which
can be expressed as an ordinary first-order moving-average process. Thus

ε(t − 1) + ν(t) − ν(t − 1) = η(t) + θη(t − 1), (67)

where η(t) is a white-noise process with V {η(t)} = σ2
η. Therefore, the sam-

pled version of the integrated Wiener process is an doubly-integrated IMA(2, 1)
moving-average model.

The essential task is to find the values of the moving-average parameter θ.
Thus is achieved by reference to equation (61), which provides the variances and
covariances of the terms on the LHS of (67), from which the autocovariances
of the MA process can be found. It can be shown that the variance and the
autocovariance at lag 1 of this composite process are given by

γ0 =
2σ2

ε

3
= σ2

η(1 + θ2) and γ1 =
σ2

ε

6
= σ2

ηθ. (68)

The equations must be solved for θ and σ2
η. There are two solutions for θ, and

we should take the one which fulfils the condition of invertibility: θ = 2 −
√

3.
(See Pollock 1999.)
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Figure 9. The graph of 256 observations on a simulated series generated by a random

walk.
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Figure 10. The graph of 256 observations on a simulated series generated by an

IMA(2, 1) process that correspond to the sampled version of an integrated Wiener

process.

When white-noise errors of observation are superimposed upon values sam-
pled from an integrated Wiener process at regular intervals, the resulting se-
quence can be described by a doubly-integrated second-order moving-average
process in discrete time, which is an IMA(2, 2) process. Such a model provides
the basis for the cubic smoothing spline of Reinsch (1976), which can be used to
extract an estimate of the trajectory of the underlying integrated Wiener process
from the noisy data. The statistical interpretation of the smoothing spline is due
to Wahba (1978).

The smoothing spline interpolates cubic polynomial segments between nodes
that are derived by smoothing a sequence of sampled data points. The segments
are joined in such a way as to ensure that the second derivative of the spline
function is continuous at the nodes. An account of the algorithm of the smooth-
ing spline and of its derivation from the statistical model has been provided by
Pollock (1999). It is shown that the means by which the nodes are obtained from
the data amount to a so-called discrete-time Wiener–Kolmogorov (W–K) filter.
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The Wiener–Kolmogorov principle can also be used to derive the so-called
Hodrick–Prescott (H–P) filter, which is widely employed in macroeconomic
analysis—See Hodrick and Prescott (1980, 1997). The filter, which is presented
in section 6.2, is derived from the assumption that the process that generates the
trend is a doubly-integrated discrete-time white noise. When white-noise errors
are added to the sampled values of the process, the observations are once more
described by an IMA(2, 2) model, and the nodes that are generated by the W–K
trend-extraction filter are analogous to those of the smoothing spline.

The trend that is generated by the smoothing spline is an aesthetically pleas-
ing curve, of which the smoothness belies the disjunct nature of the stochastic
forcing function. That nature is more clearly revealed in the case of a model that
postulates a trend that is generated by an ordinary Wiener process, as opposed
to an integrated process. The discrete-time observations, which are affected by
white-noise errors, are modelled by an IMA(1, 1) process, which also corresponds
to the local level model that has been advocated by Harvey (1985, 1989) amongst
others. The function that provides statistical estimates of the trend at the nodes
and at the points between them has jointed linear segments.

It should be recognised that, if the forcing function were assumed to be
bounded in frequency, then the interpolating function would be a smooth one,
generated by a Fourier interpolatison, that would have no discontinuities at the
nodes.

In section 9, we shall return to the question of how best to specify the
continuous-time forcing function. In the next section, we shall deal exclusively
with discrete-time models, and we shall examine various ways of decomposing
into its component parts a model of an aggregate process that combines the
trend and the cycles.

Example. A Wiener process, which is everywhere continuous but nowhere dif-
ferentiable, can be represented graphically only via its sampled ordinates. If
the sampling is sufficiently rapid to give a separation between adjacent points
that is below the limits of visual acuity, then the sampled process, which consti-
tutes a discrete-time random walk, will give the same visual impression as the
underlying Wiener process. This is the intended effect of Figure 9.

Figure 10 depicts the trajectory of the IMA(2, 1) process that represents
the sampled version of an integrated Wiener process. This is a much smoother
trajectory than that of the random walk. The extra smoothness can be attributed
to the effect of the summation operator, of which the squared gain has been
depicted in Figure 8. The operator amplifies the sinusoidal elements in the lower
part of the frequency range and it attenuates those in the upper part.

6. Decomposition of discrete-time ARIMA processes

An autoregressive moving-average (ARMA) model can be represented by the
equation

p∑
i=0

φiyt−i =
q∑

i=0

θiεt−i with φ0 = θ0 = 1, (69)
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where t has whatever range is appropriate to the analysis. To exploit the algebra
of polynomial operators, the equation can be embedded within the system

φ(z)y(z) = θ(z)ε(z), (70)

where ε(z) = zt{εt + εt−1z
−1 + · · ·} is a z-transform of the infinite white-noise

forcing function or disturbance sequence {εt−i; i = 0, 1, . . .} and where y(z) is
the z-transform of the corresponding data sequence. The embedded equation
will be associated with zt.

The polynomials θ(z) and φ(z) must have all their roots outside the unit
circle to make their inverses θ−1(z) and φ(z)−1 amenable to power series expan-
sions when |z| ≥ 1. Then, it is possible to represent the system of (70) by the
equation y(z) = φ−1(z)θ(z)ε(z).

An autoregressive integrated moving-average (ARIMA) process represents
the accumulation of the output of an ARMA process. On defining the (back-
wards) difference operator ∇(z) = 1−z, the dth-order model can be represented
by

∇d(z)α(z)y(z) = θ(z)ε(z). (71)

The inverse of the difference operator is the summation operator ∇−1(z) =
{1 + z + z2 + · · ·}, and this might be used in representing the system of (71),
alternatively, by the equation y(z) = ∇−d(z)α−1(z)θ(z)ε(z).

The difficulty here is that, if it is formed from an infinite number of inde-
pendently and identically distributed random variables, the disturbance sequence
cannot have a finite sum. For this reason, it appears that the algebra of polyno-
mial operators cannot be applied to the analysis of nonstationary processes.

The usual recourse in the face of this problem is scrupulously to avoid the
use of the cumulation operator ∇−1(z) and to represent the integrated system
only in the form of (71). This is not a wholly adequate solution to the problem
since, to exploit the algebra of the operators, it is necessary to define the inverses
of all of the polynomial operators. An alternative solution is to constrain the
disturbance sequence to be absolutely summable, which appears to negate the
assumption that it is generated by a stationary stochastic process.

The proper recourse is to replace the process of indefinite summation by a
definite summation that depends upon supplying the system with initial condi-
tions at some adjacent points in time. To show what this entails, we may consider
the system of equations that is derived from (69) by setting t = 0, 1, . . . , T − 1.
The set of T equations can be arrayed in a matrix format as follows:

y0 y−1 . . . y−p

y1 y0 . . . y1−p

...
...

. . .
...

yp yp−1 . . . y0

...
...

...
yT−1 yT−2 . . . yT−p−1




1
φ1
...

φp

 =



ε0 ε−1 . . . ε−q

ε1 ε0 . . . ε1−q

...
...

. . .
...

εq εq−1 . . . ε0

...
...

...
εT−1 εT−2 . . . εT−q−1




1
θ1
...
θq

 . (72)

Apart from the elements y0, y1, . . . , yT−1 and ε0, ε1, . . . , εT−1, which fall within
the indicated period, these equations comprise the values y−p, . . . , y−1 and
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ε−q, . . . , ε−1, which are to be found in the top-right corners of the matrices,
and which constitute the initial conditions at the start-up time of t = 0.

Each of the elements within this display can be associated with the power of
z that is indicated by the value of its subscripted index. In that case, the system
can be represented by equation (70) with the constituent polynomials defined as
follows:

y(z) = y−pz
−p + · · · + y0 + y1z + · · · + yT−1z

T−1,

ε(z) = ε−qz
−q + · · · + ε0 + ε1z + · · · + εT−1z

T−1,

φ(z) = 1 + φ1z + · · · + φpz
p and

θ(z) = 1 + θ1z + · · · + θqz
q.

(73)

This scheme applies regardless of the values of the roots of the polynomial
operators φ(z) and θ(z). Therefore, it can accommodate the case where φ(z) =
∇d(z)α(z), which is that of equation (71). One of the virtues of this notation
is that it is not burdened by an explicit representation of the initial conditions.
At a later stage, in section 7, we shall need to represent the initial conditions
explicitly.

A trend has only a tenuous existence within the context of a univariate
ARIMA model of the sort represented by equation (71). In such a model, it
amounts to nothing more that the accumulation of the fluctuations that are
created by applying a filter θ(z)/α(z) to a white-noise sequence ε(t) of indepen-
dently and identically distributed random variables.

If the trend and the transitory motions that accompany it are due to the
same motive force, which is the white-noise process, then it is difficult to draw a
distinction between them. However, a distinction can be made by attributing the
trend to the unit roots within ∇d(z) = (1−z)d and by attributing the transitory
motions to the stable roots of the autoregressive operator α(z). This is what the
decomposition of Beveridge and Nelson (1981) achieves.

Faced with the insistence that the trend and the fluctuations are due to
separate sources, an obvious recourse is to attribute separate and independent
ARIMA models to each of them. In that case, the aggregate data are also de-
scribed by a univariate ARIMA model. Provided that their models have distinct
parameters, Wiener–Kolmogorov (W–K) filters may be used tentatively to ex-
tract the independent components from the data.

The assumption that the components originate from transformations of
white-noise sequences implies that their spectra extend over the entire frequency
range of [0, π]. This means that they are bound to overlap substantially. In prac-
tice, the spectral structures of the components are often confined to frequency
bands that are separated by wide spectral dead spaces. In that case, the separa-
tion of one component from another can be achieved in a more decisive manner
than the W–K filters will usually allow.

6.1 The Beveridge–Nelson decomposition

The Beveridge–Nelson decomposition relates to an ARIMA model with a
first-order integration and with stochastic drift. This can be represented in z-
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transform notation by

y(z) =
µ(z)
∇(z)

+
θ(z)

α(z)∇(z)
ε(z). (74)

If the system has a start-up at t = 0, then µ(z), which represents the drift,
is the z-transform of a sequence that is constant over the integers 0, 1, . . . , t
and zero-valued for t < 0. The operator associated with ε(z) has the following
partial-fraction decomposition:

θ(z)
α(z)∇(z)

=
ρ(z)
α(z)

+
δ

∇(z)
. (75)

Multiplying both sides by ∇(z) = 1 − z and setting z = 1 gives δ = θ(1)/α(1),
where the numerator and the denominator are just the sums of the polynomial
coefficients. Substituting the result into equation (74) creates an additive de-
composition of the form y(z) = τ(z) + ζ(z), wherein

τ(z) =
1

∇(z)
{µ(z) + δε(z)} , (76)

ζ(z) =
ρ(z)
α(z)

ε(z) (77)

are respectively the trend component and the transitory component. This is the
so-called Beveridge–Nelson decomposition.

The trend component of the Beveridge–Nelson decomposition is a first-order
random walk with drift, whereas the transient component is an ARMA process.
The distinguishing feature of the decomposition is that both components have
the same forcing function. It is easy to see that

τ(z) =
θ(1)
α(1)

α(z)
θ(z)

y(z), (78)

which is to say that the estimate of the trend is derived by applying an ordinary
linear filter to the data sequence. The effect of the filter is to eliminate the
ARMA factor from the data so as to deliver a pure random walk.

A common objection to the Beveridge–Nelson decomposition is that the
resulting trend is liable to be too rough. This is a consequence of the fact that a
random walk that is an accumulation of independently and identically distributed
random variables comprises elements at all frequencies up to the limiting Nyquist
frequency of π radians per sample period. Also, the decomposition makes no
provision for the presence of seasonal fluctuations in the data. A more elaborate
model can be proposed with the aim of overcoming these objections

Consider the multiplicative seasonal ARIMA model of Box and Jenkins
(1976), which can be represented by the equation

∇d(z)∇D
s (z)y(z) = µ(z) +

θ(z)Θ(zs)
α(z)A(zs)

ε(z). (79)
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Here, α(z) and θ(z) are the autoregressive and moving-average polynomials that
have appeared in equation (74), whereas A(z) and Θ(z) are seasonal operators.
Whereas ∇(z) continues to represent the ordinary difference operator, there is
now a seasonal difference operator ∇s(z) = 1−zs = (1−z)S(z), which forms the
differences between the data from the same season (or month) of two successive
years. The factors of this operator are the ordinary difference operator and a
seasonal summation operator S(z) = 1 + z + z2 + · · · + zs−1. A decomposition
can now be found of the form y(z) = τ(z) + σ(z) + ζ(z), where

τ(z) =
1

∇d+D
{µ(z) + α(z)ε(z)}, (80)

σ(z) =
β(z)

SD(z)
ε(z), (81)

ζ(z) =
γ(z)

α(z)A(zs)
ε(z), (82)

are, respectively, the trend, the seasonal component and the transient compo-
nent. If the degree d+D of the (ordinary) difference operator exceeds unity, then
the trend is liable to be smoother than one generated by a first-order random
walk. Also, the effect of α(z) might be further to attenuate the high-frequency
elements of the forcing function, thereby enhancing the smoothness of the trend.

To enhance the smoothness of the trend and of the seasonal component yet
further, an irregular component could be incorporated in the decomposition. The
irregular elements could be extracted from the trend and the seasonal component
and assigned to this additional term, which could be regarded as statistically
independent of the primary forcing function ε(t). However, from this point of
view, it is natural to consider a model in which each of the components is driven
by a statistically independent forcing function. Such a model is the basis of the
Wiener–Kolmogorov methodology for signal extraction.

6.2 Wiener–Kolmogorov filtering

The modern theory of statistical signal extraction was formulated indepen-
dently by Wiener (1941) and Kolmogorov (1941), who arrived at the same re-
sults in different ways. Whereas Kolmogorov took a time-domain approach to
the problem, Wiener worked primarily in the frequency domain. However, the
unification of the two approaches was soon achieved, and a modern account of
the theory, which encompasses both, has been provided by Whittle (1983).

The purpose of a Wiener–Kolmogorov (W–K) filter is to extract an estimate
of a signal sequence ξ(t) from an observable data sequence

y(t) = ξ(t) + η(t), (83)

which is afflicted by the noise η(t). According to the classical assumptions, which
we shall later amend, the signal and the noise are generated by zero-mean station-
ary stochastic processes that are mutually independent. Also, the assumption
is made that the data constitute a doubly-infinite sequence. It follows that the
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autocovariance generating function of the data is the sum of the autocovariance
generating functions of its two components. Thus

γyy(z) = γξξ(z) + γηη(z) and γξξ(z) = γyξ(z). (84)

These functions are amenable to the so-called Cramér–Wold factorisation, and
they may be written as

γyy(z) = φ(z−1)φ(z), γξξ(z) = θ(z−1)θ(z), γηη(z) = θη(z−1)θη(z). (85)

The estimate xt of the signal element ξt is a linear combination of the
elements of the data sequence:

xt =
∑

j

βjyt−j . (86)

The principle of minimum-mean-square-error estimation indicates that the esti-
mation errors must be statistically uncorrelated with the elements of the infor-
mation set. Thus, the following condition applies for all k:

0 = E
{

yt−k(ξt − xt)
}

= E(yt−kξt) −
∑

j

βjE(yt−kyt−j)

= γyξ
k −

∑
j

βjγ
yy
k−j .

(87)

The equation may be expressed, in terms of the z-transforms, as

γyξ(z) = β(z)γyy(z), (88)

It follows that

β(z) =
γyξ(z)
γyy(z)

=
γξξ(z)

γξξ(z) + γηη(z)
=

θ(z−1)θ(z)
ρ(z−1)ρ(z)

.

(89)

Now, by setting z = exp{iω}, one can derive the frequency-response function
of the filter that is used in estimating the signal ξ(t). The effect of the filter is
to multiply each of the frequency elements of y(t) by the fraction of its variance
that is attributable to the signal. The same principle applies to the estimation
of the residual component. This is obtained using the complementary filter

βc(z) = 1 − β(z) =
γηη(z)

γξξ(z) + γηη(z)
. (90)

The estimated signal component may be obtained by filtering the data in two
passes according to the following equations:

φ(z)q(z) = θ(z)y(z), φ(z−1)x(z−1) = θ(z−1)q(z−1). (91)
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The first equation relates to a process that runs forwards in time to generate
the elements of an intermediate sequence, represented by the coefficients of q(z).
The second equation represents a process that runs backwards to deliver the
estimates of the signal, represented by the coefficients of x(z).

The Wiener–Kolmogorov methodology can be applied to non stationary
data with minor adaptations. A model of the processes underlying the data can
be adopted that has the form of

∇d(z)y(z) = ∇d(z){ξ(z) + η(z)} = δ(z) + κ(z)
= (1 + z)nζ(z) + (1 − z)mε(z),

(92)

where ζ(z) and ε(z) are the z-transforms of two independent white-noise se-
quences ζ(t) and ε(t). The condition m ≥ d is necessary to ensure the station-
arity of η(t), which is obtained from ε(t) by differencing m− d times. Then, the
filter that is applied to y(t) to estimate ξ(t), which is the d-fold integral of δ(t),
takes the form of

β(z) =
σ2

ζ (1 + z−1)n(1 + z)n

σ2
ζ (1 + z−1)n(1 + z)n + σ2

ε(1 − z−1)m(1 − z)m
, (93)

regardless of the degree d of differencing that would be necessary to reduce y(t)
to stationarity.

Two special cases are of interest. By setting d = m = 2 and n = 0 in (92),
a model is obtained of a second-order random walk ξ(t) affected by white-noise
errors of observation η(t) = ε(t). The resulting lowpass W–K filter, in the form
of

β(z) =
1

1 + λ(1 − z−1)2(1 − z)2
with λ =

σ2
η

σ2
δ

, (94)

is the Hodrick–Prescott (H–P) filter. The complementary highpass filter, which
generates the residue, is

βc(z) =
(1 − z−1)2(1 − z)2

λ−1 + (1 − z−1)2(1 − z)2
. (95)

Here, λ, which is described as the smoothing parameter, is the single adjustable
parameter of the filter.

By setting m = n, a filter for estimating ξ(t) is obtained that takes the form
of

β(z) =
σ2

ζ (1 + z−1)n(1 + z)n

σ2
ζ (1 + z−1)n(1 + z)n + σ2

ε(1 − z−1)n(1 − z)n

=
1

1 + λ

(
i
1 − z

1 + z

)2n with λ =
σ2

ε

σ2
ζ

.
(96)

This is the formula for the Butterworth lowpass digital filter. The filter has two
adjustable parameters, and, therefore, it is a more flexible device than the H–P
filter. First, there is the parameter λ. This can be expressed as

λ = {1/ tan(ωd)}2n, (97)

29



D.S.G. POLLOCK: Investigating Economic Trends and Cycles

0

0.25

0.5

0.75

1

1.25

0 π/4 π/2 3π/4 π

B

H1600

Figure 11. The gain of the Hodrick–Prescott H and of the Butterworth filter B with

nominal cut-off points at π/4 radians, together with the gain of a Hodrick–Prescott

filter with a smoothing parameter of 1600.

where ωd is the nominal cut-off point of the filter, which is the mid point in the
transition of the filter’s frequency response from its pass band to its stop band.
The second of the adjustable parameters is n, which denotes the order of the
filter. As n increases, the transition between the pass band and the stop band
becomes more abrupt.

These filters can be applied to the nonstationary data sequence y(t) in the
manner indicated by equation (91), provided that the appropriate initial condi-
tions are supplied with which to start the recursions. However, by concentrating
on the estimation of the residual sequence η(t), which corresponds to a station-
ary process, it is possible to avoid the need for nonzero initial conditions. Then,
the estimate of η(t) can be subtracted from y(t) to obtain the estimate of ξ(t).

The Hodrick–Prescott filter has many antecedents. Its invention cannot rea-
sonably be attributed to Hodrick and Prescott (1980, 1997), who cited Whittaker
(1923) as one of their sources. Leser (1961) also provided a complete derivation
of the filter at an earlier date. The Butterworth filter is a commonplace of
electrical engineering. The digital version of the filter has been described in an
econometric context by Pollock (2000) and by Gómez (2001). It has been applied
to climatological data by Harvey and Mills (2003).

Example. Figure 11 shows the gain functions of the three filters overlaid on the
same diagram. The lowpass Hodrick–Prescott filter with a smoothing parameter
of λ = 1600 is commonly recommended for estimating the trend in quarterly
economic data. The corresponding gain function is marked in the diagram by
the number 1600.

An alternative to specifying the smoothing parameter directly is to specify
the frequency value ωd for which the gain is β(ωd) = 0.5. For the H–P filter, the
correspondence between ωd and λ is as follows:

λ =
1

4{1 − cos(ωd)}2
and ωd = cos−1(1 − 1

√
4λ). (98)

The function labelled B is the gain of the filter for which ωd = π/4.
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The frequency ωd corresponds to the mid-point in the transition between
the pass band and the stop band of the filter. This might be described as the
nominal cut-off frequency, but, in the case of the H–P filter, this is a misnomer,
on account of the very gradual transition of the gain. The Butterworth filter is
capable of a much more rapid transition. The curve labelled B corresponds to
the gain of a Butterworth filter with n = 6 and ωd = π/4.

6.3 Structural ARIMA models

The Hodrick–Prescott filter and the Butterworth filter are appropriate to the
task of extracting the trend or the trend/cycle component from a data sequence
without regard to the structure of the residual component. More elaborate filters
are available that also take account of a seasonal component.

Consider, therefore, a seasonal autoregressive moving-average model of the
form

y(z) =
θ(z)
φ(z)

ε(z) =
θ(z)

φS(z)φT (z)
ε(z), (99)

where φS(z) contains the seasonal autoregressive factors and φT (z) contains the
non-seasonal factors.

The denominator contains both an ordinary differencing operator ∇d(z) and
a seasonal differencing operator ∇D

s (z) = ∇D(z)SD(z). The operator ∇s(z) =
1 − zs = (1 − z)S(z) forms the differences between the data from the same
season (or month) of two successive years. Its factors are the ordinary difference
operator and a seasonal summation operator S(z) = 1 + z + z2 + · · · + zs−1.
The factorisation of the seasonal operator implies that the overall degree of
differencing within the ARIMA model is d + D. The factor ∇d+D(z) is assigned
to φT (z), whereas SD(z) belongs to φS(z).

On the assumption that the degree of the moving-average polynomial θ(z)
is at least equal to that of the denominator polynomial φ(z), there is a partial-
fraction decomposition of the autocovariance generating function of the model
into three components, which correspond to the trend effect, the seasonal effect
and an irregular influence. Thus

θ(z−1)θ(z)
φS(z−1)φT (z−1)φT (z)φS(z)

=
QT (z)

φT (z−1)φT (z)
+

QS(z)
φS(z−1)φS(z)

+ R(z). (100)

Here, the first two components on the RHS represent proper rational fractions,
whereas the final component is an ordinary polynomial. If the degree of the
moving-average polynomial is less than that of the denominator polynomial, then
the irregular component is missing from the decomposition in the first instance.

To obtain the spectral density function of y(t), we set z = e−iω, where
ω ∈ [0, π]. (This function is more properly described as a pseudo-spectrum in
view of the singularities occasioned by the unit roots in the denominators of the
first two components.) The spectral decomposition corresponding to equation
(100) can be written as

f(ω) = f(ω)T + f(ω)S + f(ω)R, (101)
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where f(ω) = θ(eiω)θ(e−iω)/{φ(eiω)φ(e−iω)}.
Let νT = min{f(ω)T } and νS = min{f(ω)S}. These correspond to the

elements of white noise embedded in f(ω)T and f(ω)S . The principle of canon-
ical decomposition is that the white-noise elements should be reassigned to the
residual component. On defining

γT (z)γT (z−1) = QT (z) − νT φT (z)φT (z−1),

γS(z)γS(z−1) = QS(z) − νSφS(z)φS(z−1),

and ρ(z)ρ(z−1) = R(z) + νT + νS ,

(102)

the canonical decomposition of the generating function can be represented by

θ(z)θ(z−1)
φ(z)φ(z−1)

=
γT (z)γT (z−1)
φT (z)φT (z−1)

+
γS(z)γS(z−1)
φS(z)φS(z−1)

+ ρ(z)ρ(z−1). (103)

There are now two improper rational functions on the RHS, which have equal
degrees in their numerators and denominators.

According to Wiener–Kolmogorov theory, the optimal signal-extraction fil-
ter for the trend component is

βT (z) =
γT (z)γT (z−1)
φT (z)φT z−1)

× φS(z)φT (z)φT (z−1)φS(z−1)
θ(z)θ(z−1)

=
γT (z)γT (z−1)φS(z)φS(z−1)

θ(z)θ(z−1)
=

CT (z)
θ(z)θ(z−1)

.

(104)

This has the form of the ratio of the autocovariance generating function of the
trend component to the autocovariance generating function of the process y(t).
This formulation presupposes a doubly-infinite data sequence, so it must be
translated into a form that can be implemented with finite sequences.

The approach to the estimation of unobserved components that adopts the
principle of canonical decompositions has been advocated by Hillmer and Tiao
(1982) and by Maravall and Pierce (1987). It has been implemented in the
TRAMO–SEATS program of Gómes and Maravall (1996) and of Caporello and
Maravall (2004), which builds upon the work of Burman (1980). A comparative
analysis of the STAMP and TRAMO–SEATS programs has been provided by
Pollock (2002b)

6.4 The state space form of the structural model

In the foregoing approach to modelling the components of a structural time
series model, an aggregate univariate process is first estimated and then decom-
posed into its components. An alternative approach is to model the individual
components from the start as separate entities, which are described by indepen-
dent linear stochastic models.

Provision can be made for a cyclical component which is distinct from the
trend component, but, if this is omitted, then the disaggregated model commonly
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takes the form of y(z) = τ(z) + σ(z) + η(z), where

τ(z) =
(1 + αz)
∇2(z)

ζ(z), (105)

σ(z) =
1

S(z)
ω(z). (106)

Then, τ(t) is the trend, σ(t) is the seasonal component and η(t) is the irregular
noise. Here, there are three independent white-noise processes driving the model,
which are ζ(t), ω(t) and η(t). The model has been described by Harvey (1989)
as the basic structural model. A reason for omitting the cyclical or business-
cycle component from this model is the difficulty in separating it from the trend
component.

The trend process is usually depicted as the product of two processes that
constitute the so-called local linear model, which has already been described in
section 5.1:

τ(t) = τ(t − 1) + β(t) + ν(t), (107)

β(t) = β(t − 1) + ε(t). (108)

The first of these describes the level of the trend process and the second describes
its slope.

A more elaborate seasonal model is available that generates more regular
cycles. A moving-average operator M(z) can be included in the numerator of
the expression on the RHS of (106) to give σ(z) = {M(z)/S(z)}ω(z). The
autoregressive operator may be factorised as S(z) =

∏s−1
j=1(1 − e2πj/s), where s

is the number of observations per annum. The complementary moving-average
operator will have the form of M(z) =

∏s−1
j=1(1 − ρe2πj/s), where ρ < 1 is close

to unity. The zeros of the moving-average operator will serve largely to negate
the effects of the poles of the autoregressive operator, except at the seasonal
frequencies, where prominent spectral spikes will be found.

The basic structural model, without the elaboration of a seasonal moving-
average component, can be represented in a state-space form that comprises a
transition equation, which describes a first-order vector autoregressive process,
and an accompanying measurement equation. For notational convenience, let
s = 4, which corresponds to the case of quarterly observations on annual data.
Then, the transition equation, which gathers together equations (106), (107) and
(108), is

τ(t)
β(t)
σ(t)

σ(t − 1)
σ(t − 2)

 =


1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0




τ(t − 1)
β(t − 1)
σ(t − 1)
σ(t − 2)
σ(t − 3)

 +


ν(t)
ε(t)
ω(t)
0
0

 . (109)

This incorporates the transition equation of the non-seasonal local linear model
that has been given by (64). The observation equation, which combines the
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Figure 12. The gain function of the trend-extraction filter obtained from the STAMP

program (solid line) together with that of the canonical trend-extraction filter (broken

line).

current values of the components, is

y(t) = [ 1 0 1 0 0 ]


τ(t)
β(t)
σ(t)

σ(t − 1)
σ(t − 2)

 + η(t). (110)

The state-space model is amenable to the Kalman filter and the associated
smoothing algorithms, which can be used in estimating the parameters of the
model and in extracting estimates of the so-called unobserved components τ(t),
σ(t) and ε(t). These algorithms have been described by Pollock (2003a).

Disaggregated structural time-series models have been treated at length in
the book by Harvey (1989). The methodology has been implemented in the
STAMP program, which is described by Koopman, Harvey, Doornick and Shep-
hard (2007). A similar approach has been pursued in a program within the
Captain MATLAB Toolbox, which has been described by Pedregal, Taylor and
Young (2004).

Example. Figure 12 show the gain of the trend extraction filter that is associ-
ated with a disaggregated structural model that has been applied to the monthly
airline passenger data of Box and Jenkins (1976).

The solid line represents the gain of the ordinary filter and the broken line
represents the gain of the filter that is obtained when the principle of canonical
decomposition is applied to the components of the model. In that case, the
white noise that is contained in the components is removed and reassigned to
the residual component.

The indentations in the gain function at the seasonal frequencies πj/6; j =
1, . . . , 6 are due to the zeros of the filter that are to be found on the circumference
of the unit circle and which are effective in removing the seasonal fluctuations
from the trend.
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Disregarding these indentations, the gain of the filters is reduced only grad-
ually as frequency increases. In particular, the ordinary unadjusted filter is
liable to transmit a higher proportion of the high-frequency noise of the data.
Howerver, given that such high-frequency noise is largely absent from the airline
passenger data, it transpires that the effect upon the estimated trend of adopting
the principle of canonical decomposition is a minor one.

7. Finite-sample signal extraction

The classical theory of linear filtering relies heavily upon the simplifications
that are afforded by the assumption that the data constitute a doubly infinite
sequence. The assumption is an acceptable one in the case of finite impulse re-
sponse (FIR) filters that can be realised via low-order moving-average operators.
When such a filter has only a short span, it matters little which assumptions
are made about the length of the data sequence. Only at the ends of the data
sequence are there liable to be problems.

The assumption of a double-infinite data sequence, also sustains the the-
ory of time-invariant infinite impulse response (IIR) rational filters, such as the
Butterworth and Hodrick–Prescott filters of section 6.2, which correspond to
moving averages of infinite order. These are not so easily applied to short se-
quences. Nevertheless, if the data sequence is sufficiently lengthy to allow the
transient effects of the arbitrary start-up values to disappear, then such filters
can be implemented successfully via bi-directional feedback procedures which
comprise only and handful of recent data values. (In effect the start-up values
purport to summarise the history of the infinite data sequence, in so far as it
affects the IIR filter.)

In econometric applications, attention is often focussed upon the most re-
cent observations at the upper end of a short data sequence. In such cases, a
theory of filtering is called for that fully recognises the finite nature of the data
sequence. Also, in cases where the data are trended, it becomes essential to
supply appropriate nonzero initial conditions to the filter; and these should be
the products of a finite-sample theory.

The theory that we shall expound here depends upon replacing the symbol z
within the various polynomial operators by a matrix lag operator. However, it is
immediately apparent that this replacement alone is insufficient for the purpose
of creating adequate finite-sample filters.

To demonstrate the effects of the replacement, let LT = [e1, e2, . . . , eT−1, 0]
be the matrix version of the lag operator, which is formed from the identity
matrix IT = [e0, e1, e2, . . . , eT−1] of order T by deleting the leading column and
by appending a column of zeros to the end of the array. Then, the matrix of
order T that corresponds to the p-th difference operator ∇p(z) = (1 − z)p is

∇p
T = (I − LT )p. (111)

We may partition this matrix so that ∇p
T = [Q∗, Q]′, where Q′

∗ has p rows. If y
is a vector of T elements, then

∇p
T y =

[
Q′

∗
Q′

]
y =

[
g∗
g

]
; (112)
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and g∗ is liable to be discarded, whereas g will be regarded as the vector of the
p-th differences of the data.

The inverse matrix is partitioned conformably to give ∇−p
T = [S∗, S]. It

follows that

[S∗ S ]
[

Q′
∗

Q′

]
= S∗Q

′
∗ + SQ′ = IT , (113)

and that [
Q′

∗
Q′

]
[S∗ S ] =

[
Q′

∗S∗ Q′
∗S

Q′S∗ Q′S

]
=

[
Ip 0
0 IT−p

]
. (114)

If g∗ is available, then y can be recovered from g via

y = S∗g∗ + Sg. (115)

The lower-triangular Toeplitz matrix ∇−p
T = [S∗, S] is completely char-

acterised by its leading column. The elements of that column are the ordi-
nates of a polynomial of degree p − 1, of which the argument is the row index
t = 0, 1, . . . , T − 1. Moreover, the leading p columns of the matrix ∇−p

T , which
constitute the submatrix S∗, provide a basis for all polynomials of degree p − 1
that are defined on the integer points t = 0, 1, . . . , T − 1.

It follows that S∗g∗ = S∗Q′
∗y contains the ordinates of a polynomial of

degree p − 1, which is interpolated through the first p elements of y, indexed
by t = 0, 1, . . . , p − 1, and which is extrapolated over the remaining integers
t = p, p + 1, . . . , T − 1.

7.1 Polynomial regression and H–P filtering

A polynomial that is designed to fit the data should take account of all of
the observations in y. Imagine, therefore, that y = φ + η, where φ contains
the ordinates of a polynomial of degree p − 1 and η is a disturbance term with
E(η) = 0 and D(η) = Σ. Then, in forming an estimate f = S∗r∗ of φ, we should
minimise the sum of squares η′Σ−1η. Since the polynomial is fully determined
by the elements of a starting-value vector r∗, this is a matter of minimising

(y − φ)′Σ−1(y − φ) = (y − S∗r∗)′Σ−1(y − S∗r∗) (116)

with respect to r∗. The resulting values are

r∗ = (S′
∗Σ

−1S∗)−1S′
∗Σ

−1y and φ = S∗(S′
∗Σ

−1S∗)−1S′
∗Σ

−1y. (117)

An alternative representation of the estimated polynomial is available, which
avoids the inversion of Σ. This is provided by the identity

P∗ = S∗(S′
∗Σ

−1S∗)−1S′
∗Σ

−1

= I − ΣQ(Q′ΣQ)−1Q′ = I − PQ,
(118)

which gives two representations of the projection matrix P∗. The equality follows
from the fact that, if Rank[R, S∗] = T and if S′

∗Σ
−1R = 0, then

S∗(S′
∗Σ

−1S∗)−1S′
∗Σ

−1 = I − R(R′Σ−1R)−1R′Σ−1. (119)
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Setting R = ΣQ gives the result. It follows that the polynomial fitted to the
data by generalised least-squares regression can be written as

φ = y − ΣQ(Q′ΣQ)−1Q′y. (120)

A more general method of curve fitting, which embeds polynomial regression
as a special case, is one that involves the minimisation of a combination of two
sums of squares. Let x denote the vector of fitted values, which is a sequence
of the ordinates of points, equally spaced in time, through which a continuous
curve might be interpolated. The criterion for finding the vector is to minimise

L = (y − x)′Σ−1(y − x) + x′QΩ−1Q′x. (121)

The first term penalises departures of the resulting curve from the data, whereas
the second term imposes a penalty for a lack of smoothness in the curve.

The second term comprises d = Q′x, which is the vector of pth-order dif-
ferences of x. The matrix Ω−1 serves to generalise the overall measure of the
curvature of the function that has the elements of x as its sampled ordinates,
and it serves to regulate the penalty, which may vary over the sample.

Differentiating L with respect to x and setting the result to zero, in accor-
dance with the first-order conditions for a minimum, gives

Σ−1(y − x) = QΩ−1Q′x

= QΩ−1d.
(122)

Multiplying the equation by Q′Σ gives Q′(y−x) = Q′y−d = Q′ΣQΩ−1d, whence
Ω−1d = (Ω+Q′ΣQ)−1Q′y. Putting this into the equation x = y−ΣQΩ−1d gives

x = y − ΣQ(Ω + Q′ΣQ)−1Q′y. (123)

By setting Ω = λ−1I and Σ = I and letting Q′ denote the second-order
difference operator, the Hodrick–Prescott filter is obtained in the form of

x = y − Q(λ−1I + Q′Q)−1Q′y. (124)

This form is closely related to that of the infinite-sample filter β(z) = 1 −
βc(z) which invokes equation (95). In the finite-sample version of the filter,
the submatrix Q′ of ∇2

T = (I − LT )2 replaces the difference operator (1 − z)2,
and Q replaces (1 − z−1)2.

If Ω = 0 in (123), and if Q′ is the matrix version of the second-difference
operator, then the generalised least-squares interpolator of a linear function is
derived, which is subsumed under (120).

7.2 Finite-sample Wiener–Kolmogorov filters

To provide a statistical interpretation of the formula of (123), consider a
data sequence y = ξ +η, where ξ = φ+ζ is a trend component, which is the sum
of a vector φ, containing the ordinates of a polynomial of degree p at most, and
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of a vector ζ from a stochastic process with p unit roots that is driven by a zero-
mean forcing function. The term η stands for a vector sampled from a mean-zero
stationary stochastic process which is independent of the process driving ξ such
that

E(η) = 0, D(η) = Σ and C(η, ξ) = 0. (125)

If Q′ is the p-th difference operator, then Q′φ = µι, with ι = [1, 1, . . . , 1]′,
will contain a constant sequence of values, which will be zeros if the degree of φ
is less than p. Also, Q′ζ will be a vector sampled from a mean-zero stationary
process. Therefore, δ = Q′ξ is from a stationary process with a constant mean.
Thus, there is

Q′y = Q′ξ + Q′η

= δ + κ = g,
(126)

where
E(δ) = µι, D(δ) = Ω,

E(κ) = 0, D(κ) = Q′ΣQ.
(127)

Now consider the conditional expectation of η given g = Q′y, which is also
its minimum-mean-square-error estimator on the assumption that the various
stochastic processes are normally distributed. This is

E(η|g) = E(η) + C(η, g)D−1(g){g − E(g)}
= ΣQ(Ω + Q′ΣQ)−1{Q′y − µι}.

(128)

Here, if the vector E(g) = µι is nonzero it will, nevertheless, be virtually nullified
by the matrix ΣQ(Ω + Q′ΣQ)−1, which is a matrix version of a highpass filter.
Therefore, it may be deleted from the expressions of (128). Next, since ξ = y−η,
the estimate of the trend is x = E(ξ|g) = y − E(η|g), which is exactly equation
(123).

The Hodrick–Prescott filter may be derived by specialising the statistical
assumptions of (125) and (127). It is assumed that

D(η) = Σ = σ2
ηI, D(δ) = Ω = σ2

δI and λ =
σ2

η

σ2
δ

. (129)

Putting these details into equation (123) gives equation (124).
It is straightforward to derive the dispersion matrices that are found within

the formulae for the finite-sample estimators from the corresponding autocovari-
ance generating functions. Let γ(z) = {γ0 + γ1(z + z−1) + γ2(z2 + z−2) + · · ·}
denote the autocovariance generating function of a stationary stochastic pro-
cess. Then, the corresponding dispersion matrix for a sample of T consecutive
elements drawn from the process is

Γ = γ0IT +
T−1∑
τ=1

γτ (Lτ
T + F τ

T ), (130)
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where FT = L′
T is in place of z−1. Since LT and FT are nilpotent of degree T ,

such that Lq
T , F q

T = 0 when q ≥ T , the index of summation has an upper limit
of T − 1.

7.3 The polynomial component

The formula (123) tends to conceal the presence of polynomial components
within the sequences that are generated by filtering the nonstationary data.
An alternative procedure, which we have already adopted in detrending the
logarithmic consumption data of the U.K. in the example following (14), is to
extract a polynomial trend from the nonstationary data before applying a filter to
the residual sequence, which will have the characteristics of a sequence generated
by a stationary process, provided that the polynomial is of a sufficient degree.

Another procedure that can be followed requires the data to be reduced
to stationarity by a process of differencing, before it is filtered. The filtered
output can be re-inflated thereafter to obtain estimates of the components of the
nonstationary process. It transpires that, in the context of Wiener–Kolmogorov
filtering, such a procedure produces estimates that are identical to those that
are delivered by the finite-sample filter of (123).

To demonstrate this result, we shall assume that, within y = ξ+η, the vector
ξ is generated by a stochastic process with p unit roots driven by a mean-zero
white-noise process. The vector η is assumed to be from a stationary process.
Therefore, the specifications of (125) and (127) remain, but we may choose to
set E(δ) = 0, if only to confirm that the polynomial component will arise just
as surely in the absence of stochastic drift.

Let the estimates of ξ, η, δ = Q′ξ and κ = Q′η be denoted by x, h, d
and k respectively. Then, the Wiener–Kolmogorov, minimum-mean-square-error
estimates of the differenced components are

E(δ|g) = d = D(δ){D(δ) + D(κ)}−1g = Ω(Ω + Q′ΣQ)−1Q′y, (131)

E(κ|g) = k = D(κ){D(δ) + D(κ)}−1g = Q′ΣQ(Ω + Q′ΣQ)−1Q′y. (132)

The estimates of ξ and η may be obtained by integrating, or re-inflating, the
components of the differenced data to give

x = S∗d∗ + Sd and h = S∗k∗ + Sk, (133)

where S∗d∗ and S∗k∗ are vectors of the ordinates of polynomials of degree p.
For this representation, the polynomial parameters, in the form of the starting
values d∗ and h∗, are required.

The initial conditions in d∗ should be chosen so as to ensure that the esti-
mated trend is aligned as closely as possible with the data. The criterion is

Minimise (y − S∗d∗ − Sd)′Σ−1(y − S∗d∗ − Sd) with respect to d∗. (134)

The solution for the starting values is

d∗ = (S′
∗Σ

−1S∗)−1S′
∗Σ

−1(y − Sd). (135)
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The equivalent starting values of k∗ are obtained by minimising the (generalised)
sum of squares of the fluctuations:

Minimise (S∗k∗ + Sk)′Σ−1(S∗k∗ + Sk) with respect to k∗. (136)

The solution is
k∗ = −(S′

∗Σ
−1S∗)−1S′

∗Σ
−1Sk. (137)

The starting values k∗ and d∗ can be eliminated from the expressions for
x and h in (133), which provide the estimates of the components. Thus, using
expression I − P∗ = PQ from (118), we get

h = Sk + S∗k∗

= (I − P∗)Sk = PQSk.
(138)

Then, by using the expression for k from (132) together with the identity Q′S =
IT , we get

h = ΣQ(Ω + Q′ΣQ)−1Q′y. (139)

This agrees with (128) in the case where µ = 0. The condition that x + h =
y, which is that the sum of the estimated components equals the data vector,
indicates that

x = y − h

= y − ΣQ(Ω + Q′ΣQ)−1Q′y,
(140)

which is equation (123) again.
Observe that the filter matrix Zη = ΣQ(Ω+Q′ΣQ)−1 of (140), which deliv-

ers h = Zηg, differs from the matrix Zκ = Q′Zη of (132), which delivers k = Zκg,
only in respect of the matrix difference operator Q′. The effect of omitting the
operator is to remove the need for re-inflating the filtered components and thus
to remove the need for the starting values. These matters have been discussed
at greater length by Pollock (2006).

8. The Fourier methods of signal extraction

If the data are generated by a stationary stochastic process, then it may be rea-
sonable to regard them as the product of a circular process, of which the Fourier
representation is readily available. There are some advantages in exploiting the
Fourier representation by performing the essential filtering operations in the fre-
quency domain—for these are usually aimed at suppressing or attenuating some
of the cyclical elements of the data. It is also straightforward to provide a time-
domain interpretation of the frequency domain operations, and the possibility
exists of performing the equivalent operations in either domain.

The dispersion matrix of a circular stochastic process is obtained from the
autocovariance generating function γ(z) by replacing the argument z by the cir-
culant matrix KT = [e1, . . . , eT−1, e0], which is formed from the identity matrix
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IT = [e0, e1, . . . , eT−1] by moving the leading column to the back of the array.
In this way, the generating function γ(z) gives rise to the matrix

Γ◦ = γ(KT )

= γ0IT +
∞∑

τ=1

γτ (Kτ
T + K−τ

T )

= γ0IT +
T−1∑
τ=1

γ◦
τ (Kτ

T + K−τ
T ).

(141)

It can be seen from this that the circular autocovariances would be obtained by
wrapping the sequence of ordinary autocovariances around a circle of circumfer-
ence T and adding the overlying values. Thus

γ◦
τ =

∞∑
j=0

γjT+τ , with τ = 0, . . . , T − 1. (142)

Given that lim(τ → ∞)γτ = 0, it follows that γ◦
τ → γτ as T → ∞, which is to

say that the circular autocovariances converge to the ordinary autocovariances
as the circle expands.

The circulant autocovariance matrix is amenable to a spectral factorisation
of the form

Ω◦ = γ(KT ) = Ūγ(D)U, (143)

wherein U and Ū are the unitary matrices defined by (20) and

D = diag(exp{i2πj/T}; j = 0, . . . , T − 1) (144)

is a diagonal matrix whose elements are the T roots of unity, which are found
on the circumference of the unit circle in the complex plane. Then, γ(D) is the
diagonal matrix formed by replacing the argument z within γ(z) by D.

The jth element of the diagonal matrix γ(D) is

γ(exp{iωj}) = γ0 + 2
∞∑

τ=1

γτ cos(ωjτ). (145)

This represents the cosine Fourier transform of the sequence of the ordinary
autocovariances; and it corresponds to an ordinate (scaled by 2π) sampled at
the point ωj = 2πj/T , which is a Fourier frequency, from the spectral density
function of the linear (i.e. non-circular) stationary stochastic process.

The theory of circulant matrices has been described by Gray (2002) and by
Pollock (2002a). Both authors provide abundant additional references.

The method of Wiener–Kolmogorov filtering can also be implemented using
the circulant dispersion matrices that are given by

Ω◦
δ = Ūγδ(D)U, Ω◦

κ = Ūγκ(D)U and

Ω◦ = Ω◦
δ + Ω◦

κ = Ū{γδ(D) + γκ(D)}U,
(146)
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wherein the diagonal matrices γδ(D) and γκ(D) contain the ordinates of the
spectral density functions of the component processes. By replacing the disper-
sion matrices of (131) and (132) by their circulant counterparts, we derive the
following formulae:

d = Ūγδ(D){γδ(D) + γκ(D)}−1Ug = Pδg, (147)

k = Ūγκ(D){γδ(D) + γκ(D)}−1Ug = Pκg. (148)

We may note that Pδ and Pκ are circulant matrices.
The filtering formulae may be implemented in the following way. First, a

Fourier transform is applied to the (differenced) data vector g to give Ug, which
resides in the frequency domain. Then, the elements of the transformed vector
are multiplied by those of the diagonal weighting matrices Jδ = γδ(D){γδ(D) +
γκ(D)}−1 and Jκ = γκ(D){γδ(D) + γκ(D)}−1. Finally, the products are carried
back into the time domain by the inverse Fourier transform, which is represented
by the matrix Ū . (An efficient implementation of a mixed-radix fast Fourier
transform, which is designed to cope with samples of arbitrary sizes, has been
provided by Pollock (1999). The usual algorithms demand a sample size of
T = 2n.)

An advantage of the Fourier method is that it is possible to effect a total
suppression of the elements within the stop band of the desired frequency re-
sponse. Also, the transition between the pass band and the stop band can be
confined to the interval between adjacent Fourier frequencies, which means that
it can be perfectly abrupt.

Neither of these features are available to the ordinary finite-sample Wiener–
Kolmogorov filters. Nevertheless, it is possible to achieve both of these effects
by working in the time domain. This fact is manifest in the formulae of (147)
and (148) which entail the equations d = Pδg and k = Pκg respectively.

In effect, a pair of wrapped filters can be applied to the data in the time
domain via processes of circular convolution. If we can imagine the leading rows
of the matrices Pδ and Pκ disposed around a circle of circumference T , then
each of the succeeding rows is derived from its predecessor via an anticlockwise
rotation through an angle of 2π/T radians.

Example. It is commonly believed that, in the case of samples of a finite length
T , it is impossible to design a filter that will preserve completely all elements
within a specified range of frequencies and that will remove all elements outside
it. A filter that would achieve such an objective is described as an ideal filter.
The ideal lowpass filter with a cut-off frequency of ωd = 2πd/T has the following
frequency response over the interval [−π, π]:

φ(ω) =
{ 1, if ω ∈ [−ωd, ωd],

0, otherwise.
(149)

The coefficients of the filter are given by the discrete-time sinc function, which
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Figure 13. The central coefficients of the Fourier transform of the frequency response

of an ideal lowpass filter with a cut-off point at ω = π/2. The sequence of coefficients

extends indefinitely in both directions. The coefficients are the sampled ordinates of a

sinc function.

is the (inverse) Fourier transform of the periodic frequency response function:

βk =
1
2π

∫ ωd

−ωd

eiωkdω =


ωd

π
, if k = 0;

sin(kωd)
πk

, if k �= 0 .
(150)

Such a frequency response presupposes a doubly-infinite data sequence, in so
far as it represents the relative amplification and attenuation of trigonometrical
functions that are defined over the entire real line.

The coefficients of (150) form a doubly infinite sequence, of which a central
part is illustrated in Figure 13; and, in order to obtain a practical filter, it seems
that one must truncate the sequence, retaining only a limited number of its
central elements. This truncation gives rise to a filter of which the frequency
response has certain undesirable characteristics. (See Figure 19 for an example.)

In particular, there is a ripple effect whereby the gain of the filter fluctuates
within the pass band, where it should be constant with a unit value, and within
the stop band, where it should be zero-valued. Within the stop band, there
is a corresponding problem of leakage whereby the truncated filter transmits
elements that ought to be blocked

However, it is clear that an ideal filter can be implemented in the frequency
domain by preserving the ordinates of the Fourier transform of the data that
are associated with frequencies less than ωd and by setting all other ordinates
to zero. This is a matter of applying the following set of weights to the Fourier
ordinates:

λj =
{ 1, if j ∈ {−d, . . . , d},

0, otherwise.
(151)

By applying an inverse discrete Fourier transform to these weights, the
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Figure 14. The frequency response of the 17-point wrapped filter defined over the

interval [−π, π). The values at the Fourier frequencies are marked by circles.

coefficients of a circular filter are obtained, of which the values are given by

β◦(k) =


2d + 1

T
, if k = 0,

sin([d + 1/2]ω1k)
T sin(ω1k/2)

, for k = 1, . . . , [T/2],
(152)

where ω1 = 2π/T . These coefficients would be obtained by wrapping coefficients
of (150) around a circle of circumference T and adding the overlying values:

β◦
k =

∞∑
j=−∞

βjT+k. (153)

Applying the wrapped filter to the finite data sequence via a circular convolution
is equivalent to applying the original filter to an infinite periodic extension of
the data sequence.

The function of (152) is just an instance of the Dirichlet kernel—see Pollock
(1999), for example. Figure 14 depicts the frequency response for this filter at the
Fourier frequencies, where λj = 0, 1 in the case where ωd = π/2. It also depicts
the continuous frequency response that would be the consequence of applying an
ordinary filter with these coefficients to a doubly-infinite data sequence.

8.1 Applying the Fourier method to trended data.

In an ideal application of the Fourier method, it should be possible to wrap
the data sequence yt; t = 0, . . . , T − 1 seamlessly around the circle, such that
there is no disjunction at the point where the head of the sequence joins the tail.
To achieve such an effect, it is common to taper the data so as reduce both ends
to zero. To avoid corrupting the sample data, the taper can be applied to some
extrapolations of the ends of the sample. However, a data sequence that follows
a linear trend is not amenable to tapering, since there is liable to be a radical
disjunction at the point where the head joins the tail.
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The periodic extension of the linearly trended sequence, which would be
generated by travelling around the circle indefinitely, has a saw tooth profile. The
corresponding spectrum or periodogram has a one-over-f profile that descends,
as the frequency increases, in the manner of a rectangular hyperbola, from a
high point that is adjacent to the zero frequency to a low point at the limiting
frequency. Unless the data are adequately detrended, such a spectrum will serve
to conceal all but the most prominent of the harmonic characteristics of the data.

There are two simple ways in which the data may be detrended. The first,
which has been described already in section 7.3, is to apply the difference oper-
ator to the data as many times as are necessary to reduce them to stationarity.
The components that are extracted by filtering the differenced data can be re-
inflated, in the manner indicated by equations (133) to (137), to obtain the
components of the original data.

We denote the data by y and their differences by g = Q′y. The filtered
sequence that underlies the trend is denoted by d and the vector of initial con-
ditions by d∗. Then, if we set Σ = I, the relevant equations for delivering the
estimate x of the trend component are

x = S∗d∗ + Sd and d∗ = (S′
∗S∗)−1S′

∗(y − Sd). (154)

The detrended sequence is h = y − x. Underlying the detrended sequence is the
filtered sequence k = g − d, from which the detrended data component may be
obtained directly via the equations

h = S∗k∗ + Sk and k∗ = −(S′
∗S∗)−1S′

∗Sk. (155)

Another way of reversing the effects of a differencing operation that has been
applied to the data to reduce them to stationarity is to re-inflate the Fourier ordi-
nates of the filtered sequence, using values from the frequency response function
of the anti-differencing summation operator. Once the ordinates had been re-
inflated within the frequency domain, they can be transformed into the time
domain to produce the filtered sequence.

This method is applicable only to components that are bounded away from
the zero frequency, since the summation operator has infinite gain at zero. (See
Figure 8.) However, if one wishes to apply a lowpass filter to the data, then one
has the option of applying the complementary highpass filter and of subtracting
the filtered sequence from the original data to generate the lowpass component.

The second way of detrending the data is to extract a polynomial component
via an ordinary or a generalised least-squares regression according to the formula
of (120). The formula will allow greater weight to be given to the points at both
ends of the sample, to ensure that the interpolated curve passes through their
midst. This can be achieved by allowing Σ−1 to be a diagonal matrix with large
values at the ends. In this way, a disjunction in the wrapped version of the
residual sequence, or in its periodic extension, can be avoided.

Example. Figure 15 shows the logarithms of the data on aggregate house-
hold expenditure in the U.K for the years from 1956 to 2005, throught which a
smooth trajectory has been interpolated. This has been obtained by selecting
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Figure 15. The logarithms of quarterly household expenditure in the U.K., for the

years 1956 to 2005, together with an interpolated trend.

the Fourier coefficients of the twice-differenced data that correspond to frequen-
cies in the interval [0, π/8]. This frequency band has been chosen in the light of
the periodogram of Figure 6, which shows that it contains an isolated spectral
structure.

The sequence that has been synthesised from these coefficients has been re-
inflated in the manner indicated by (154) to produce the trajectory. The result
of this procedure is a composite of the trend and the business cycle. The same
trajectory of aggregate expenditure would have been obtained by adding the
business cycle that is depicted in Figure 5 to the linear trend of Figure 4.

9. Band-limited processes

The majority of the methods that we have described for extracting the compo-
nents of an econometric data sequence presuppose that the data can be described
by a univariate ARIMA model. The spectral density function of an ARIMA pro-
cess is supported on the entire frequency interval [0, π], where its ordinates are
strictly positive with the possible exception of a few zero-valued ordinates that
constitute a set of measure zero. Such zero values will be attributable to the
presence of unit roots within the moving-average operator.

It is commonly assumed that the component parts of an aggregate econo-
metric sequence can also be described by ARIMA models. It is on this basis
that the Wiener–Kolmogorov filters are derived. However, reference to the pe-
riodogram of Figure 6 and to others like it suggests that the components often
reside within strictly limited frequency bands which are separated by dead spaces
where the spectral ordinates are virtually zeros.

In many circumstances, the disparity between the assumptions underlying
the Wiener–Kolmogorov filters and the nature of the data to which they are
applied has no adverse effects. A lowpass filter that achieves a gradual transition
from a pass band to a stop band within the region of a spectral dead space will
be as effective in extracting a low-frequency trend component as is a frequency-
domain filter that achieves an abrupt transition between two adjacent Fourier
frequencies.
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The ordinates at times t = 0, . . . , T − 1 of the business cycle that is repre-
sented in Figure 5 have been obtained by a Fourier method; but they might have
been obtained as well by applying the Butterworth filter of order n = 6 and with
a nominal cut-off frequency of ωd = π/4 radians, of which the gain is depicted
in Figure 11. The principal advantage of the Fourier method, in this context,
lies in the ease with which a continuous function can be synthesised from the
Fourier coefficients.

Difficulties do arise when an attempt is made to estimate the parameters of
an ARMA model from data such as those of Figure 5. A natural objective is to
attempt to characterise the business cycle via the parameters of a fitted ARMA
model. Such a model is liable to be applied to a seasonally adjusted version of
the data, for which the periodogram will lack the spectral spike at the seasonal
frequency of π/2 and at the harmonic frequency of π.

An AR(2) model with complex roots is the simplest of the models that
might be appropriate to the purpose. The modulus of its roots should reveal
the damping characteristics of the cycles, and their argument should indicate
the angular velocity or, equivalently, the length, of the cycles. However, such a
model will invariably deliver estimates that imply real-valued roots, which fail
adequately to represent the dynamics of the business cycle. (See Pagan, 1997,
for example.)

The problem of estimating the business cycle also affects the model-based
approaches to econometric signal extraction, which depend upon the prior esti-
mation of an aggregate ARIMA model or upon the estimation of ARIMA compo-
nents. A business cycle component is usually missing from such models, since the
estimation fails to deliver the appropriate complex roots. However, it is straight-
forward to include a business cycle component with a pre-specified frequency in
a disaggregated structural model. (See Harvey, 1985, for example.)

To obtain parametric estimates of the business cycle, it is necessary to re-
move from the data all but the relevant low-frequency components. This is
achieved by selecting the relevant Fourier coefficients from which the business
cycle can be constituted via a Fourier synthesis in the manner of (14). There-
after, it is necessary to sample the continuous function at a rate that will ensure
that the Nyquist frequency π corresponds to the highest frequency that is present
in the component. A successful ARMA model which represents the complex dy-
namics of the business cycle can be estimated from the resampled data sequence.

The Shannon–Whittaker sampling theorem indicates that the resampled
data contains sufficient information to reconstitute the continuous business-cycle
function.

9.1 The Shannon–Whittaker sampling theorem.

Let x(t) be a square integrable continuous signal of which the Fourier trans-
form ξ(ω) is band limited to the frequency interval [−ωd, ωd]. Then, the signal
can be recovered from its sampled ordinates provided that these are separated
by a time interval of no more than π/ωd, which is to say the sinusoidal element of
the highest frequency within the signal must take at least two sampling intervals
to complete a cycle.
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To demonstrate this result, we must consider the Fourier representation of
a real–valued square-integrable function x(t) defined over the real line. The
following are the corresponding expressions for the function x(t) and its Fourier
transform ξ(ω):

x(t) =
1
2π

∫ ∞

−∞
eiωtξ(ω)dω ←→ ξ(ω) =

∫ ∞

−∞
e−iωtx(t)dt. (156)

By sampling x(t) at intervals of π/ωd, a sequence

{xτ = x(τ [π/ωd]); τ = 0,±1,±2, . . .}

is generated. The elements of the sequence and their Fourier transform ξs(ω)
are given by

xτ =
1

2ωd

∫ ωd

−ωd

exp{iωτ [π/ωd]}ξS(ω)dω

←→

ξS(ω) =
∞∑

τ=−∞
xτ exp{−iωτ [π/ωd]}.

(157)

Since ξ(ω) = ξS(ω) is a continuous function defined on the interval [−ωd, ωd],
it may be regarded as a function that is periodic in frequency, with a period of
2ωd. Putting the RHS of (157) into the LHS of (156), and taking the integral
over [−ωd, ωd] in consequence of the band-limited nature of the function x(t),
gives

x(t) =
1
2π

∫ ωd

−ωd

{ ∞∑
τ=−∞

xτe−iωτ [π/ωd]

}
eiωtdω

=
1
2π

∞∑
τ=−∞

xτ

∫ ωd

−ωd

eiω(t−[τπ/ωd])dω.

(158)

The integral on the RHS is evaluated as∫ ωd

−ωd

eiω(t−[τπ/ωd])dω = 2
sin(tωd − τπ)
t − τ [π/ωd]

. (159)

Putting this into the RHS of (158) gives

x(t) =
∞∑

τ=−∞
xτ

sin(tωd − τπ)
π(t − τ [π/ωd])

=
∞∑

k=−∞
xτφd(τ − k), (160)

where

φd(t − τ) =
sin(tωd − τπ)
π(t − τ [π/ωd])

. (161)

When τ = 0, this becomes an ordinary sinc function that is a continuous function
of t, and which is the Fourier transform of the following frequency function:

φd(ω) =
{ 1, if |ω| ∈ [0, ωd];

0, otherwise.
(162)
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When τ �= 0, it represents a sinc function that has been displaced in time by
τ intervals of length π/ωd. The set of such displaced sinc functions constitutes
an orthogonal basis for all continuous functions that are band-limited to the
frequency interval [−ωd, ωd].

In the case of a stationary stochastic process, the sampled sequence is not
square summable and, therefore, in a strict sense, this proof of the interpolation
via the Nyquist–Shannon Theory does not apply. However, the convergence of
the interpolation formula of (160), when x(τ) = {xτ ; τ = 0,±1,±2, . . .} is a
stationary sequence, can confirmed by considering a sum with τ ∈ [−N, N ] for
some finite integer N . The variance of the sum of discarded terms can be made
arbitrarily small by increasing the value of N .

The reconstruction of a continuous function from its sampled ordinates in
the manner suggested by the sampling theorem is not possible in practice, be-
cause it requires forming a weighted sum of an infinite number of sinc functions,
each of which is supported on the entire real line. Nevertheless, a continuous
band-limited periodic function defined on a finite interval—which corresponds
to the circumference of a circle—can be reconstituted from a finite number of
wrapped or periodic sinc functions, which are Dirichlet kernels by another name.
However, the most practical means of reconstituting the function is by a simple
Fourier synthesis of the sort described by equation (14).

Example. The analysis of the example following (14) suggests that the business
cycle of the detrended logarithmic consumption data fits within the frequency
band [0, π/8]. If this structure can be isolated and thereafter mapped into the
frequency interval [0, π], then it will be capable of being described by an ordinary
linear stochastic model of the ARMA variety. For this purpose, the spectral
elements that fall outside the frequency range of the business cycle must first
be removed. This operation, which constitutes an anti-alias filtering, may be
carried out either in the time domain or in the frequency domain.

Given the availability of the spectral ordinates of the data, it is straight-
forward to operate in the frequency domain by setting the rejected ordinates
to zeros. Then, a continuous low-frequency function can be synthesised from
the selected ordinates. An example is provided by the interpolated function in
Figure 5. The synthesised function can be resampled at a rate that corresponds
to the maximum frequency within the spectral structure of the business cycle.

There is some advantage in fitting a trend function that is more flexible
than the straight line of Figure 5. Therefore, a fourth degree polynomial has
been fitted to the data by a least-squares regression. The effect is to remove
some of the power from the Fourier ordinates adjacent to the zero frequency.

The residual sequence from this polynomial interpolation is show in Figure
16, together with an interpolated function that has been synthesised from the
Fourier ordinates that lie in the interval [0, π/8]. This, function, which purports
to represent the business cycle, is devoid of any seasonal fluctuations. Figure 17
displays the periodogram of the residual sequence.

After the removal of all elements of frequencies in excess of π/8 the data
may be resampled at 1/8th of the original rate of observation. This simple
fractional rate is a convenient one, since it implies taking one in every eight of
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Figure 16. The residuals from fitting a polynomial of degree 4 to the logarithmic

expenditure data. The interpolated line, which represents the business cycle, has been

synthesised from the Fourier ordinates in the frequency interval [0, π/8].
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Figure 17. The periodogram of the data sequence of Figure 16.
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Figure 18. The periodogram of the sub-sampled anti-aliased data with the parametric

spectrum of an estimated AR(3) model superimposed.
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the anti-aliased data points. In that case, there is no need synthesise a continuous
function for the purpose of resampling the data.

The periodogram of the sub sampled anti-aliased data is show in Figure
18 with the parametric spectrum of an estimated AR(3) model superimposed.
The periodogram represents a rescaled version of the part of the periodogram of
Figure 16 that occupies the frequency range [0, π/8]; and it appears to be well
represented by the parametric spectrum.

The continuous band-limited function of Figure 16 can be recovered from
the sub sample by associating to each of its elements an appropriately scaled
Dirichlet kernel and, thereafter, by adding these kernels. This demonstrates
the one-to-one correspondence that exists between the continuous function and
the sub-sampled sequence. This is precisely the one-to-one correspondence that
exists between the periodic function z(t), synthesised by equation (14), and its
sampled ordinates {zτ = z(τT/N); τ = 0, 1, . . . , N − 1}.

The AR(3) model that underlies the spectral density function of Figure 18
provides a statistical description both of the continuous band-limited function
of Figure 16 and of the ordinates sampled from it at the rate of 1 observation in
8 sample periods.

10. Separating the trend and the cycles

The remaining issue to be discussed in this chapter is the matter of separating
the trend of an economic data sequence from the cycles that surround it. This
is a difficult problem. The trend and the cycles are combined within the same
spectral structure and there is rarely any indication, within the periodogram, of
where the trend ends and the cycles begin. In the absence of objective criteria for
achieving a separation, the definition of the trend is liable to reflect the purposes
of the study as well as the circumstances of the economy over the period in
question.

A simple prescription that was offered by the pioneering econometrician
Tintner (1940, 1953) is that the trend should contain no cyclical motions. This
can be interpreted to mean that, if the trend is a differentiable function, then its
first derivative should have no more than one local maximum or one local mini-
mum. Such a function can be described as a pure trend. A polynomial function
of low degree fitted to the data by least-squares regression is liable to fulfil the
requirement; and it can provide an appropriate benchmark for measuring the
cyclical variations.

An example of such a trend is the linear function of Figure 5, which has been
applied to logarithmic data. When a quadratic function was fitted to the data
by least-squares regression, the result was virtually a straight line. The data
are from a period that was characterised by uninterrupted economic growth at
annual rates that varied little. Therefore, the method of polynomial detrending
works well.

In other eras, where there have been marked disruptions, the polynomial
method is less appropriate. In order to serve as a benchmark for the ensuing
periods of stability, the trend must be made to absorb the disruptions, which
implies that it must have a segmented structure. In section 10.2, we will describe
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a method for achieving this.
A prescription that is to be found in the pioneering work of Burns and

Mitchell (1946) is that the business cycle should be defined in terms of a limited
band of frequencies. A modern interpretation of this is that the band should
comprise the sinusoidal elements of the data that have cyclical durations of no
more that eight years and of no less than a year and a half. Such cycles can be
extracted from the data via a bandpass filter, as we will discuss below.

The definition seems arbitrary; but it might be justified by proposing that
the reactions of economic agents to cycles within the frequency band differ from
their reactions to cycles at other frequencies. Thus, it might be argued that
their adaptations to cycles of more than eight years duration occur mainly at a
subconscious level, whereas cycles of a lesser duration incite conscious reactions.

The growth of an economy may be likened to a process of biological growth,
which is affected by events that occur in the course of its evolution. Therefore,
a stochastic trend based on the accumulation of random increments has been
seen as an appropriate model for an economic trend. This idea has inspired
the Beveridge–Nelson decomposition of an ARIMA process, which depicts the
trend as an accumulation of disturbances that also give rise to accompanying
fluctuations.

In practice, the Beveridge–Nelson decomposition depends upon a linear filter
that is applied to the data sequence like any other filter. However, the filtered
sequence that represents the trend is liable to include a substantial proportion of
the high-frequency elements of the data; and for that reason it may be regarded
as unacceptable.

10.1 Bandpass filters

In an attempt to separate a business cycle component from the trend,
economists have been resorting increasingly to the use of bandpass filters to
implement the definition of Burns and Mitchell (1946). This appears to be in
response to the fact that the structural time series methods, which use ARIMA
models to represent the unobserved components, fail to isolate the business cycle.

An ideal bandpass filter that transmits all elements within the frequency
range [α, β] and blocks all others has the following frequency response:

ψ(ω) =
{ 1, if |ω| ∈ (α, β);

0, otherwise.
(163)

The coefficients of the corresponding time-domain filter are obtained by applying
an inverse Fourier transform to this response to give

ψ(k) =
∫ β

α

eikωdω =
1
πk

{sin(βk) − sin(αk)}

=
2
πk

cos{(α + β)k/2} sin{(β − α)k/2}

=
2
πk

cos(γk) sin(δk).

(164)
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Figure 19. The frequency response of the truncated bandpass filter of 25 coefficients

superimposed upon the ideal frequency response. The lower cut-off point is at π/15
radians (11.25◦), corresponding to a period of 6 quarters, and the upper cut-off point

is at π/3 radians (60◦), corresponding to a period of the 32 quarters.

Here, γ = (α + β)/2 is the centre of the pass band and δ = (β − α)/2 is half its
width.

The final equality, which follows from the identity sin(A + B) − sin(A −
B) = 2 cos A sinB, suggests two interpretations. On the LHS is the difference
between the coefficients of two lowpass filters with cut-off frequencies of β and α
respectively. On the RHS is the result of shifting a lowpass filter with a cut-off
frequency of δ so that its centre is moved from ω = 0 to ω = γ.

The process of frequency shifting is best understood by taking account of
both positive and negative frequencies when considering the lowpass filter. Then
the pass band covers the interval (−δ, δ). To convert to the bandpass filter, two
copies of the pass band are made that are shifted so that their new centres lie at
−γ and γ. In the limiting case, the copies are shifted to the centres −π and π.
There they coincide, and we have ψ(k) = 2 cos(πk) sin(δk)/πk, which constitutes
an ideal highpass filter. A bandpass filter can also be expressed as the difference
of two such highpass filters

The coefficients of (164) constitute an infinite sequence, which needs to be
truncated to produce a practical filter. Alternatively, a wrapped or circular filter
may be obtained by sampling the frequency response at a set of equally-spaced
points in the frequency range [−π, π), equal in number to the elements of the
data sequence. The wrapped filter is obtained by applying the discrete Fourier
transform to the sampled ordinates; and it can be applied to the data sequence
by circular convolution.

The z-transform of a set of filter coefficients that are symmetric about the
central point and that sum to zero incorporates the factor (1 − z)(1 − z−1) =
−z−1(1−z)2. This operator is effective in nullifying a linear trend and in reducing
a quadratic trend to a constant. Therefore, such a filter can be applied by linear
convolution to a trended data sequence in the expectation that it will produce a
stationary filtered sequence.

This is one of the attractions of the truncated bandpass filter that has
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Figure 20. A filtered sequence obtained by applying the bandpass filter of Christiano

and Fitzgerald to the logarithms of U.K. household expenditure.

been proposed to economists by Baxter and King (1999). To ensure that the
coefficients of the truncated filter do sum to zero, the filter can be expressed as
the difference between two truncated versions of the ideal lowpass filter, of which
the coefficients have been scaled so as to sum to unity.

The truncated filter has several disadvantages. In the first place, the trun-
cation leads to the phenomenon of leakage that has already been described in
section 8. This is illustrated by Figure 19. Also, a finite-order moving-average
filter with constant coefficients is incapable of reaching the ends of the sample.
This problem occasions a trade-off between the accuracy of the approximation
to the ideal filter, which increases with the number of coefficients, and the end-
of-sample problem, which is exacerbated by increasing the span of the filter.

There are numerous ways of overcoming the end-of sample problem, includ-
ing the obvious recourse of extrapolating the sample by forecasting and back-
casting it with the help of an ARIMA model that purports to describe the data.
Another recourse is to extend the sample by attaching its symmetric reflection
to either end. However, if the data are strongly trended this will tend to increase
the values at the beginning of the sample and to decrease the values at the end,
relative to the values obtained via a linear extrapolation of the sample.

A circular filter should not be applied directly to a trended data sequence.
When such a sequence is wrapped around a circle there is liable to be a radical
disjunction where the beginning and the end of the sample are joined. The
effects of this disjunction are liable to be carried into the filtered sequence in a
manner that does not affect the ordinary linear filter. One way of overcoming
this difficulty is to apply the circular filter to data that have been reduced to
stationarity by differencing. Thereafter, the filtered differenced sequence can be
cumulated to obtain an estimate of the business cycle component.

Example. The filter of Baxter and King (1999) is a time-invariant moving aver-
age comprising 2q + 1 of the central coefficients of the ideal infinite-order band-
pass filter, which are symmetrically disposed around the central value. These
coefficients should re-scaled so that they sum to zero.
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The elements of the filtered sequence are given by

xt = φqyt−q + φq−1yt−q+1 + · · · + φ1yt−1 + φ0yt

+ φ1yt+1 + · · · + φq−1yt+q−1 + φqyt+q.
(165)

Given a sample y0, y1, . . . , yT−1 of T data points, only T − 2q processed values
xq, xq+1, . . . , xT−q−1 are available, since the filter cannot reach the ends of the
sample, unless some extrapolations are added to it.

To overcome this difficulty, Chistiano and Fitzgerald (2003) have used a
filter that comprises selections of the coefficients of the ideal filter which vary
as one moves through the sample. At all times, the central coefficient of the
ideal filter is aligned with the current data value. The remainder of the selection
consists of the coefficients on either side that fall within the data window. Thus,
the filtered values are weighted combinations of all of the sample elements.

In the case of data that might have been generated by a random-walk pro-
cess, it is proposed to supplement the weighted sum by two additional terms
based on the first and the final sample elements, which are the appropriate pre-
dictors of the elements of the process that fall outside the data window. In that
case, the elements of the filtered sequence will be given by

xt = Ay0 + φty0 + · · · + φ1yt−1 + φ0yt

+ φ1yt+1 + · · · + φT−1−tyT−1 + ByT−1,
(166)

where A and B are sums of the coefficients of the ideal filter that lie beyond
either end of the data window. Since the filter coefficients must sum to zero, it
follows that

A = −(
1
2
φ0 + φ1 + · · · + φt) and B = −(

1
2
φ0 + φ1 + · · · + φT−t−1). (168)

For data that appear to have been generated by a first-order random walk
with a constant drift, it is appropriate to extract a linear trend before filtering
the residual sequence. In fact, this has proved to be the usual practice in most
circumstances.

It has been proposed to subtract from the data a linear function f(t) = α+βt
interpolated through the first and the final data points, such that α = y0 and
β = (yT−1 − y0)/T . In that case, there should be A = B = 0. This procedure is
appropriate to seasonally adjusted data. For data that manifest strong seasonal
fluctuations, such as the U.K. expenditure data, a line can be fitted by least
squares through the data points of the first and the final years. Figure 20 shows
the effect of the application of the filter to the U.K. data adjusted in this manner.

Figure 20 can be compared with Figure 5 and with Figure 16, both of which
also purport to show the business cycles that affected the data in question. It is
clear that the bandpass filter fails to transmit the appropriate cyclical fluctua-
tions. An explanation for the failure can be found in Figure 6, which shows the
periodogram of the linearly detrended data.

The highlighted band in Figure 6 covers the frequency interval [π/16, π, 3]
which, according to Baxter and King, is the frequency range that defines the
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business cycle. However, this figure indicates that only a small part of the low-
frequency component falls within the interval. Therefore, it appears that the
definition is at fault. In fact, the leakage that is associated with the filter does
allow some of the low-frequency power of the elements that reside in the interval
[0, π/16] to pass into the filtered sequence.

10.2 Flexible trends and structural breaks

Over a period of a century or so, one can expect to see occasional disturbances
that disrupt the steady progress of the economy. To highlight the effects of
such breaks, a firm trend function can be fitted to the data to characterise the
progress of the economy broadly over the entire period. Such a trend will not be
deflected by temporary disruptions, which will be seen in the residual deviations
of the data from the trend.

Alternatively, it may be appropriate to absorb the breaks within the trend
function. In that case, the trend will not be thrown off course for long by a
break; and, therefore, it should serve as a benchmark against which to measure
cyclical variations when the economy resumes its normal progress. At best, the
residual sequence will serve to indicate how the economy might have behaved in
the absence of the break.

Numerous devices have been proposed by economists for accommodating
structural breaks, which give rise to segmented trend functions. Mills (2003)
has illustrated the effects of some of them by applying them to a common data
sequence, which is the annual U.K. output from 1855 to 1999. He has also
provided references to an extensive literature in economics concerning structural
breaks.

A common theme that unites many of the methods is their use of polynomial
segments to represent the trends within subintervals of the data period. There
is a problem of how the transition between two adjacent sub-periods should be
modelled. This issue has been discussed by Granger and Teräsvirta (1993) and
by Teräsvirta (1998). Others have focussed on devising tests to determine the
points in time when one statistical regime that describes the data should be
replaced by another. Work in this area has been summarised by Perron (2006).

When a smoothing spline is used to interpolate a continuous segmented
polynomial function through the data, the smoothness of the function is main-
tained by imposing the condition that, at the points where they join, the adjacent
segments should have equal derivatives, up to some specified order.

The most common smoothing spline is that of Reinsch (1976), which is
subject to the condition that the first and second derivatives of adjacent cubic
segments should be equal at the joints, which are described as the knots or the
nodes. Breaks can be accommodated within such a spline by placing successive
nodes in close proximity. Considerable effort has been devoted to developing al-
gorithms that will ensure the optimal placement of the nodes. (See, for example,
Luo and Whaba 1997.)

When the abscissae of the nodes correspond to the sample dates, it is possi-
ble to increase the flexibility of the spline function by allowing local variations to
occur in the smoothing parameter. The same recourse can be used to lend addi-
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Figure 21. The annual series of the logarithms of real GDP in the U.K., at constant

prices, for the years 1873 to 2001. A polynomial of degree 4 has been fitted to the data

by least squares regression.

0

0.05

0.1

0.15

0

−0.05

−0.1

−0.15

1875 1900 1925 1950 1975 2000

Figure 22. The residual obtained from fitting a polynomial of degree 4 to the loga-

rithmic GDP date of Figure 21.
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Figure 23. The logarithms of annual U.K. real GDP from 1873 to 2001 with an inter-

polated trend. The trend is estimated via a filter with a variable smoothing parameter.
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tional flexibility to the Hodrick–Prescott filter, which is a device that is appro-
priate for extracting from noisy data a trend that is generated by a discrete-time
process or by a process limited in frequency to the Nyquist value.

The finite-sample version of the Hodrick–Prescott filter is provided by equa-
tion (124). Its generalisation is provided by

x = y − Q(Λ−1 + Q′Q)−1Q′y, (167)

where Λ = diag{λ0, λ1, . . . , λT−3} is a diagonal matrix of smoothing parame-
ters and Q′ is the matrix of the twofold difference operator. In modifying the
underlying statistical model of the H–P filter, which is specified by (130), it is
the variance σ2

δ of the process driving the trend that is allowed to vary, whereas
the variance σ2

η of the process that is responsible for the errors of observation
remains constant.

Setting Λ−1 = λ−1I in (167), which gives the smoothing parameter a glob-
ally constant value, produces the Hodrick–Prescott filter. Setting λt to a high
value where the trend should be stiff and allowing it to take low values where the
trend should be flexible will produce a device that can easily absorb structural
breaks.

On the assumption that the underlying trend process is limited in frequency
by the Nyquist value, it is appropriate to use the method of Fourier interpolation
to create a continuous trend based on the elements of the vector x.

Example. An example of a function that fails to accommodate structural breaks
is provided by the polynomial of degree 4 that has been interpolated through the
logarithms of 129 annual observations of the real GNP of the U.K. This is shown
in Figure 21. Figure 22 shows the residual sequence. In both figures, three major
events can be recognised. The first is the end of the First World War in 1918,
which is followed by a sharp decline in GNP. The second is the recession of 1929
and the third is the end of the Second World War, which is also succeeded by a
reduction in income. The recession has less of an impact than one might expect.

Figure 23 shows a trend function that has been fitted using a variable
smoothing parameter. In this case, only the end-of-war breaks have been ac-
commodated, leaving the disruptions of the 1929 recession to be expressed in
the residual sequence. The effect has been achieved by attributing a greatly re-
duced value to the smoothing parameter in the vicinity of the post-war breaks.
In the areas that are marked by shaded bands, the smoothing parameter has
been given a value of 5. Elsewhere, it has been given a high value of 100,000,
which results in trend segments that are virtually linear.

11. Summary and conclusions

When confronted by the wide variety of methods that are available for extracting
the components of an econometric data sequence, a practitioner is liable to ask
for a recommendation of the best method. In the case of business-cycle analysis,
there can be no unequivocal answer. The choice of an appropriate method will
depend both on the nature of the data and on the purpose of the analysis. It
may also depend on the aesthetic preferences of the analyst.

58



D.S.G. POLLOCK: Investigating Economic Trends and Cycles

Nevertheless, the choice of a method ought to be made with a view to
its effects in the frequency domain. Econometricians working with temporal
sequences are, nowadays, paying increasing attention to the frequency aspects of
their analyses; and this is where the major emphasis of the present chapter has
been placed.

One of the difficulties in analysing business cycles is that there is no unequiv-
ocal definition of what constitutes a trend. Often, a clearly defined structure that
combines the trend and the cycles can be discerned within the data. An example
of the successful extraction of a combination of trend and cycles that has been
identified by spectral methods is provided by Figure 15. However, there is hardly
ever a case where the data indicates a point within the frequency spectrum of
this structure where the trend ends and the cycles begin.

The only unequivocal definition of the trend that might be offered is that
it must have a monotonic trajectory that is devoid of cycles, which means, in
practice, that it should be modelled by a polynomial of low degree. This was
the practice of the generation of pioneering econometricians to which Tintner
belonged.

Latterly, this approach has fallen out of favour amongst econometricians.
Nowadays, they are liable to describe polynomial trends as deterministic trends,
which are contrasted with stochastic trends. The latter are regarded as capable of
more realistic representations of economic behaviour. In particular, a stochastic
trend can represent a cumulation of random events that effect the development
of an economy in the course of time, in the way that the circumstances of their
early lives can affect the physical statures of human beings.

Polynomial trends are an essential element within linear models of stochastic
accumulation, whether they be represented in continuous time or in discrete time.
Therefore, although the conceptual distinction may be a clear one, the practical
distinction between a stochastic trend generated by an ARIMA process and a
polynomial trend buried in noise is by no means as clear cut as, at first, it might
seem to be.

The distinction becomes even more tenuous in the case of an ARIMA model
that incorporates stochastic drift. Therefore, notwithstanding the recent efforts
of several econometricians, it does not seem to us to be fruitful to employ sta-
tistical tests in an attempt to determine which of these alternative statistical
structures actually underlies the data.

An opinion to which we adhere in this chapter is that the trend is best
regarded as an analytic device, as opposed to an object that subsists within the
data that might be uncovered by an appropriate technique. If the trend is to be
regarded as an artificial benchmark, then its definition depends largely on what
one is intending to measure.

In some cases, when the economy has had an uninterrupted progress, it is
straightforward to define an appropriate benchmark. A case in point has been
the U.K. economy over the years 1956–2005, of which the aggregate consumption
is portrayed in Figures 4–6. For that period, a log-linear trend function provides
a datum about which to measure the cyclical variations in consumption.

In other eras and over longer periods, where there have been substantial
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disruptions to the progress of the economy, the matter becomes more compli-
cated. To highlight the major disruptions, it is appropriate to fit a polynomial
of a limited degree over the entire span of the data. An example is provided
by Figure 19. There, a fourth degree polynomial, which adheres quite well to
the data in the main, also reveals the uncommon circumstances in the periods
surrounding the ends of the two world wars.

If the purpose is also to illustrate the normal workings of the economy, then
it may be appropriate to fit similar polynomial trends of low degrees to the sub
periods that did not experience any disruptions. The overall result will be a
segmented curve; and the issue arises of how to join the segments.

The answer that is favoured in this chapter is illustrated in Figure 21, which
shows the effect of a filter with a variable smoothing parameter. The resulting
curve comprises segments that are virtually straight lines that are interspersed
by short segments with rapidly changing slopes.

The disjunctions that occur within the data sequence as consequences of
disruptions and breaks give rise to spectra that extend over the entire frequency
range. Unless the breaks are absorbed within the trend, the residual sequence
will fail to manifest the band-limited structure that we might expect to see in
normal periods. Therefore, one of the criteria of a successful elimination of the
break is the restoration of a band-limited spectral structure to the trend-cycle
component within the residual sequence.

The recognition that, at least for limited periods, the trend-cycle complex
is liable to be confined to a limited frequency band gives rise to further oppor-
tunities, but it also poses additional problems. The opportunities arise from the
possibility of using a Fourier synthesis to create a continuous analytic function
to represent the business cycle in isolation or the trend and cycle in combination.

In Figure 5, the business cycle has been synthesised from a limited number
of the low-frequency Fourier ordinates of the linearly detrended logarithmic data.
The combination of the trend and the cycle can be formed by adding the business-
cycle function to the linear trend of Figure 4.

The analytic nature of these functions means that they are amenable to
differentiation; and their tuning points are identified as the points where the first
derivatives are zero-valued. This method of finding the turning points may be
contrasted with the very different procedure of Bry and Boschan (1971) which
had been widely adopted by governmental statistical offices, but which often
reaches doubtful conclusions.

A problem posed by band-limited processes is that they cannot easily be
represented by the ARMA models that are ubiquitous in time-series analysis.
Such models are based on the assumption that the spectra of the processes that
they represent are supported on a frequency interval that extends as far as the
Nyquist frequency, which represents the limit of what is observable in sampled
data.

It is often supposed that a discrete-time ARMA process is representing an
underlying continuous-time process that has an unbounded frequency range. If
that were the case, then the spectral density function defined over the Nyquist
interval would be the product of a process of aliasing, whereby the elements of
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the continuous process that fall outside the Nyquist interval are attributed to
frequencies that are inside.

In section 5, we have described a correspondence that would exist between
processes that are unbounded in frequency and the discrete time models that
would serve to represent them. Nevertheless, we have expressed doubts about
the relevance to business-cycle analysis of such unbounded processes.

In section 9, we have argued that processes that are limited in frequency
to subintervals of the Nyquist interval, in the way that the business cycle is
limited, can be resampled at a reduced rate so as to map their limited supports
onto the full Nyquist interval. Thereafter, the ordinary methods of ARMA
modelling can be applied to the resampled data. In that case, the Nyquist–
Shannon sampling theorem indicates that there is a one-to-one correspondence
between the discretely sampled process and an equivalent process in continuous
time.

By these means one should be able to find an ARMA model that will capture
the dynamics of the business cycle and reveal them in terms of the estimated
parameters. In particular, the modulus and the arguments of the roots of the
autoregressive operator should reveal the damping characteristics of the cycles
and their average periods.

A modern interpretation by Baxter and King (1999) of a prescription of
Burns and Mitchell (1946) is that the business cycle should be defined as a
band-limited process containing cyclical elements of durations of no less that
one and a half years and not exceeding eight years. This appears, at first sight,
to be an unequivocal definition. However, there are difficulties in implementing it
accurately. Thus, it is commonly believed that the filter that would be required
to realise this definition must comprise an infinite number of coefficients; and
this is not practical.

In place of the infinite-order filter, a truncated approximation is commonly
employed that comprises a limited number of the central coefficients. Such a fil-
ter is beset by the phenomenon of leakage, whereby the powerful low-frequency
elements that would be blocked by the ideal filter find their way into the esti-
mated business cycle. (In fact, a superior approximation is available in the form
of a rational filter. See Pollock (2003b), for example, where a rational function
is employed to create a sharp lowpass filter.)

However, it has been show here that the bandpass definition can be fulfilled
by selecting the appropriate ordinates of the Fourier transform of the detrended
data. The equivalent filter in the time domain is a wrapped or circular fil-
ter. Whereas such filters avoid the leakage that besets approximate bandpass
filters, they deliver inappropriate estimates of the business cycle when they ad-
here strictly to the Baxter–King bandpass definition. Moreover, it seems that
any success that the approximate bandpass filter may have in representing the
business cycle must be due, in some measure, to the leakage.

The conclusion that we have reached ultimately is that, whereas it is some-
times possible to identify a trend-cycle complex within the data, there can be
no definitive definition of what constitutes the trend and what, in consequence,
must constitute the cyclical component. Therefore, it seems that one must be
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liberal in allowing any definitions that seem to fulfil their intended purposes.
Even when the purpose is mistaken or unfulfilled, we should not automatically
reject the resulting definition or the estimates to which it gives rise.

A Computer Program

The computer program that has been used in connection with this chapter is
available at the following web address:

http://www.le.ac.uk/users/dsgp1/
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