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1. INTRODUCTION

The classical theory of statistical signal extraction presupposes lengthy data
sequences, which are assumed, in theory, to be doubly infinite or semi-infinite—
see Whittle (1983), for example. In many practical cases, and in most econo-
metric applications, the available data are, to the contrary, both strongly
trended and of a limited duration.

This paper is concerned with the theory of finite-sample signal extraction;
and it shows how the classical Wiener–Kolmogorov theory of signal extraction
can be adapted to cater to short sequences generated by processes that may be
nonstationary.

Alternative methods of processing finite samples, which work in the fre-
quency domain, are also described; and their relation to the time-domain im-
plementations of the Wiener–Kolmogorov methods are demonstrated. The
frequency-domain methods have the advantage that they are able to achieve
clear separations of components that reside in adjacent frequency bands in a
way that the time-domain methods cannot.

2. WIENER–KOLMOGOROV FILTERING
OF SHORT STATIONARY SEQUENCES

In the classical theory, it is assumed that there is a doubly-infinite sequence of
observations, denoted, in this paper, by y(t) = {yt; t = 0,±1,±2, . . .}. Here,
we shall assume that the observations run from t = 0 to t = T − 1. These are
gathered in the vector y = [y0, y1, . . . , yT−1]′, which is decomposed as

y = ξ + η, (1)
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where ξ is the signal component and η is the noise component. It may be
assumed that the latter are from independent zero-mean Gaussian processes
that are completely characterised by their first and second moments. Then,

E(ξ) = 0, D(ξ) = Ωξ,

E(η) = 0, D(η) = Ωη,

and C(ξ, η) = 0.

(2)

A consequence of the independence of ξ and η is that D(y) = Ω = Ωξ + Ωη.
The autocovariance or dispersion matrices, which have a Toeplitz struc-

ture, may be obtained by replacing the argument z within the relevant auto-
covariance generating functions by the matrix

LT = [e1, . . . , eT−1, 0], (3)

which is derived from the identity matrix IT = [e0, e1, . . . , eT−1] by deleting
the leading column and appending a column of zeros to the end of the array.
Using LT in place of z in the autocovariance generating function γ(z) of the
data process gives

D(y) = Ω = γ0IT +
T−1∑
τ=1

γτ (Lτ
T + F τ

T ), (4)

where FT = L′
T is in place of z−1. Since LT and FT are nilpotent of degree T ,

such that Lq
T , F q

T = 0 when q ≥ T , the index of summation has an upper limit
of T − 1.

The optimal predictors of the signal and the noise components are

E(ξ|y) = E(ξ) + C(ξ, y)D−1(y){y − E(y)} (5)
= Ωξ(Ωξ + Ωη)−1y = Zξy = x,

E(η|y) = E(η) + C(η, y)D−1(y){y − E(y)} (6)
= Ωη(Ωξ + Ωη)−1y = Zηy = h,

which are their minimum-mean-square-error estimates.
The corresponding error dispersion matrices, from which confidence inter-

vals for the estimated components may be derived, are

D(ξ|y) = D(ξ) − C(ξ, y)D−1(y)C(y, ξ) (7)
= Ωξ − Ωξ(Ωξ + Ωη)−1Ωξ,

D(η|y) = D(η) − C(η, y)D−1(y)C(y, η), (8)
= Ωη − Ωη(Ωξ + Ωη)−1Ωη.

These formulae contain D{E(ξ|y)} = C(ξ, y)D−1(y)C(y, ξ) and D{E(η|y)} =
C(η, y)D−1(y)C(y, η), which give the variability of the estimated components
relative to their zero-valued unconditional expectations. The results follow from
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the ordinary algebra of conditional expectations, of which an account has been
given by Pollock (1999). (Equations (5) and (6) are the basis of the analysis in
Pollock 2000.)

It can be seen, from (5) and (6) that y = x+h. Therefore, only one of the
components needs be calculated. The estimate of the other component may
be obtained by subtracting the calculated estimate from y. Also, the matrix
inversion lemma indicates that

(Ω−1
ξ + Ω−1

η )−1 = Ωη − Ωη(Ωη + Ωξ)−1Ωη

= Ωξ − Ωξ(Ωη + Ωξ)−1Ωξ.
(9)

Therefore, (7) and (8) represent the same quantity, which is to be expected in
view of the adding up.

The estimating equations can be obtained via the criterion

Minimise S(ξ, η) = ξ′Ω−1
ξ ξ + η′Ω−1

η η subject to ξ + η = y. (10)

Since S(ξ, η) is the exponent of the normal joint density function N(ξ, η), the
estimates of (5) and (6) may be described, alternatively, as the minimum chi-
square estimates or as the maximum-likelihood estimates.

Setting η = y − ξ gives the function

S(ξ) = ξ′Ω−1
ξ ξ + (y − ξ)′Ω−1

η (y − ξ). (11)

The minimising value is

x = (Ω−1
ξ + Ω−1

η )−1Ω−1
η y

= y − Ωη(Ωη + Ωξ)−1y = y − h,
(12)

where the second equality depends upon the first of the identities of (9).
A simple procedure for calculating the estimates x and h begins by solving

the equation
(Ωξ + Ωη)b = y (13)

for the value of b. Thereafter, one can generate

x = Ωξb and h = Ωηb. (14)

If Ωξ and Ωη correspond to the dispersion matrices of moving-average
processes, then the solution to equation (13) may be found via a Cholesky
factorisation that sets Ωξ + Ωη = GG′, where G is a lower-triangular matrix
with a limited number of nonzero bands. The system GG′b = y may be cast in
the form of Gp = y and solved for p. Then, G′b = p can be solved for b. The
procedure has been described by Pollock (2000).

3. FILTERING VIA FOURIER METHODS

A circular stochastic process of order T is one in which the autocovariance
matrix of a random vector x = [x0, x1, . . . , xT−1]′, generated by the process,
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is unchanged when the elements of x are subjected to a cyclical permutation.
Such a process is the finite equivalent of a stationary stochastic process.

The circular permutation of the elements of the sequence is effected by the
matrix operator

KT = [e1, . . . , eT−1, e0], (15)

which is formed from the identity matrix IT by moving the leading column to
the back of the array. The powers of KT are T -periodic such that Kq+T

T =
Kq

T . Moreover, any circular matrix of order T can be expressed as a linear
combination of the basis matrices IT , KT , . . . , KT−1

T .
The matrix KT has a spectral factorisation that entails the discrete Fourier

transform and its inverse. Let

U = T−1/2[W jt; t, j = 0, . . . , T − 1] (16)

denote the symmetric Fourier matrix, of which the generic element in the jth
row and tth column is

W jt = exp(−i2πtj/T ) = cos(ωjt) − i sin(ωjt),

where ωj = 2πj/T.
(17)

The matrix U is unitary, which is to say that it fulfils the condition

ŪU = UŪ = IT , (18)

where Ū = T−1/2[W−jt; t, j = 0, . . . , T − 1] denotes the conjugate matrix.
The circulant lag operator can be factorised as

KT = ŪDU = ŪD̄U, (19)

where
D = diag{1, W, W 2, . . . , WT−1} (20)

is a diagonal matrix whose elements are the T roots of unity, which are found
on the circumference of the unit circle in the complex plane. Observe also that
D is T -periodic, such that Dq+T = Dq, and that Kq = ŪDqU = ŪD̄qU for any
integer q. (An account of the algebra of circulant matrices has been provided
by Pollock 2002. See, also, Gray 2002.)

The matrix of the circular autocovariances of the data is obtained by re-
placing the argument z in the autocovariance generating function γ(z) by the
matrix KT :

D◦(y) = Ω◦ = γ(KT )

= γ0IT +
∞∑

τ=1

γτ (Kτ
T + K−τ

T )

= γ◦
0IT +

T−1∑
τ=1

γ◦
τ (Kτ

T + K−τ
T ).

(21)
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The circular autocovariances would be obtained by wrapping the sequence of
ordinary autocovariances around a circle of circumference T and adding the
overlying values. Thus

γ◦
τ =

∞∑
j=0

γjT+τ , with τ = 0, . . . , T − 1. (22)

Given that lim(τ → ∞)γτ = 0, it follows that γ◦
τ → γτ as T → ∞, which is to

say that the circular autocovariances converge to the ordinary autocovariances
as the circle expands.

The circulant autocovariance matrix is amenable to a spectral factorisation
of the form

Ω◦ = γ(KT ) = Ūγ(D)U, (23)

wherein the jth element of the diagonal matrix γ(D) is

γ(exp{iωj}) = γ0 + 2
∞∑

τ=1

γτ cos(ωjτ). (24)

This represents the cosine Fourier transform of the sequence of the ordinary
autocovariances; and it corresponds to an ordinate (scaled by 2π) sampled at
the point ωj = 2πj/T , which is a Fourier frequency, from the spectral density
function of the linear (i.e. non-circular) stationary stochastic process.

The method of Wiener–Kolmogorov filtering can also be implemented us-
ing the circulant dispersion matrices that are given by

Ω◦
ξ = Ūγξ(D)U, Ω◦

η = Ūγη(D)U and

Ω◦ = Ω◦
ξ + Ω◦

η = Ū{γξ(D) + γη(D)}U,
(25)

wherein the diagonal matrices γξ(D) and γη(D) contain the ordinates of the
spectral density functions of the component processes. By replacing the dis-
persion matrices within (5) and (6) by their circulant counterparts, we derive
the following formulae:

x = Ūγξ(D){γξ(D) + γη(D)}−1Uy = Pξy, (26)

h = Ūγη(D){γξ(D) + γη(D)}−1Uy = Pηy. (27)

Similar replacements within the formulae (7) and (8) provide the expressions
for the error dispersion matrices that are appropriate to the circular filters.

The filtering formulae may be implemented in the following way. First, a
Fourier transform is applied to the data vector y to give Uy, which resides in the
frequency domain. Then, the elements of the transformed vector are multiplied
by those of the diagonal weighting matrices Jξ = γξ(D){γξ(D)+γη(D)}−1 and
Jη = γη(D){γξ(D) + γη(D)}−1. Finally, the products are carried back into
the time domain by the inverse Fourier transform, which is represented by the
matrix Ū . (An efficient implementation of a mixed-radix fast Fourier transform,
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which is designed to cope with samples of arbitrary sizes, has been provided by
Pollock (1999). The usual algorithms demand a sample size of T = 2n.)

The frequency-domain realisations of the Wiener–Kolmogorov filters have
sufficient flexibility to accommodate cases where the component processes ξ(t)
and η(t) have band-limited spectra that are zero-valued beyond certain bounds.
If the bands do not overlap, then it is possible to achieve a perfect decomposition
of y(t) into its components.

Let Ω◦
ξ = ŪΛξU , Ω◦

η = ŪΛηU and Ω◦ = Ū(Λξ + Λη)U , where Λξ and Λη

contain the ordinates of the spectral density functions of ξ(t) and η(t), sampled
at the Fourier frequencies. Then, if these spectra are disjoint, there will be
ΛξΛη = 0, and the dispersion matrices of the two processes will be singular.
The matrix Ω◦

y = Ω◦
ξ + Ω◦

η will also be singular, unless the domains of the
spectral density functions of the component processes partition the frequency
range. Putting these details into (26) gives

x = ŪΛξ{Λξ + Λη}+Uy = ŪJξUy, (28)

where {Λξ + Λη}+ denotes a generalised inverse. The corresponding error dis-
persion matrix is

Ω◦
ξ − Ω◦

ξ(Ω
◦
ξ + Ω◦

η)+Ω◦
ξ = ŪΛξU − ŪΛξ(Λξ + Λη)+ΛξU. (29)

But, if ΛξΛη = 0, then Λξ(Λξ + Λη)+Λξ = Λξ; and so the error dispersion is
manifestly zero, which implies that x = ξ.

The significant differences between the time-domain and frequency-domain
realisations of the Wiener–Kolmogorov filters occur at the ends of the sample.
In the time-domain version, the coefficients of the filter vary as it moves through
the sample, in a manner that prevents the filter from reaching beyond the
bounds of the sample.

In the frequency-domain version, the implicit filter coefficients, which do
not vary, are applied to the sample via a process of circular convolution. Thus,
as it approaches the end of the sample, the filter takes an increasing proportion
of its data from the beginning.

The implicit filter coefficients of the frequency-domain method are the
circularly wrapped versions of the coefficients of a notional time-domain filter,
defined in respect of y(t) = {yt; t = 0,±1,±2, . . .}, which may have an infinite
impulse response. As the circle expands, the wrapped coefficients converge on
the original coefficients in the same way as the circular autocovariances converge
on the ordinary autocovariances.

Even when they form an infinite sequence, the coefficients the notional
time-domain filter will have a limited dispersion around their central value.
Thus, as the sample size increases, the proportion of the filtered sequence
that suffers from the end-effects diminishes, and the central values from the
time-domain filtering, realised according to the formulae (5) and (6), and the
frequency-domain filtering, realised according to (26) and (27), will converge
point on point. By extrapolating the sample by a short distance at either end,
one should be able to place the end-effects of the frequency-domain filter out
of range of the sample.
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Figure 1. The frequency response of the 17-point wrapped filter defined over the

interval [−π, π). The values at the Fourier frequencies are marked by circles.

Example. The frequency response of a circular filter applied to a finite sample
of T data points is a periodic function defined over a set of T adjacent Fourier
frequencies ωj = 2πj/T , where j takes T consecutive integer values. It is
convenient to set j = 0, 1, . . . , T − 1, in which case, the response is defined over
the frequency interval [0, 2π).

However, it may be required to define the response over the interval [−π, π),
which is used, conventionally, for representing the continuous response func-
tion of a filter applied to a doubly-infinite data sequence. In that case, j =
0,±1, . . . , [T/2], where [T/2] is the integral part of T/2.

The responses at the T Fourier frequencies can take any finite real values,
subject only to the condition that λj = λT−j , or to the equivalent condition
that λj = λ−j . These restrictions will ensure that the corresponding filter
coefficients form a real-valued symmetric sequence. The T coefficients of the
circular filter may be obtained by applying the inverse discrete Fourier trans-
form to the responses.

It is convenient, nevertheless, to specify the frequency response of a circular
filter by sampling a pre-defined continuous response. Then, the coefficients of
the circular filter are formally equivalent to those that would be found by
wrapping the coefficients of an ordinary filter, pertaining to the continuous
response, around a circle of circumference T and adding the coincident values.

A filter that has a band-limited frequency response has an infinite set of
filter coefficients. In that case, it is not practical to find coefficients of the
circular filter by wrapping the coefficients of the ordinary filter. Instead, they
must be found by transforming a set of frequency-domain ordinates.

A leading example of a band-limited response is provided by an ideal low-
pass frequency-selective filter that has a boxcar frequency response. Two ver-
sions of the filter may be defined, depending on whether the transitions between
pass band and stop band occur at Fourier frequencies or between Fourier fre-
quencies.

Consider a set of T frequency-domain ordinates sampled, over the interval
[−π, π), from a boxcar function, centred on ω0 = 0. If the cut-off points
lie between ±ωd = ±2πd/T and the succeeding Fourier frequencies, then the

7



D.S.G. POLLOCK: Filtering and Polynomial Regression

sampled ordinates will be

λj =
{ 1, if j ∈ {−d, . . . , d),

0, otherwise.
(30)

The corresponding filter coefficients will be given by

β◦(k) =


2d + 1

T
, if k = 0,

sin([d + 1/2]ω1k)
T sin(ω1k/2)

, for k = 1, . . . , [T/2],
(31)

where ω1 = 2π/T . This function is just an instance of the Dirichlet kernel—see
Pollock (1999), for example. Figure 1 depicts the frequency response for this
filter at the Fourier frequencies, where λj = 0, 1. It also depicts the continuous
frequency response that would be the consequence of applying an ordinary filter
with these coefficients to a doubly-infinite data sequence.

It is notable that a casual inspection of the continuous response would
lead one to infer the danger of substantial leakage, whereby elements that lie
within the stop band are allowed to pass into the filtered sequence. In fact,
with regard to the finite sample, there is no leakage.

If the cut-off points fall on the Fourier frequencies ±ωd, and if λd = λ−d =
1/2, then the filter coefficients will be

β◦(k) =


2d

T
, if k = 0,

cos(ω1k/2) sin(dω1k)
T sin(ω1k/2)

, for k = 1, . . . , [T/2].
(32)

4. POLYNOMIALS AND THE
MATRIX DIFFERENCE OPERATOR

The remaining sections of this paper are devoted to methods of filtering non-
stationary sequences generated by linear stochastic processes with unit roots in
an autoregressive operator. To support the analysis, the present section deals
with the algebra of the difference operator and of the summation operator,
which is its inverse. When it is used to cumulate data, the summation operator
automatically generates polynomial functions of the discrete-time index. This
feature is also analysed.

The matrix that takes the p-th difference of a vector of order T is

∇p
T = (I − LT )p. (33)

We may partition this matrix so that ∇p
T = [Q∗, Q]′, where Q′

∗ has p rows. If
y is a vector of T elements, then

∇p
T y =

[
Q′

∗
Q′

]
y =

[
g∗
g

]
; (34)
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and g∗ is liable to be discarded, whereas g will be regarded as the vector of the
p-th differences of the data.

The inverse matrix is partitioned conformably to give ∇−p
T = [S∗, S]. It

follows that

[ S∗ S ]
[

Q′
∗

Q′

]
= S∗Q

′
∗ + SQ′ = IT , (35)

and that [
Q′

∗
Q′

]
[ S∗ S ] =

[
Q′

∗S∗ Q′
∗S

Q′S∗ Q′S

]
=

[
Ip 0
0 IT−p

]
. (36)

If g∗ is available, then y can be recovered from g via

y = S∗g∗ + Sg. (37)

The lower-triangular Toeplitz matrix ∇−p
T = [S∗, S] is completely char-

acterised by its leading column. The elements of that column are the ordi-
nates of a polynomial of degree p − 1, of which the argument is the row index
t = 0, 1, . . . , T − 1. Moreover, the leading p columns of the matrix ∇−p

T , which
constitute the submatrix S∗, provide a basis for all polynomials of degree p− 1
that are defined on the integer points t = 0, 1, . . . , T − 1.

It follows that S∗g∗ = S∗Q′
∗y contains the ordinates of a polynomial of

degree p − 1, which is interpolated through the first p elements of y, indexed
by t = 0, 1, . . . , p − 1, and which is extrapolated over the remaining integers
t = p, p + 1, . . . , T − 1.

A polynomial that is designed to fit the data should take account of all
of the observations in y. Imagine, therefore, that y = φ + η, where φ contains
the ordinates of a polynomial of degree p− 1 and η is a disturbance term with
E(η) = 0 and D(η) = Ωη. Then, in forming an estimate f = S∗r∗ of φ,
we should minimise the sum of squares η′Ω−1

η η. Since the polynomial is fully
determined by the elements of a starting-value vector r∗, this is a matter of
minimising

(y − f)′Ω−1
η (y − f) = (y − S∗r∗)′Ω−1

η (y − S∗r∗) (38)

with respect to r∗. The resulting values are

r∗ = (S′
∗Ω

−1
η S∗)−1S′

∗Ω
−1
η y and f = S∗(S′

∗Ω
−1
η S∗)−1S′

∗Ω
−1
η y. (39)

An alternative representation of the estimated polynomial is available,
which avoids the inversion of Ωη. This is provided by the identity

P∗ = S∗(S′
∗Ω

−1
η S∗)−1S′

∗Ω
−1
η

= I − ΩηQ(Q′ΩηQ)−1Q′ = I − PQ,
(40)

which gives two representations of the projection matrix P∗. The equality
follows from the fact that, if Rank[R, S∗] = T and if S′

∗Ω
−1
η R = 0, then

S∗(S′
∗Ω

−1
η S∗)−1S′

∗Ω
−1
η = I − R(R′Ω−1

η R)−1R′Ω−1
η . (41)
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Setting R = ΩηQ gives the result.
Grenander and Rosenblatt (1957) have shown that, when the disturbances

are generated by a stationary stochastic process, the generalised least-squares
(GLS) estimator of a polynomial regression that incorporates the matrix Ωη is
asymptotically equivalent to the ordinary least-squares (OLS) estimator that
has the identity matrix IT in place of Ωη. The result has also been demonstrated
by Anderson (1971). It means that one can use the OLS estimator without
significant detriment to the quality of the estimates.

The result is proved by showing that the metric of the GLS regression
is asymptotically equivalent to the Euclidean metric of OLS regression. It
is required that, in the limit, the columns of Ω−1

η S∗ and S∗ should span the
same space. It follows that the projection operator P∗ of (40) is asymptotically
equivalent to S∗(S′

∗S∗)−1S′
∗ = I − Q(Q′Q)−1Q′.

The residuals of an OLS polynomial regression of degree p, which are
given by y − f = Q(Q′Q)−1Q′y, contain same the information as the vector
g = Q′y of the p-th differences of the data. The difference operator has the
effect of nullifying the element of zero frequency and of attenuating radically
the adjacent low-frequency elements. Therefore, the low-frequency spectral
structures of the data are not perceptible in the periodogram of the differenced
sequence.

On the other hand, the periodogram of a trended sequence is liable to
be dominated by its low-frequency components, which will mask the other
spectral structures. However, the periodogram of the polynomial regression
residuals can be relied upon to reveal the spectral structures at all frequencies.
Moreover, by varying the degree p of the polynomial, one is able to alter the
relative emphasis that is given to high-frequency and low-frequency structures.

5. WIENER–KOLMOGOROV FILTERING
OF NONSTATIONARY DATA

The treatment of trended data must accommodate stochastic processes with
drift. Therefore, it will be assumed that, within y = ξ+η, the trend component
ξ = φ + ζ is the sum of a vector φ, containing ordinates sampled from a
polynomial in t of degree p at most, and a vector ζ from a stochastic process
with p unit roots that is driven by a zero-mean process.

If Q′ is the p-th difference operator, then Q′φ = µι, with ι = [1, 1, . . . , 1]′,
will contain a constant sequence of values, which will be zeros if the degree of
the stochastic drift is less than p, which is the degree of differencing. Also,
Q′ζ will be a vector sampled from a mean-zero stationary process. Therefore,
δ = Q′ξ is from a stationary process with a constant mean. Thus, there is

Q′y = Q′ξ + Q′η

= δ + κ = g,
(42)

where
E(δ) = µι, D(δ) = Ωδ,

E(κ) = 0, D(κ) = Ωκ = Q′ΩηQ,

and C(δ, κ) = 0.

(43)
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Let the estimates of ξ, η, δ = Q′ξ and κ = Q′η be denoted by x, h, d and k
respectively. Then, with E(g) = E(δ) = µι, there is

E(δ|g) = E(δ) + Ωδ(Ωδ + Ωκ)−1{g − E(g)} (44)
= µι + Ωδ(Ωδ + Q′ΩηQ)−1{g − µι} = d,

E(κ|g) = E(κ) + Ωκ(Ωδ + Ωκ)−1{g − E(g)} (45)
= Q′ΩηQ(Ωδ + Q′ΩηQ)−1{g − µι} = k;

and these vectors obey an adding-up condition:

Q′y = d + k = g. (46)

In (44), the lowpass filter matrix Zδ = Ωδ(Ωδ + Q′ΩηQ)−1 will virtually
conserve the vector µι, which is an element of zero frequency. In (45), the com-
plementary highpass filter matrix Zκ = Q′ΩηQ(Ωδ + Q′ΩηQ)−1 will virtually
nullify the vector. Its failure to do so completely is attributable the fact that
the filter matrix is of full rank. As the matrix converges on its asymptotic form,
the nullification will become complete. It follows that, even when the degree
of the stochastic drift is p, one can set

d = Ωδ(Ωδ + Ωκ)−1g = Ωδ(Ωδ + Q′ΩηQ)−1Q′y, (47)

k = Ωκ(Ωδ + Ωκ)−1g = Q′ΩηQ(Ωδ + Q′ΩηQ)−1Q′y. (48)

The estimates of ξ and η may be obtained by integrating, or re-inflating,
the components of the differenced data to give

x = S∗d∗ + Sd and h = S∗k∗ + Sk. (49)

For this, the starting values d∗ and h∗ are required. The initial conditions in d∗
should be chosen so as to ensure that the estimated trend is aligned as closely
as possible with the data. The criterion is

Minimise (y − S∗d∗ − Sd)′Ω−1
η (y − S∗d∗ − Sd) with respect to d∗. (50)

The solution for the starting values is

d∗ = (S′
∗Ω

−1
η S∗)−1S′

∗Ω
−1
η (y − Sd). (51)

The starting values of k∗ are obtained by minimising the (generalised) sum of
squares of the fluctuations:

Minimise (S∗k∗ + Sk)′Ω−1
η (S∗k∗ + Sk) with respect to k∗. (52)

The solution is
k∗ = −(S′

∗Ω
−1
η S∗)−1S′

∗Ω
−1
η Sk. (53)

It is straightforward to show that, when (42) holds,

y = x + h, (54)

11
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which is to say that the addition of the estimates produces the original data
series. As in (40), let P∗ = S∗Ω−1

η (S′
∗Ω

−1
η S∗)−1S′

∗. Then, the two components
can be written as

x = Sd + S∗d∗ = Sd + P∗(y − Sd), (55)

h = Sk + S∗k∗ = (I − P∗)Sk. (56)

Adding these, using d + k = Q′y from (46), gives

P∗y + (I − P∗)SQ′y = P∗y + (I − P∗)(SQ′ + S∗Q
′
∗)y

= P∗y + (I − P∗)y = y.
(57)

Here, the first equality follows from the fact that (I−P∗)S∗ = 0, and the second
follows from the identity SQ′ + S∗Q′

∗ = I, which is from (35). In view of (49),
it can be seen that the condition x + h = y signifies that the criteria of (50)
and (52) are equivalent.

The starting values k∗ and d∗ can be eliminated from the expressions for
x and h, which provide the estimates of the components. Substituting the
expression for PQ from (40) into h = (I − P∗)Sk = PQSk together with the
expression for k from (48) and using the identity Q′S = IT gives

h = ΩηQ(Ωδ + Q′ΩηQ)−1Q′y. (58)

A similar reduction can be pursued in respect of the equation x = (I−P∗)Sd+
P∗y = PQSd + (I − PQ)y. However, it follows immediately from (54) that

x = y − h

= y − ΩηQ(Ωδ + Q′ΩηQ)−1Q′y.
(59)

Observe that the filter matrix Zη = ΩηQ(Ωδ + Q′ΩηQ)−1 of (58), which
delivers h = Zηg, differs from the matrix Zκ = Q′Zη of (48), which delivers k =
Zκg, only in respect of the matrix difference operator Q′. The effect of omitting
the operator is to remove the need for re-inflating the filtered components and
thus to remove the need for the starting values.

Equation (59) can also be derived via a straightforward generalisation of
the chi-square criterion of (10). If we regard the elements of δ∗ as fixed values,
then the dispersion matrix of ξ = S∗δ∗+Sδ is the singular matrix D(ξ) = Ωξ =
SΩδS

′. On setting η = y − ξ in (10) and replacing the inverse of Ω−1
ξ by the

generalised inverse Ω+
ξ = QΩ−1

δ Q′, we get the function

S(ξ) = (y − ξ)′Ω−1
η (y − ξ) + ξ′QΩ−1

δ Q′ξ, (60)

of which the minimising value is

x = (QΩ−1
δ Q′ + Ω−1

η )−1Ω−1
η y. (61)

The matrix inversion lemma gives

(QΩ−1
δ Q′ + Ω−1

η )−1 = Ωη − ΩηQ(Q′ΩηQ + Ωδ)−1Q′Ωη; (62)

12
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and putting this into (61) gives the expression under (59). The matrix of
(62) also constitutes the error dispersion matrix D(η|y) = D(ξ|y) which, in
view of their adding-up property (54), is common to the estimates of the two
components.

It is straightforward to compute h when Ωη and Ωδ have narrow-band
moving-average forms. Consider h = ΩηQb, where b = (Q′ΩηQ + Ωδ)−1g.
First b may be calculated by solving the equation (Q′ΩηQ + Ωδ)b = g. This
involves the Cholesky decomposition of Q′ΩηQ + Ωδ = GG′, where G is a
lower-triangular matrix with a number of nonzero diagonal bands equal to the
recursive order of the filter. The system GG′b = Gp = g is solved for p. Then,
G′b = p is solved for b. These are the recursive operations. Given b, then h can
be obtained via direct multiplications.

6. APPLYING THE FOURIER METHOD
TO NON-STATIONARY SEQUENCES

The method of processing nonstationary sequences that has been expounded in
the preceding section depends upon the finite-sample versions of the difference
operator and the summation operator. These are derived by replacing z in
the functions ∇(z) = 1 − z and Σ(z) = (1 − z)−1 = {1 + z + z2 + · · ·} by
the finite-sample lag operator LT , which gives rise to a nonsingular matrix
∇(LT ) = [Q∗, Q]′ and its inverse ∇−1(LT ) = Σ(LT ) = [S∗, S].

The identity of (40), which is due to the interaction of the matrices S∗
and Q′, has enabled us to re-inflate the components of the differenced sequence
Q′y = g = d + k without explicitly representing the initial conditions or start-
values d∗ and k∗ that are to be found in equations (54) and (55).

The operators that are derived by replacing of z in ∇(z) and Σ(z) by the
circulant lag operator KT are problematic. On the one hand, putting KT in
place of z within ∇(z) results in a non-invertible matrix of rank T − 1. On the
other hand, the replacement of z within the series expansion of Σ(z) results in a
non-convergent series that corresponds to a matrix in which all of the elements
are uniformly of infinite value.

In applying the Fourier method of signal extraction to non-stationary se-
quences, one recourse is to use ∇(LT ) and Σ(LT ) for the purposes of reducing
the data to stationarity and for re-inflating them. The components δ and κ of
the differenced data may estimated via the equations

d = ŪΛδ(Λδ + Λκ)+Ug = Pδg, (63)

k = ŪΛκ(Λδ + Λκ)+Ug = Pκg. (64)

For a vector µι of repeated elements, there will be Pδµι = µι and Pκµι = 0.
Whereas the estimates of δ, κ may be extracted from g = Q′y by the

Fourier methods, the corresponding estimates x, h of ξ, η will be found from
equations (55) and (56), which originate in the time-domain approach and
which require explicit initial conditions.

It may also be appropriate, in this context, to replace the criteria of (50)
and (52), which generate the values of d∗ and k∗, by simplified criteria wherein

13
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Ωη is replaced by the identity matrix IT . Then,

d∗ = (S′
∗S∗)−1S′

∗(y − Sd) and k∗ = −(S′
∗S∗)−1S′

∗Sk. (65)

The available formulae for the summation of sequences provide convenient ex-
pressions for the values of the elements of S′

∗S∗. (See, for example, Banerjee et
al. 1993, p. 20.)

An alternative recourse, which is available in the case of a highpass or
bandpass filter that nullifies the low-frequency components of the data, entails
removing the implicit differencing operator from the filter. (In an appendix of
their paper, Baxter and King (1999) demonstrate the presence, within a sym-
metric bandpass filter, of two unit roots, i.e. of a twofold differencing operator.)

Consider a filter defined in respect of a doubly-infinite sequence, and let
φ(z) be the transfer function of the filter, i.e. the z-transform the filter co-
efficients. Imagine that φ(z) contains the factor (1 − z)p, and let ψ(z) =
(1−z)−pφ(z). Then, ψ(z) defines a filter of which the finite-sample version can
be realised by the replacement of z by KT .

Since KT = ŪDU , the filter matrix can be factorised as ψ(KT ) = Ψ =
Ūψ(KT )U . On defining Jψ = ψ(KT ), which is a diagonal weighting matrix,
the estimate of the signal component is given by the equation

x = ŪJψUg. (66)

Whichever procedure is adopted, the Fourier method is applied to data
that have been reduced to stationarity by differencing. Given the circularity of
the method, if follows that, as a filter approaches one end of the sample it will
take an increasing proportion of its data from the other end. To avoid some of
the effects of this, one may extrapolate the data at both ends of sample. The
extrapolation can be done either before or after the data has been differenced.
After the filtering, the extra-sample elements may be discarded.

If the trended data has been extrapolated, then the starting values d∗ and
k∗, which are required by the first procedure, may be obtained by minimising
the quadratic functions (50) and (52) defined over the enlarged data set. Oth-
erwise, if the differenced data have been extrapolated, then the extra-sample
points of the filtered sequence are discarded prior to its re-inflation, and the
quadratic functions that are to be minimised in pursuit of the starting values
are defined over T points corresponding to the original sample.

Extrapolating the differenced data has the advantage of facilitating the
process of tapering whereby the ends of the sample are reduced to a level at
which they can meet when the data are wrapped around a circle. The purpose
of this is to avoid any radical disjunctions that might otherwise occur at the
meeting point and which might have ill effects throughout the filtered sequences.

We should also note that, in the case of a finite bandpass filter, a third pos-
sibility arises. This is to apply the filter directly to the original, undifferenced,
data. Such a procedure has been followed both by Baxter and King (1999) and
by Christiano and Fitzgerald (2003). The latter have found an ingenious way
of extrapolating the data, so as to enable the filter to generate values at the
ends of the sample.
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Figure 2. The plot of the logarithms of 132 monthly observations on the U.S. money

supply, beginning in January 1960. A trend, estimated by the Fourier method, has

been interpolated through the data.
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Figure 3. The deviations of the logarithmic money-supply data from the interpolated

trend.
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Figure 4. The periodogram of the residuals from the quadratic detrending of the

logarithmic money-supply data.
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The Fourier method can be used to advantage whenever the components
of the data are to be found in disjoint frequency intervals. If the components
are separated by wide spectral dead spaces, then it should be possible extract
them from the data with filters that have gradual transitions that are confined
to the dead spaces. In that case, Wiener–Kolmogorov time-domain filters of
low orders can be used. However, when the components are adjacent or are
separated by narrow dead spaces, it is difficult to devise a time-domain filter
with a transition that is sharp enough and that does not suffer from problems
of instability. Then, a Fourier method should be used instead.

Example. Figure 2 show the logarithms of a monthly sequence of 132 obser-
vations of the U.S. money supply, through which a trend has been interpolated,
and Figure 3 shows the sequence of the deviations from the tend. The data are
from Bolch and Huang (1974).

The trend has been estimated with reference to Figure 4, which shows the
periodogram of the residuals from a quadratic detrending of the data. There is
a tall spike in the periodogram at ω11 = π/6, which represents the fundamental
frequency of an annual seasonal fluctuation. To the left of this spike, there is a
spectral mass, which belongs the trend component. Its presence is an indication
of the inadequacy of the quadratic detrending. To remove this spectral mass
and to estimate the trend more effectively, a Fourier method has been deployed.

An inspection of the numerical values of the ordinates of the periodogram
has indicated that, within the accuracy of the calculations, the element at
ω10, which is adjacent to the seasonal frequency, is zero-valued. This defines
the point of transition of the lowpass filter that has been used to isolate the
trend component of the data. A filter with a less abrupt transition would
allow the powerful seasonal component to leak into the trend, and vice versa.
Experiments, using Wiener–Kolmogorov time-domain filters, have shown the
detriment of this.

The trend in Figure 2 has been created by re-inflating a sequence that
has been synthesised from the relevant ordinates selected from the Fourier
transform of the twice differenced data. The latter have a positive mean value,
which corresponds to a quadratic drift in the original data. The differenced
data have not been extrapolated, since there appears to be no detriment in the
end-effects. Moreover, the regularity of the seasonal fluctuations, as revealed
by the sequence of the deviations from the trend in Figure 3, is a testimony to
the success in estimating the trend.
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