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This paper describes a technique for constructing linear filters which are

intended as tools for the analysis of business cycles. Such filters are adapted

to the task of extracting the trend from an econometric times series when it

is capable of being described in terms of a well-defined range of frequencies

with a firm upper limit.

1. Introduction

This paper describes a new technique for constructing linear filters which are
intended as tools for the analysis of business cycles.

In business-cycle analysis, much of the interest lies in the comparison of
the trajectories of economic variables from collections of neighbouring coun-
tries or from the same country in different periods. For such purposes, it is
usually sufficient to define a trend in broad terms as the low-frequency mo-
tion which underlies a series, and any filtering technique which attenuates the
high-frequency elements of the series which are noisy or distracting, such as the
annual seasonal cycle, will serve the purpose of representing the trend.

However, it is also interesting to compare the relative amplitudes of secular
cycles and seasonal cycles as well as the time lags in the impacts of external
economic events. For such purposes, it is essential to remove the trend from the
data series; and this calls for an exacting definition of the trend which avoids
confusing it with the other motions which are the objects of the study.

The filters which have been used hitherto by economists for the purposes of
detrending, such as the Hodrick–Prescott filter [7], usually show a gradual tran-
sition between the pass band, which selects the low-frequency elements which
correspond to the trend, and the stop band, which suppresses the elements of
higher frequency which are not part of the trend. Such filters are not suited
to the task of extracting a trend when it is described in terms of a narrowly-
defined range of frequencies with a firm upper limit. The Hodrick–Prescott
filter, which is closely related to the smoothing spline of Reinsch [12], has been
analysed by Kydland and Prescott [8], by Cogley and Nason [3] and by Harvey
and Jaeger [6], amonst others.

In some areas of science and engineering, the techniques for constructing
frequency-selective filters are well established. In audio-acoustic engineering,
for example, the data series are liable to lengthy and, in a broad sense, they
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manifest the property of stationarity. In such cases, moving-average filters,
or FIR (finite impulse response) filters as they are also know, can be used to
produce a phase-free frequency response of which the gain approximates the
ideal square-wave with a high degree of accuracy. Such accuracy is purchased
at the cost of a wide filter span; but this causes no difficulty.

In econometric analysis, the data series are often of a strictly limited dura-
tion and they are liable to be strongly trended. In such cases, we cannot afford
to use a wide-span filter. Moreover, the non-stationarity of the series means
that we are bound to pay particular attention to the start-up problem, which
entails the question of how we should begin the process of filtering at one end
or the other of the data series without sacrificing any of the data.

In this paper, we present a new technique for designing a frequency-
selective filter which is based upon a rational-function approximation to the
ideal square wave. The resulting filter uses relatively few coefficients and it
also displays a rapid transition between the pass band and the stop band. The
technique employs some tools which are also used in the process of estimating
an ARMA time-series model.

There are some costs which have to be paid for obtaining the favourable
characteristics of the rational filter. The first cost is that the filter operates on
the border of instability. It tends to accumulate rounding error rapidly unless
both the filter coefficients and the filtered sequence are represented with high
precision.

The second cost of the sharpness of the frequency response is that the filter
violates the principle of complementarity which requires that every high-pass
filter should be matched by a corresponding low-pass filter such that the sum
of the outputs of the two filters is equal to the original series. In our case, the
complementary filter would entail complex-valued coefficients and therefore, for
practical purposes, it cannot be defined.

In the final section of the paper, we provide a example of the use of a
rational filter in detrending a series of unemployment statistics. The detrended
sequence shows a remarkable regularity in its seasonal fluctuations which is not
revealed when the Hodrick–Prescott filter is used. The example demonstrates
the advantages of a sharp filter with a well-defined cut-off point and with a
rapid transition between the pass band and the stop band.

2. Non-Recursive Square-Wave Filters

A non-recursive discrete-time filtering operation entails a linear combination of
successive elements of a signal sequence y(t) = {yt; t = 0,±1,±2, . . .}. Such an
operation can be represented by the equation

(1) x(t) = ψ(L)y(t) =
q∑

j=−p
ψjy(t− j)
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wherein

(2) ψ(L) = ψ−pL
−p + · · ·+ ψ−1L

−1 + ψ0I + ψ1L
1 + · · ·+ ψqL

q

is described as an FIR (finite impulse response) filter. Here L stands for the
lag operator whose effect on the sequence y(t) is described by the equation
Ly(t) = y(t− 1).

The frequency-response function ψ(ω) of the filter is the Fourier transform
of the sequence {ψj} of the filter’s coefficients:

(3) ψ(ω) =
∑
j

ψje
−iωj .

This function can also be depicted as the result of setting z = e−iω in the
z-transform ψ(z) =

∑
ψjz

j of the sequence. We may describe ψ(z) as the
generating function of the filter.

In general, ψ(ω) is a complex-valued function which can be expressed as

(4) ψ(ω) = |ψ(ω)|e−iϕ(ω),

where |ψ(ω)| =
√
ψ(ω)ψ(−ω) is the modulus of the function and −ϕ(ω) is its

argument. The modulus of the complex function represents the gain of the
filter, which is the factor by which filter alters the amplitudes of the cyclical
elements of a signal. The argument of the function represents the phase effect
of the filter, which is its propensity to impose delays on the signal elements.

A simple idea for the design of a linear filter is to specify the desired
frequency-response function ψ(ω) in terms of its gain and phase characteristics
and then to attempt to find the corresponding filter coefficients by applying an
inverse Fourier transform.

An ideal frequency-selective filter is one for which the gain is unity over
a certain range of frequencies, described as the passband, and zero over the
remaining frequencies, which constitute the stopband. Thus the gain an ideal
low-pass filter with a cut-off point at the frequency ωc is given by the square-
wave function

(5) |ψ(ω)| =
{

1, if |ω| ≤ ωc;
0, if ωc < |ω| ≤ π.

If a condition of symmetry is imposed such that ψ(−ω) = ψ(ω), then ψ(ω) =
|ψ(ω)| becomes a real-valued function, and the filter has no phase effect. In
that case, the function is also idempotent such that ψ(ω) = ψ2(ω).

The square-wave function is also positive semi-definite in the sense that

(6) 0 ≤ 1
2πi

∮
λ(z)ψ(z)λ(z−1)

dz

z
=

1
2πi

∮
|λ(z)ψ(z)|2 dz

z
,
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Figure 1. The central coefficients of the Fourier transform of a square wave

with a jump at ωc = π/4. The sequence of coefficients, which represents

the impulse response of an ideal low-pass filter, extends indefinitely in both

directions.

where λ(z) is any polynomial or power series in z. When the locus of this
contour integral is the unit circle, the expression stands for the integral of the
squared gain of the composite filter λ(ω)ψ(ω). Observe that an equality holds
when λ(z) = 1 − ψ(z). In that case, λ(ω) represents an ideal high-pass filter
which is the complement of ψ(ω) and which nullifies the output of the latter
which is nonzero only over the frequency interval (−ωc, ωc)

Given that the function ψ(ω) is real-valued and even, i.e. symmetric about
point ω = 0, it follows that its transform will give rise to a sequence of filter
coefficients {ψj} which is also real-valued and even with ψ−j = ψj . The latter
is a necessary and sufficient condition for the absence of a phase effect. Thus,
for the ideal square-wave filter, we have

(7) ψj =
1

2π

∫ ωc

−ωc
eiωjdω =


ωc
π
, if j = 0;

sin(ωcj)
πj

, if j 6= 0 .

However these coefficients constitute a sequence which extends indefinitely in
both directions; and, since a practical filter can contain only a limited number
of coefficients, we are bound to accept approximations to the ideal filter.

In general, we can represent the practical versions of the square-wave filter
as the product of the desired impulse response and a finite-duration window
function {κj}. The simple process of truncating the sequence {ψj} entails a
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Figure 2. The result of applying a 17-point rectangular window to the

coefficients of an ideal low-pass filter with a cut-off point at ω = π/2.
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Figure 3. The result of applying a 17-point Blackman window to the

coefficients of an ideal low-pass filter with a cut-off point at ω = π/2.
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rectangular window defined by

(8) κj =

{
1, if |j| ≤M ;

0, if |j| > M .

The various effects of such a truncation of the ideal impulse-response func-
tion can be seen by examining the transform of the windowed sequence

(9)
{ψMj} = {ψjκj ; j = 0,±1, . . . ,±M}

= {ψj ; j = 0,±1, . . . ,±M}.

This is represented in Figure 2 for the case where M = 8. First, the sharp
transition in the ideal response from unity to zero at the cut-off frequency of
ω = ωc has been converted to a gradual transition. Next, in the passband,
where |ω| < ωc, the constant value of ψ(ω) = 1 has given way to a series of
ripples which attain a maximum amplitude at the end of the interval. Finally,
in the stopband, where |ω| > ωc, the zero value of ψ(ω) has also given way to
a series of ripples. The greatest of these ripples is the one which is adjacent
to ωc; and it is the counterpart of the ripple at the end of the passband. The
ripples in the stopband give rise to a problem known as spectral leakage—for
their presence implies that the filter will fail to annihilate completely some of
the high-frequency elements of a signal.

With one exception, the magnitude of the ripples and the extent of the
leakage will be reduced by an increase in the value of M , which corresponds to
the span of the filter. The exception concerns the oscillations which are adjacent
to the point of discontinuity at ω = ωc. Their magnitude will tend to a value
which is about 9% of the jump, albeit that the width of the oscillations, and
hence the value of their integral, will become vanishingly small. The persistence
of these oscillations, which implies the failure of the Fourier transform of the
filter coefficients to converge uniformly to the ideal square wave, is know as
Gibb’s phenomenon [4] [5]. (See also Carslaw [2]).

Some of these problems can be avoided by adopting an alternative window
sequence in place of the rectangular sequence of (8). Whereas windows are
readily available which suppress the ripples in the passband and the leakage in
the stop band, they will do so invariably at the cost of a more gradual transition
between the two bands. One window function which is used quite commonly
to improve the performance of a practical square-wave filter is the Blackman
window (see Blackman and Tukey [1]) which is defined by

(10) βj = 0.42 + 0.5 cos
(πj
M

)
+ 0.08 cos

(2πj
M

)
, where |j| ≤M.
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Figure 4. The coefficients of a Blackman window.

The sequence formed by applying the Blackman window to the square-wave
coefficients may be denoted by

(11) {ψBj} = {ψjβj ; j = 0,±1, . . . ,±M}.

Figure 3 shows the effect of applying the Blackman window to the sequence
of the coefficients which have given rise to Figure 2. The comparison of the
two figures shows clearly that the cost eliminating the passband ripples and
the leakage into the stopband is a much-reduced rate of transition between the
two bands. It is with the aim of avoiding this cost that we will now pursue
alternative techniques of approximating the ideal square wave.

3. Recursive Square-Wave Filters

A recursive discrete-time filtering operation is one which entails a process of
feedback whereby the output of the filter becomes part of its input after a
minimum delay of one period. Such an operation may be represented by the
equation

(12)
x(t) = θ0y(t) + θ1y(t− 1) + · · ·+ θqy(t− q)

− φ1x(t− 1)− · · · − φpx(t− p),

which can be written in terms of lag-operator polynomials as

(13) φ(L)x(t) = θ(L)y(t).

The rational function θ(L)/φ(L) is commonly described as an IIR (infinite
impulse response) filter. The condition is invariably imposed that the roots of
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the polynomial φ(z) = 0 must lie outside the unit circle; and this is the stability
condition which is necessary and sufficient for the existence of a convergent
series expansion of the rational operator. The coefficients of this expansion
constitute the impulse response of the filter.

An ordinary recursive filter, which has a one-sided power-series expansion,
is bound to impose a phase lag on the processed series x(t); and this lag will
take different values at different frequencies. However, unless there is a need
to perform the operations in real time, it is possible to eliminate the phase lag
by applying the filter a second time in the reverse direction. Such a process of
bidirectional filtering may be described by the equations

(14) (i) φ(L)w(t) = θ(L)y(t) and (ii) φ(F )x(t) = θ(F )w(t),

where F = L−1 is the forward-shift operator whose effect on the sequence w(t)
is described by the equation Fw(t) = w(t + 1). The two filtering operations
can be represented as a combined operation by defining a symmetric two-sided
rational filter in the form of

(15) ψR(L) =
θ(F )θ(L)
φ(F )φ(L)

.

The function ψR(z) is amenable to a Laurent expansion which gives rise
to a symmetric sequence of coefficients {ψRj}. Applying the Fourier transform
to these coefficients in the manner of equation (3) generates the frequency-
response function ψR(ω) of the bidirectional filter. In practice however, given
the doubly-infinite nature of the Laurent expansion, we should calculate the
response directly from the coefficients of θ(z) and φ(z).

The objective in designing a rational square-ware filter is to determine
the orders of the operators θ(L) and φ(L) and the values of their coefficients
so as to ensure that the frequency-response function ψR(ω) is an effective ap-
proximation to the ideal square wave. The sequence of square-wave coefficients
defined in (7) constitutes a positive-semi-definite function which is analogous
to the autocovariance generating function of a stationary stochastic process.
The matter of determining the operators θ(L) and φ(L) is therefore analo-
gous to the problem of inferring the parameters of an ARMA process from its
autocovariances.

To show how the coefficients of θ(z) and φ(z) are found, let us imagine that
ψR(z) is know via the coefficients of the Laurent expansion. Then an equation
can be written in the form of

(16)
ψR(z)φ(z) =

θ(z)θ(z−1)
φ(z−1)

= δ(z)
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where, in consequence of the degree q of the polynomial θ(z), the expansion

(17) δ(z) = {· · ·+ δ−1z
−1 + δ0 + δ1z

1 + · · ·+ δqz
q}

has zq as the highest power of z. Dividing both sides of equation by zq+1 elimi-
nates the nonnegative powers of z. Therefore, using the notation of Whittle [13],
we can denote the series in the nonnegative powers by [ψR(z)φ(z)/zq+1]+ = 0;
and, with a slight elaboration of the notation, we can also write

(18)
[
ψR(z)φ(z)
zq+1

]
(0,p)

= 0,

where the subscript (0, p) indicates only the terms in z0, z1, . . . , zp have been
taken. Given the normalisation φ0 = 1, equation (18), which is analogous to the
normal equations of a linear regression, will serve to determine the coefficients
of φ(z).

Once φ(z) has been determined, the equation

(19) φ(z)ψR(z)φ(z−1) = θ(z)θ(z−1)

can be formed from which the terms associated with the powers z0, z±1, . . . , z±q

may be extracted:

(20)
[
φ(z)ψR(z)φ(z−1)

]
(−q,q) = θ(z)θ(z−1).

Here we have omitted to apply the subscript to the RHS for the reason that zq

and z−q are manifestly the highest powers z in the product θ(z)θ(z−1).
Solving equation (20) for the coefficients of θ(z) is a matter of finding

the Cramér–Wold decomposition of the Laurent polynomial on the LHS. The
algorithm of Wilson [14], which is based on the Newton–Raphson procedure,
is an effective way of achieving the factorisation; and versions which are coded
in C and in Pascal have been provided by Pollock [11] (See, also, Laurie [9],
[10]).

The remaining issue of this section is the question of how to specify the
coefficients of the Laurent expansion of the function ψR(z) from which the co-
efficients of the rational filter are to be determined by the algorithm described
above. The simplest prescription is to offer to the algorithm the leading coef-
ficients ψj ; j = 0, . . . , p + q of the ideal square-wave ψ(z). However, the ideal
function is positive semi-definite, and, for the algorithm to work, ψR(z) must
be positive definite.

In fact, when they are calculated in finite-precision arithmetic in a manner
which reflects the definition of (7), the square-wave coefficients are unlikely to
constitute even an positive semi-definite function.

9



D.S.G. POLLOCK: SHARP FILTERS

0

0.25

0.5

0.75

1

1.25

0 π/2−π/2 π−π
Figure 5. The gain of a bidirectional low-pass rational filter with a numerator

order of q = 8 and a denominator order of p = 12. The cut-off point is at π/2.

0

0.25

0.5

0.75

1

1.25

0 π/2−π/2 π−π

Figure 6. The gain of a bidirectional low-pass rational filter with a numerator

order of q = 6 and a denominator order of p = 8. The cut-off point is at π/4.
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Figure 7. The gain of a bidirectional rational filter with p = q = 6 and with a cut-

off point π/8. A Blackman window of 30 points has been applied to the coefficients

of the ideal square wave prior to calculating the rational coefficients.
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Figure 8. The pole–zero diagram of the rational function θ(z−1)/φ(z−1). The

degree of θ(z−1) is q = 8 and the degree of φ(z−1) is p = 12. The cut-off point of

the corresponding filter is at π/2. The poles are marked with crosses and the zeros

with circles.

The objective is therefore to find a positive-definite function which ap-
proximates to ψ(z) as closely as possible. For this purpose, it is appropriate to
specify that

(21) ψR(z) = ψT (z)ψT (z−1),

where ψT (z) is the z-transform of a sequence {ψTj} of coefficients formed from
the ideal square-wave sequence {ψj} by processes of truncation and window-
ing. The autoconvolution of the {ψTj}, which is entailed in the product on
the RHS of equation (21), will ensure that, in practice, the function ψR(z)
is positive definite. The properties of symmetry and idempotency whereby
ψ(z) = ψ(z)ψ(z−1), which characterise the ideal square-wave filter, will ensure
that ψR(z) will be close to ψ(z) if ψT (z) is close.

Two examples of {ψTj}, which can be used in forming ψR(z), are provided
by the ordinary truncated sequence of (9) and sequence of (11) which is obtained
by applying the Blackman windows to the truncated sequence. These sequences
have already been investigated from the point of view of their use in forming FIR
filters. The conclusion was that, for realistic values of the parameter M which
denotes the order of the filter, there were severe inadequacies in the FIR filters.
Now, for the purposes of forming the function ψR(z), we are proposing to take
much larger values of M . Experience has demonstrated that the appropriate
value lies anywhere between 30 and 50.
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Figures 5 and 6 represent the gain functions of two rational square-wave
filters, each calculated from a truncated sequence of the coefficients of an ideal
square wave. The truncation point is given by M = 50 in both cases. By any
standards, the transition between the pass band and the stop band is extremely
rapid. It will be noticed that the profiles of both of these filters have spikes
or ears at the ends of the pass band. This feature leads to the violation of
the condition that the gain of the filter should never exceed unity, which is
entailed in the principle of complementarity which has been enunciated in the
introduction. This is one of the costs of securing a rapid transition.

The rapid transition of the gain function is due to the particular placement
in the complex plane of the poles and zeros of the filter. Figure 8, which is
the pole–zero diagram corresponding to the gain function of Figure 5, reveals
two pole–zero pairs which lie close to the intersections of the unit circle with
the imaginary axis. The location of these poles, which accounts for the abrupt
transition in the vicinity of π/2, implies that the filter is operating on the
border of instability.

Figure 7 represents the gain of a rational square-wave filter calculated
from a sequence of coefficients obtained by applying a Blackman window with
M = 30 to the coefficients of an ideal square wave. The effect of the window
has been to reduce the amplitude of the ripples on the profile of the pass band,
including the ears at the ends. This has been at the cost of a slower transition
between the pass band and the stop band.

4. Filtering Finite Sequences

In the preceding sections, the assumption has been made that the domain of
the filter is the set of sequences indexed by {t = 0,±1,±2, . . .} which is the set
of all positive and negative integers. However, the data which will be processed
in practice has only a limited duration.

The principle problem which affects the filtering of limited samples is how
to represent the values which fall outside the sample period. In cases where the
data can be modelled by a stationary stochastic process with a mean of zero,
it may be appropriate to represent the extra-sample values by zeros; and the
filter coefficients can be adapted accordingly when the ends of the sample are
reached.

In econometric analysis, it is common to find data sequences which are
nonstationary and for which the extra-sample values are unbounded. Then
there is no possibility of replacing the values by zeros; and a common recourse
is to extend the sample by extrapolation. However, the difficulties of filter-
ing a nonstationary sequence can be circumvented by applying the filter to
a transformed sequence which has been reduced to stationarity by successive
differencing. Thereafter, the filtered version of the trended sequence can be
recovered from its differenced version.
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The method of differencing can be summarised in the existing notation
which relates to indefinite sequences. Let the differencing operator be denoted
by

(22) (1− L)d = δ(L) = 1 + δ1L+ · · ·+ δdL
d,

and let the differenced sequence and its filtered version be denoted by

(23) d(t) = δ(L)y(t) and z(t) = ψ(L)d(t)

respectively. Then the filtered version of the original data sequence is

(24) x(t) = ψ(L)y(t) = δ−1(L)z(t)

and, given a set of initial conditions x0, x1, . . . , xd−1, the succeeding values
of x(t) can be generated by a simple process of accumulation based on the
equation

(25) xt = zt − δ1xt−1 − · · · − δdxt−d.

The matter of finding the initial conditions with which to begin the process of
recovering the x(t) from z(t) is straightforward.

An alternative approach in generating the filtered version of a trended
sequence makes use of the residual sequence obtained by filtering the differenced
sequence d(t). Thus, if

(26) h(t) = d(t)− z(t)

is the residual sequence, then, instead of equation (24), there is

(27) x(t) = y(t)− δ−1(L)h(t),

and, therefore, we have the option of cumulating h(t) instead of z(t). Moreover,
since δ−1(L)h(t) is likely to be stationary, the danger is reduced that the process
of cumulation will be affected by numerical rounding errors.

In representing the finite-sample versions of the filter and in developing
the associated algorithms, a vector notation is called for; and it is helpful to
employ the finite-sample version of the lag operator which is in the form of a
matrix. Let the data be indexed by t = 0, . . . , T −1 and let the identity matrix
be denoted by

(28) IT = [e0, e1, . . . , eT−1],

13
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where ej represents a column vector with a unit in the position j—counting
from zero—and with zeros elsewhere. Then the finite-sample lag operator is
the matrix

(29) LT = [e1, . . . , eT−1, 0]

which has units on the first subdiagonal and zeros elsewhere. This matrix
may be formed by deleting the leading vector of the identity matrix and by
appending a zero vector to the end of the array.

The finite-sample operator LT is distinguished from the ordinary operator
L = L∞ by the fact that it is nilpotent of degree T such that (LT )T = 0. There
is also a straightforward correspondence between negative powers of L and the
powers or FT = L′T ; but it will be observed that the product of FT and LT is
not the identity operator. The fault lies in the loss of units from either end of
the identity matrix IT .

The lag-operator polynomials which have characterised our analysis can
be converted to matrix operators of order T simply by replacing the L by LT .
Two such matrices, which are of primary importance in this account, are the
d-fold differencing matrix ∆ = δ(LT ) and its inverse Σ = ∆−1 = δ−1(LT )
which is the (d-fold) summation matrix.

Taking differences within a vector entails a loss of information. Thus, if
∆ = [Q∗, Q]′, where Q′∗ has d rows, then the d-th differences of the vector
x = [x0, . . . , xT−1]′ are the elements of the vector z = [zd, . . . , zT−1]′ which is
found in the equation

(30)
[
z∗
z

]
=
[
Q′∗
Q′

]
x.

The vector z∗ = ∆∗x∗ in this equation is a transform of the vector x∗ =
[x0, . . . , xd−1]′ of the initial conditions which are associated with the equation
(25). The matrix of the transformation is the operator ∆∗ = δ(Ld).

To recover x from z requires the d initial conditions or constants of inte-
gration which are provided by z∗. Thus, if Σ = [S∗, S], where S∗ has d columns,
then

(31) x = S∗z∗ + Sz.

This equation represents a non-recursive version of the cumulation described
by equation (25).

The initial conditions can be determined by evaluating the criterion

(32)
Minimise (y − x)′(y − x) = (y − S∗z∗ − Sz)′(y − S∗z∗ − Sz)
With respect to z∗.

14
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The minimising vector is

(33) z∗ = (S′∗S∗)
−1S′∗(y − Sz).

On defining the operator P∗ = S∗(S′∗S∗)
−1S′∗, which is a symmetric idempotent

matrix, the estimated trend may be expressed as

(34) x = P∗y + (I − P∗)Sz.

The disadvantage of this approach to finding the initial conditions is that
it requires successive rows of the matrix S to be generated in the process of
forming the vector Sz. Also, the elements of S∗ must be generated and stored.

We can circumvent the problem of the initial conditions altogether by
seeking the solution to the following problem:

(35) Minimise (y − x)′(y − x) Subject to Q′x = z,

The minimisation is accomplished by evaluating the Lagrangean function

(36) L(x, µ) = (y − x)′(y − x) + 2µ′(Q′x− z).

By differentiating the function with respect to x and setting the result to zero,
we obtain the condition

(37) (y − x)−Qµ = 0,

whence, on premultiplying by Q′ and rearranging, we get

(38) µ = (Q′Q)−1Q′(y − x).

Putting the final expression for µ into (37) and using the condition Q′x = z
gives

(39) x = y −Q(Q′Q)−1(Q′y − z).

This will be recognised as a disguised form of equation (27).
The advantage of this approach to recovering x from z is that, typically,

the matrix Q comprises only a handful of distinct elements. Therefore the
computation is relatively undemanding.

It is easy to demonstrate the equivalence of the solutions under (34) and
(39). Consider writing (39) as

(40) x = y − PQ(y − x),
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where PQ = Q(Q′Q)−1Q′. Next, one can recognise that S∗ and Q are comple-
mentary matrices such that [S∗, Q] has full rank whilst Q′S∗ = 0. It follows
that PQ = I − P∗. This enables us to rewrite equation (40) as

(41) x = P∗y + (I − P∗)x.

The equivalence of the equations (34) and (41) follows from the identity

(42)
(I − P∗)x = (I − P∗)(S∗z∗ + Sz)

= (I − P∗)Sz.

By a judicious use of the finite-sample lag operator, we can also represent
the finite-sample version of the rational filter as a direct adaptation of the
version given under (15). Consider the numerator of filter:

(43) θ(z−1)θ(z) = M(z) = m0 +m1(z−1 + z) + · · ·+mq(z−q + zq),

Setting z = LT−d and z−1 = FT−d gives rise to a Toeplitz matrix M . Likewise
the denominator

(44) φ(z−1)φ(z) = W (z) = w0 + w1(z−1 + z) + · · ·+ wp(z−p + zp),

gives rise to a Toeplitz matrix which we shall denote by W . Therefore a finite-
sample version of the equation

(45) z(t) = ψR(L)d(t) =
θ(F )θ(L)
φ(F )φ(L)

d(t) =
M(L)
W (L)

d(t)

is given by

(46) z = MW−1d = Mg, where g = W−1d.

The vector g can be found via a Cholesky factorisation which setsW = U ′U
where U is an upper-triangular matrix with zero elements above the pth supra-
diagonal band. The equation Wg = d can be cast in the form of U ′f = d,
where f = Ug, and it can be solved for f via a simple recursion which finds
one element at a time. Then g can be recovered from f by a similar recursion
running in the opposite direction. The main use of computer memory is in
storing the elements of the matrix U ′ which has no simple structure, unlike the
φ(LT ) which is a lower-triangular Toeplitz matrix.

The Toeplitz matrix M has zeros everywhere above the qth supra-diagonal
band and below the qth subdiagonal band. Therefore the vector z = Mg can
be found from g via an operation of matrix multiplication which requires very
little computer memory.
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Figure 9. The quarterly figures on Swiss unemployment from 1980.1 to

1996.2 (upper panel) together with their trend obtained by smoothing the

series using a rational low-pass filter with a numerator order of 7 and a

denominator order of 8.

5. The Uses of the Rational Filter

We shall illustrate the uses of the rational filter by applying it to a series of 66
figures which constitute the quarterly unemployment statistics for Switzerland
from the first quarter of 1980 through to the second quarter of 1996. The graph
of this series is given in Figure 9. Our objective is to discover the pattern
of the seasonal fluctuations which surround the longer-term trend. A casual
inspection of the graph would suggest that the seasonal motions have been in
abeyance in the period of rapidly increasing unemployment in the third segment
of the series, only to be resumed when unemployment is stabilised at a higher
level at the end of the series.

The angular velocity of the seasonal fluctuation is π/2 radians, or 90 de-
grees, per period; and our objective of removing the trend would be fulfilled
by eliminating every component of a lesser frequency. In fact, we shall choose
a nominal cut-off point for the filter of 75 degrees. This places the transition
between the pass band and the stop band in an area which corresponds to a
dead space in the periodogram of the data where there are no elements of any
significant power. The existence of this dead space allows us to use a filter of
relatively low orders which has a more gradual transition than would be toler-
ated in more exacting circumstances. The effects of the choices of the cut-off
point and the filter orders can be seen in Figure 10.

Figure 11 shows the residuals of the series after the trend has been ex-
tracted using the low-pass filter. What is remarkable about this series is its
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Figure 10. The gain of a low-pass rational square-wave filter with a numerator

order of 7 and a denominator order of 8. The cut-off point is at 75.0 degrees.
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Figure 11. The residual sequence from detrending the

Swiss unemployment figures using the rational filter.
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Figure 12. The periodogram of the residual sequence obtained by

detrending the Swiss unemployment figures using the rational filter.
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Figure 13. The gain of the Hodrick–Prescott low-pass filter

with a smoothing parameter of 24.
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Figure 14. The residual sequence from detrending the Swiss

unemployment figures using the Hodrick–Prescott filter.
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Figure 15. The periodogram of the residual sequence obtained by detrending

the Swiss unemployment figures using the Hodrick–Prescott filter.
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regularity. The amplitudes of the seasonal fluctuations are clearly related to
the level of unemployment. Thus, in times of high employment, there appears
to be a widespread hoarding of labour which would be subject, at other times,
to seasonal unemployment. This is a feature which one would not have detected
by inspecting the original data series. It also transpires, from Figure 11, that,
far from being in abeyance during the period of rapidly increasing unemploy-
ment, the seasonal fluctuations were present and were of a steadily increasing
amplitude.

The regularity of the residual series is reflected in its periodogram which
is represented in Figure 12. Here, the complete absence of any elements of a
frequency below the cut-off point is a powerful testimony to the efficacy of the
rational filter. The tall spike centred at 90 degrees, or π/2 radians, represents
the power of the seasonal fluctuations.

The effects of a parallel analysis of the unemployment figures which has
used the Hodrick–Prescott filter are represented in Figures 13 to 15. The filter
fails to remove from the residual sequence some of the motions which ought
to be attributed to the trend. The consequences is that the regularity of the
seasonal effect in not apparent in the residual sequence and the false impression
is strengthened that the effect is largely in abeyance during the period of the
rapid increase in unemployment. The fault of the filter is evident in Figure 15
which shows that it has allowed some powerful low-frequency elements to pass
through into the residual series.

This example emphasises the need to use sharp filters in analysing eco-
nomic time series.
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