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1. Introduction

The econometric methods of signal extraction have attained a high degree of so-
phistication. The X-11 method is still the prevalent one. It was the culmination
of the pioneering work undertaken by Julius Shiskin in the U.S. Bureau of Census
in the 1950’s and 1960’s, and it was described by Shiskin et al. (1967).

The X-11 computer program has undergone numerous improvements and mod-
ifications, leading to the X-11-ARIMA software packages of 1975 and 1988. (See
Dagum 1980, 1988.) A more recent incarnation is in the X-12-ARIMA package.
(See Findley et al. 1998.) Much of the relevant information on the method has
been provided in a monograph of Ladiray and Quenneville (2001).

Some of the statistical agencies have now shifted their emphasis away from the
X-11 method toward model-based procedures. The dominant model-based method
is based on the model of Box and Jenkins (1976) of airline passenger data. It
is implemented in the TRAMO–SEATS program of Maravall and others. (See
Caporello and Maravall 2004.)

There are indications that the Census Bureau is becoming more eclectic in
its approach to seasonal adjustment (see Monsell, Aston and Koopman 2003 and
Monsell 2009), and it has released a program that incorporates modules of both the
X-11 program and the SEATS program. (See U.S. Census Bureau 2013.) Another
model-based procedure that has become increasingly current, albeit to a lesser
extent, is the structural approach of STAMP. (See Koopman et al. 2000.)
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Both of the above-mentioned model-based procedures depend on the fitting
of ARIMA models to the data. The requirement to estimate the models imposes
restrictions on their structures, which render them identifiable. The two procedures
secure the identifiably of their models in different ways.

In some contexts, it may be appropriate to forego the estimation of a model
and to specify its parameters in the light of the salient spectral characteristics of
the data. This can be a useful recourse when there is difficulty in estimating an
appropriate model, as may be the case when there are structural changes in the
processes generating the data.

We will propose another model-based procedure that allows the parameter
values to be specified instead of estimated. It has been implemented in the com-
puter program IDEOLOG, which is available, together with its code in Pascal, at
the address

http://www.le.ac.uk/users/dsgp1/

It must be said that this program contains none of the facilities that are available
in TRAMO-SEATS and STAMP for dealing with the various data anomalies that
are liable to afflict the business of seasonal adjustment.

One of the purposes of this paper is to compare the features of these model-
based approaches and to describe a common way in which they can be implemented
that differs from the contrasting ways followed by TRAMO-SEATS and STAMP.

Another purpose of the paper is to provide an alternative method of data
decomposition that does not depend on the specification an ARIMA model. This
is a frequency-domain method that is based on the concepts of Fourier analysis. It
possesses certain flexibilities that enable it to serve different purposes from those
of the aforementioned ARIMA procedures.

In particular, the frequency-domain method facilitates the isolation of com-
ponents that are band-limited in frequency and which thereby constitute analytic
functions. In the context of business cycle analysis, this will enable one to find the
turning points very easily by the methods of differential calculus.

In order to achieve a viable exposition of these various methods, we shall need
to punctuate the account by descriptions of the underlying mathematical methods.
This will give rise, unavoidably, to a somewhat disjunct account. After describing
some of these mathematical methods, we shall embark on an account of the Wiener–
Kolmogorov method of signal extraction, which is common to the ARIMA-based
methods of signal extraction and to which the frequency-domain method can also
be assimilated, as has been shown by Pollock (2007).

2. Mathematical Difficulties

For the most part, the theory of signal extraction, as expounded by electrical
engineers, presupposes continuous signals of finite duration and of finite energy,
which means that they are square integrable. The sampled signals are therefore
assumed to be absolutely summable and they are amenable to the z-transform
within well-defined regions of convergence. Such signals are also amenable to an
ordinary Fourier analysis.

The preponderant methods of statistical time series analysis cater to discrete-
time signals that are statistically stationary. The signals are typically defined over
a doubly-infinite index set, and they are not summable. Therefore, the emphasis
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is shifted from the signals to their autocovariance functions, which, according the
assumptions of ergodicity, are absolutely summable.

In particular, the conditions that guarantee the stability of an autoregressive
moving-average process are sufficient to ensure that the z-transform of its auto-
covariance function, which is described as the autocovariance generating function,
will converge everywhere on the circumference of the unit circle in the complex
plane.

The spectral density function of the process is generated as the complex ar-
gument z of the autocovariance generating function travels around the circum-
ference of the unit circle. Moreover, although stationary stochastic signals are
not amenable to an ordinary Fourier analysis, they are amenable to a generalised
harmonic analysis of the sort that was originally propounded by Wiener (1930).

In econometric applications, the data sequences commonly exhibit strong
trends. Therefore, they are not directly amenable to the analysis of doubly-infinite
stationary processes. A common recourse has been to reduce the data to station-
arity by taking their differences and to proceed with the analysis of the stationary,
differenced sequences.

When parametric models are required of trending data, these are liable to be
linear stochastic models of the ARIMA variety incorporating roots of unit mod-
ulus within the autoregressive operators, which will be removed by a process of
differencing.

However, the unit roots within the models pose certain unavoidable mathe-
matical difficulties. These inhibit the free use of the ordinary polynomial algebra
in manipulating the equations of such models. The problems can be illustrated by
the simple first-order difference operator, which is the polynomial ∇(z) = 1 − z
that has a single real-valued root of unity.

This operator would be effective in reducing a first-order random walk y(t) =
{yt = yt−1 + εt; t = 0, 1, 2, . . .}, defined on the non-negative integers, to a white
noise sequence ε(t) = {εt = yt − yt−1; t = 0, 1, 2, . . .}. Thus, on defining y(z) =
{y0 + y1z + y2z2 + · · ·} and ε(z) = {ε0 + ε1z + ε2z2 + · · ·} and on adopting the
conventions that y−1 = 0 and that y0 = ε0, we have

ε(z) = (1 − z)y(z) and, conversely, y(z) = (1 − z)−1ε(z). (1)
Provided that z lies within the unit circle, even within an epsilon of its circumfer-
ence, then these series will converge. However, if y(t) = {yt; t = 0,±1,±2, . . .} and
ε(t) = {εt; t = 0,±1,±2, . . .} are stationary processes defined on a doubly-infinite
index set, then neither of the series will converge.

There is no wholly satisfactory resolution for these problems; and one is liable
to take a mixed approach that obeys the necessary restrictions in some contexts
and that disregards them in others. The easements that are afforded by ignoring
the non-stationarity implied by the presence of autoregressive unit roots are at
the cost of having to accept improper rational transfer functions, for which there
are no convergent power-series expansions, and pseudo spectral density functions
that are unbounded at certain frequencies. However, although such an approach is
liable to mislead an incautious analyst, the insights that are afforded by a spectral
analysis, albeit an improper one, cannot be willingly foregone.

In the section that follows, we shall employ a matrix formulation to accom-
modate the case of a trended sequence of a finite duration, and, in subsequent
sections, we shall revert to the (improper) z-transform notation.
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3. Lower-Triangular Toeplitz Matrices

The algebra of the conventional econometric approach to ARIMA-based signal
extraction can be expressed in terms of lower triangular (L-T) Toeplitz matrices.
Such matrices are closely related to ordinary algebraic polynomials with which
they share the essential property of commutativity. The matrices that correspond
to monic polynomials or to polynomials with a leading nonzero coefficient are of
full rank.

Consider the polynomial

α(z) = α0 + α1z + · · · + αp−1z
p−1 + αpz

p (2)

of degree p, and let LT = [e1, e2, . . . , eT−1, 0] be the matrix lag operator of order T
derived from the identity matrix IT = [e0, e1, e2, . . . , eT−1] by deleting the leading
column and by adding a column of zeros to the end of the array. Then, the
corresponding L-T Toeplitz matrix of order T is obtained by replacing the powers
of z by powers of LT :

A = α(LT ) = α(z) = α0IT + α1LT + · · · + αp−1L
p−1
T + αpL

p
T . (3)

An example of this matrix is as follows:

A =





α0 0 · · · 0 0 0 · · · 0 0
α1 α0 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
αp−1 αp−2 · · · α0 0 0 · · · 0 0

αp αp−1 · · · α1 α0 0 · · · 0 0
0 αp · · · α2 α1 α0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · αp αp−1 αp−2 · · · α0 0
0 0 · · · 0 αp αp−1 · · · α1 α0





=
[

Q′
∗

Q′

]
. (4)

Here, the matrix has been partitioned with the first p rows in Q′
∗ and with the

remaining T − p rows in Q′. The latter contains the complete set of polynomial
coefficients within each of its rows. (Notwithstanding a feature of this example, it
should not be supposed that, in general, Q′ comprises p + 1 rows.)

By removing the first (or the last) q rows and columns from Q′, we obtain a
submatrix that has the same essential structure as Q′, with the coefficients of α(z)
in each row and with αp as its leading element. On removing from Q′ the q leading
rows alone, we obtain a matrix with q leading columns that contain zero-valued
elements.

A typical use of the structure of (4) concerns the application of p-fold differ-
encing operator to a vector y of order T generated by an ARIMA process. Usually,
the ARIMA process is assumed to have p roots of unity within the autoregressive
operator, and its forcing function is assumed to be a white-noise process of zero
mean. In that case, the result from taking p differences is a stationary stochastic
process of zero mean.

An alternative assumption regarding the forcing function is that is has a
nonzero mean. In that case, we should assume that the ARIMA process has p− 1
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unit roots. Then, the nonzero mean of the forcing function, in conjunction with the
unit roots, will give rise to a polynomial of degree p − 1. The result from taking p
differences will be, once more, a stationary stochastic process of zero mean, albeit
one that might be described as over-differenced. (see Harvey 1989, for example.)

The matrix version of the p-fold difference operator is ∇p = (IT −LT )p. This
matrix may be partitioned as ∇p = [Q∗, Q]′ where Q′

∗ = [Ip, 0]∇p has p rows
and where Q′ = [0, IT−p]∇p has T − p rows. The inverse may be partitioned
conformably such that ∇−p = [S∗, S], where S∗ and S have p and T − p columns,
respectively.

A common example of the multiple difference operator and its inverse is pro-
vided in the case of p = 2, illustrated by setting T = 5:

∇2
5 =

[
Q′

∗
Q′

]
=





1 0 0 0 0
−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1




,

∇−2
5 = [S∗, S ] =





1 0 0 0 0
2 1 0 0 0
3 2 1 0 0
4 3 2 1 0
5 4 3 2 1




.

(5)

When the differencing operator is applied to a vector y, the first p elements
of the product, which are in d∗, are not true differences and they are liable to be
discarded:

∇py =
[

Q′
∗

Q′

]
y =

[
d∗
d

]
. (6)

However, if the elements of d∗ are available, then the vector y can be recovered via
the equation

y = S∗d∗ + Sd. (7)

The columns of the matrix S∗ provide a basis for the set of polynomials of
degree p−1 defined over the integer values t = 0, 1, . . . , T −1. Therefore, b = S∗d∗
is a vector of the ordinates of a polynomial that is interpolated through the first
p sample points, indexed by t = 0, 1, . . . , p − 1 and that is extrapolated over the
remaining integers t = p, p + 1, . . . , T − 1, whilst d∗ can be regarded as a vector
of p polynomial parameters. The polynomial may be described as the initial drift
function.

The trajectory of b = S∗d∗ is liable to depart from that of the data as the
sample evolves. The broad trajectory of the data can be described by projecting
the data vector y onto the manifold of S∗ to give

f = S∗(S′
∗S∗)−1S′

∗y. (8)

This vector contains the ordinates of a polynomial that is interpolated through the
midst of sample data as a whole, in fulfilment of a least-squares criterion. The
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polynomial may be described as the (interpolated) drift function or as the broad
trend.

Given that Z = [Q, S∗] is a square matrix of full rank with Q′S∗ = 0, it follows
that

Z(Z ′Z)−1Z ′ = Q(Q′Q)−1Q′ + S∗(S′
∗S∗)−1S′

∗ = I. (9)

Therefore, the broad trend can also be represented by

f = y − Q(Q′Q)−1Q′y

= y − u,
(10)

where u = Q(Q′Q)−1Q′y is the vector of regression residuals.
The residual vector u contains the same information as the vector d = Q′y of

differences. Both vectors represent stationary sequences of zero mean that should
be readily amenable to filtering. A vector obtained by an appropriate lowpass
filtering of u may be added to f to produce a more refined representation of the
trend that underlies the data.

4. A Model of Unobserved Components

A typical econometric time series is a trend that is affected by seasonal fluctuations
and irregular disturbances. A vector of T observations is described by the equation

y = ξ + η = (ρ + κ) + η, (11)

where ρ is the trend component, κ is the seasonal component and η is the irregular
component.

The vectors ρ and κ are assumed to be the products of ARIMA processes—the
trend process involving real-valued unit roots and the seasonal process involving
complex roots of unit modulus. The composite vector ξ = ρ+κ is described as the
nonstationary component.

The vector η is usually regarded as having been generated by a white-noise
process, of which the expected value E(η) and the variance-covariance or dispersion
matrix D(η) are

E(η) = 0 and D(η) = Ωη = σ2
ηIT . (12)

The estimates of the components ξ, ρ, κ and η may be denoted by the corre-
sponding Roman letters x, r, k and h; so that the estimated version of the equation
(11) would be

y = x + h = (r + k) + h. (13)

The composite operator ∆ = ∇2Σ that is commonly employed in reducing y to
stationarity is the product of the detrending operator ∇p = (IT −LT )p, with p = 2,
and the deseaonalising operator Σ = (I − Ls

T )(I − LT )−1 = I + LT + · · · + Ls−1
T ,

where s is, typically, the number of months or quarters in a year. The operator is
partitioned as ∆ = [Q∗, Q]′, where Q′

∗ has p+s−1 rows and T columns, and there
is an inverse matrix ∆−1 = [S∗, S], where S∗ has p + s − 1 columns and T rows.

Applying the operator ∆ to equation (11) gives

g = Q′y = Q′(ρ + κ) + Q′η and g∗ = Q′
∗y. (14)
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The components Q′ρ and Q′κ are over-differenced, and ρ and κ would be
reduced to stationarity, instead, by the component operators ∇2 and Σ respectively.
Thus

∇2ρ =
[

Q′
∗∇

Q′
∇

]
ρ =

[
ε∗
ε

]
and Σκ =

[
Q′

∗Σ
Q′

Σ

]
κ =

[
ζ∗
ζ

]
, (15)

where Q∗∇ has p rows and Q∗Σ has s − 1 rows. These matrices comprise lead-
ing lower-triangular matrices followed by columns of zeros. It is assumed that
the subvectors ε and ζ are characterised by statistically independent stationary
distributions with

E(ε) = µ, D(ε) = Ωε and E(ζ) = 0, D(ζ) = Ωζ . (16)

We define ∇−2 = [S∗∇, S∇] and Σ−1 = [S∗Σ, SΣ]. Given the appropriate initial
conditions in ε∗ and ζ∗ as well as the vectors ε and ζ, it is possible to recover the
nonstationary vector ξ and its component vectors via

ξ = ρ + κ

= [S∗∇ S∇ ]
[

ε∗
ε

]
+ [ S∗Σ SΣ ]

[
ζ∗
ζ

]
.

(17)

The parameter µ = E(ε) of (16) may be described as the drift parameter of
the stochastic trend component ρ. Given that there is twofold summation, the
assumption can made that µ = 0. In the case that ρ has been generated by an
ARIMA process with two units roots and with a zero-mean forcing function, the
twofold differencing of the data will produce a zero-mean process. Its twofold
summation will produce a linear function b = S∗∇ε∗ in the manner of equation (7).

In the case where ρ has been generated by an ARIMA process with a single
unit root and a forcing function with a nonzero mean, such as a random walk with
drift, twofold differencing will also produce a mean-zero stationary process, which
will give rise again to a linear function b = S∗∇ε∗ through twofold summation.
There will be no need, in the sequel, to distinguish between these two cases; and
we may adopt the assumptions of the former, whereby there are p = 2 unit roots
and µ = 0.

The object is to estimate the components η, ρ and κ of equation (11) by taking
account of the distributional properties of the stationary vectors η, ε and ζ and by
using the information that is contained within g = Q′y of (14).

The strategy is to decompose y = x + h into x and h, which are the estimates
of the nonstationary component ξ and of the irregular component η, respectively.
Thereafter, x = r + k is decomposed into the estimate r of the trend component ρ
and the estimate k of the seasonal component κ. The latter estimates are derived
from the estimates e and z of the vectors ε and ζ, which contain the elements of
the relevant forcing functions.

There are
Q′ = [ 0 In ]∆ and ρ = ∇−2

[
ε∗
ε

]
, (18)

where n = T − p − s + 1. Therefore, since ∆ = Σ∇2 implies that ∆∇−2 = Σ, the
first component of g is

Q′ρ = [ 0 In ]∆∇−2

[
ε∗
ε

]
= [ 0 In ]Σ

[
ε∗
ε

]
= Q′

Σ
ε, (19)
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Here, [0, In]Σ is a matrix of order (T −p−s+1)×T , which is obtained by deleting
p + s − 1 rows from Σ. It has p leading columns of zero-valued elements, which
is the number of elements in ε∗. Deleting p columns of zeros from this matrix
produces the matrix Q′

Σ
.

An analogous expression for the second component of g is

Q′κ = [ 0 In ]∆Σ−1

[
ζ∗
ζ

]
= [ 0 In ]∇2

[
ζ∗
ζ

]
= Q′

∇
ζ. (20)

Substituting from (19) and (20) into (14) gives

g = Q′y = Q′ρ + Q′κ + Q′η

= Q′
Σ
ε + Q′

∇
ζ + Q′η.

(21)

According to the Wiener–Kolmogorov principle, the estimates of the compo-
nents of y are provided by their conditional expectations. The estimate of the
irregular component η is given by

h = E(η|g) = C(η, g)D−1(g)g, (22)

wherein there are

C(η, g) = ΩηQ and D(g) = Q′
Σ
ΩεQΣ

+ Q′
∇
ΩζQ∇

+ Q′ΩηQ, (23)

which follow directly from (21). Then, an estimate of ξ = ρ+κ = y− η is given by

x = E(ξ|y) = y − h, (24)

Having extracted the irregular component from the data, it is now a matter
of dividing the residue between the two nonstationary components—i.e. the trend
ρ and the seasonal component κ. For this purpose, the following estimates of the
two forcing functions ε and ζ are required:

e = E(ε|g) = C(ε, g)D−1(g)g and z = E(ζ|g) = C(ζ, g)D−1(g)g. (25)

Here,
C(ε, g) = ΩεQΣ

and C(ζ, g) = ΩζQ∇
. (26)

By replacing the unknown elements of (17) by their various estimates, we get

x = r + k

= [S∗∇ S∇ ]
[

e∗
e

]
+ [ S∗Σ SΣ ]

[
z∗
z

]
.

(27)

Rearranging this gives

x − [ S∇ SΣ ]
[

e
z

]
= [S∗∇ S∗Σ ]

[
e∗
z∗

]
. (28)
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These equations can be solved for e∗ and z∗, for which purpose only the first p+s−1
rows of the system are required. Thereafter, the estimates for ρ and κ are given by

r = S∗∇e∗ + S∇e and k = S∗Σz∗ + SΣz. (29)

The LHS of equation (28) might be simplified by replacing e and z, respectively,
by the zero-valued expectations E(ε) = 0 and E(ζ) = 0; but it is doubtful whether
this would be a justifiable recourse.

What has been recounted here is essentially the method proposed by Bell
(1984) and elaborated in an unpublished paper of Bell and Hillmer (1988), which
has been referenced recently by McElroy and Sutcliffe (2006) and by McElroy
(2008).

5. Linear Stochastic Models

There are three alternative, but closely related, linear stochastic models that can be
accommodated within the equations for signal extraction that have been presented
in the foregoing section.

To express these models in the most direct manner, it is appropriate to adopt
the z-transform algebra that pertains to doubly-infinite sequences. However, it is
commonly supposed that the fundamental forcing functions of the models take the
form of stationary white-noise sequences. When the unit root autoregressive oper-
ators of the models are applied to such sequences, the results will be unbounded,
almost surely.

To avoid the mathematical difficulty of unbounded sequences, it might be
convenient to assume that, whereas they are defined on doubly-infinite index sets,
the forcing functions take nonzero values only on a finite set of contiguous indices.
This is, of course, in contradiction to the common statistical assumptions. However,
in this way, the z-transform algebra becomes acceptable.

The Airline Passenger Model and TRAMO–SEATS

The first of the linear stochastic models to be considered is the airline passenger
model of Box and Jenkins (1976). This is represented by the equation

y(z) =
N(z)
∆(z)

ε(z) =
{

(1 − φz)(1 −Θzs)
(1 − z)(1 − zs)

}
ε(z), (30)

where N(z) and ∆(z) are polynomial operators and y(z) and ε(z) are, respectively,
the z-transforms of the output sequence y(t) = {yt; t = 0,±1,±2, . . .} and of the
input sequence ε(t) = {εt; t = 0,±1,±2, . . .} of unobservable white-noise distur-
bances. The integer s stands for the number of periods in the year, which are s = 4
for quarterly data and s = 12 for monthly data. In deriving the filters, an arbitrary
value can be attributed to the variance of the input sequence; and it is convenient
to set this to unity. The expectation is that the estimated model will indicate that
φ,Θ ∈ [0, 1).

The polynomial 1 − zs within the denominator of equation (30) has its roots
at the points exp{i(2π/s)j}; j = 0, 1, . . . , s − 1. These so-called roots of unity are
disposed around the circumference of the unit circle in the complex plane on radii
that form angles of ωj = 2πj/s radians from the horizontal.
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The angle ω1 = 2π/s corresponds to the fundamental seasonal frequency. To-
gether with the conjugate frequency ω−1 = ωs−1, it relates to a sinusoidal element
that completes its cycle in s periods. The frequencies ωj and their conjugates
ω−j = ωs−j with 2 ≤ j ≤ s/2 relate to the harmonics of the fundamental seasonal
element, which are also involved in the synthesis of the seasonal fluctuations. In
the case of s = 12, the angles, or the arguments of the roots, expressed in degrees,
are ωj = j × 30◦; j = 0, 1, . . . , 11.

Given the identity 1− zs = (1− z)Σ(z), where Σ(z) = 1+ z + · · ·+ zs−1 is the
seasonal summation operator, it follows that the denominator polynomial may be
expressed as

∆(z) = (1 − z)(1 − zs) = ∇2(z)Σ(z), (31)

where ∇(z) = 1 − z is the backward difference operator. This is how it will be
expressed in much of the sequel.

Within the numerator of equation (30), there is the polynomial 1 − Θzs. If
Θ > 0, then the roots of this polynomial will be found on a circle of radius Θ−1/s

and at the same angles ωj = 2πj/s; j = 0, 1, . . . , 11 as the roots of 1−zs. If Θ < 0,
then the roots would be found at the same angles ωj = (π+2πj)/s; j = 0, 1, . . . , 11
as the roots of 1+ zs. Thus, in the case of s = 12, the angles, expressed in degrees,
will be ωj = 15◦ + (j × 30◦); j = 0, 1, . . . , 11.

The TRAMO–SEATS program effects a decomposition of the data into a sea-
sonal component and a non-seasonal component that are described by statistically
independent processes driven by separate white-noise forcing functions. It espouses
the principle of canonical decompositions that has been expounded by Hillmer and
Tiao (1982).

The first step in this decomposition entails the following partial-fraction de-
composition of the generating function of the autocovariances of y(t):

N(z−1)N(z)
∆(z−1)∆(z)

=
Pρ(z)

∇2(z−1)∇2(z)
+

Pκ(z)
Σ(z−1)Σ(z)

+ φΘ. (32)

The decomposition is effected most readily by casting the LHS of the equation
above in the form of a trigonometrical polynomial. Here, φΘ is the quotient of the
division of N(z−1)N(z) by ∆(z−1)∆(z), which must occur before the remainder,
which will be a proper fraction, can be decomposed.

In the preliminary decomposition of (32), the first term on the RHS corre-
sponds to the trend component, the second term corresponds to the seasonal com-
ponent and the third term corresponds to the irregular component. Hillmer and
Tiao (1982) have provided expressions for the numerators of the RHS, which are
somewhat complicated, albeit that the numerators can also be found by numerical
means.

The expectation is that both Pρ(z) and Pκ(z) will be positive definite-functions
that are amenable to a Cramér–Wold factorisation of the form P (z) = R(z−1)R(z).
This will allow the corresponding rational functions to be interpreted as the autoco-
variance generating functions of mutually independent ARIMA processes. More-
over, if φΘ > 0, then this quotient will correspond to the flat spectrum of a
white-noise process.

If these conditions of positivity are violated, then it may be possible to amend
the situation by making scalar adjustments to the terms. The sum of any such

10
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adjustments must be zero. In fact, Hillmer and Tao have proved that, if Θ > 0,
then there will always be an acceptable decomposition of the aggregate model
of equation (30), in which the trend component and the seasonal component are
represented by ARIMA processes and the irregular component is white noise.

The principle of canonical decomposition proposes that the estimates of the
trend and of the seasonal component should be devoid of any elements of white
noise. Therefore, both spectra must be zero-valued at some point in the interval
[0,π]. Let λρ and λκ be the minima with respect to ω, when z = exp{−iω}, of the
rational functions of (32) that are associated with the trend and the seasonal com-
ponents, respectively. By subtracting these values from their respective functions,
a revised decomposition is obtained that fulfils the canonical principle. This is

N(z−1)N(z)
∆(z−1)∆(z)

=
U(z−1)U(z)
∇2(z−1)∇2(z)

+
V (z−1)V (z)
Σ(z−1)Σ(z)

+ λ, (33)

where λ = φΘ + λρ + λκ.
The Wiener–Kolmogorov principle of signal extraction indicates that the filter

that serves to extract the trend from the data sequence y(t) should take the form
of

βT (z) =
U(z−1)U(z)
∇2(z−1)∇2(z)

× ∆(z−1)∆(z)
N(z−1)N(z)

=
U(z−1)U(z)
N(z−1)N(z)

× Σ(z−1)Σ(z).
(34)

This is the ratio of the autocovariance generating function of the trend component
to that of the process as a whole. This filter eliminates the elements at the seasonal
frequencies in the process of extracting a trend that is relatively free of high-
frequency elements. The nullification of these elements is due to the factor Σ(z).

The gain of the trend-extraction filter is depicted in Figure 1. Here, the values
of φ = 0.4 and Θ = 0.6 that determine the polynomial N(z) are the estimates of
Box and Jenkins (1976). The filter might be an appropriate device for seasonal
adjustment if the high-frequency elements that it serves to attenuate are liable to
be regarded as a noisy contamination of no economic significance. In that case, as
we shall propose later, it might be best to be remove them completely from the
data.

The seasonal-adjustment filter, which nullifies the elements at the seasonal
frequencies without further attenuating the high-frequency elements of the data, is
marginally more complicated. Define

W (z−1)W (z)
∇2(z−1)∇2(z)

=
U(z−1)U(z)
∇2(z−1)∇2(z)

+ λ. (35)

Then, the seasonal-adjustment filter is

βA(z) =
W (z−1)W (z)
N(z−1)N(z)

× Σ(z−1)Σ(z). (36)

The gain of this filter is shown in Figure 2. Further examples of its gain, for various
values of the parameters φ and Θ, are provided in the paper of Findley and Martin
(2006).
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Figure 1. The gain of the trend extraction filter associated with the monthly airline

passenger model.
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Figure 2. The gain of the seasonal-adjustment filter associated with the monthly airline

passenger model.

The filters derived from the canonical decomposition of the airline passenger
model can be derived from a meta-model defined by the equation

y(z) =
U(z)
∇2(z)

ε(z) +
V (z)
Σ(z)

ζ(z) + η(z)

= ρ(z) + κ(z) + η(z).
(37)

Within this model, unit variances would be attributed to the stochastic sequences
ε(t) and ζ(t), whereas λ would be the variance of η(t).

Whereas no explicit expressions are available for U(z) and V (z), the expres-
sions for Ωε(z) = U(z−1)U(z) and Ωζ(z) = V (z−1)V (z) have been provided by
Hillmer and Tao (1982). On substituting the matrices LT and L′

T for z and z−1,
respectively, within these expressions, the corresponding finite-sample dispersion
matrices of equation (16) are derived. Thus, the necessary elements for the finite-
sample implementation of the filters, according to the methods described in section
4, are readily available.

Various generalisations of the airline passenger model can be proposed that
replace the numerator N(z) of equation (32) by a more flexible function. Thus,

12
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the product N(z) = (1 − φz)(1 −Θzs) can be replaced by

N(z) = α(z)β(z) = (1 + α1z + α2z
2)(1 + β1z + · · · + βs−1z

s−1). (38)

Here, the terms α(z) and β(z) can be coupled with the terms ∇2(z) and Σ(z), which
are the trend factor and the seasonal factor, respectively, in the decomposition of
∆(z) in equation (31). It will be observed that the parameter Θ of the model
of equation (30) has an effect on both the trend component and the seasonal
component. Such cross-coupling is avoided by equation (38).

If s = 4, 12, then β(z) is liable to be specified as the product of the factors

1 − 2γj cos(2πj/s) + γ2
j ; j = 1, 2, . . . , (s − 2)/2 and 1 + γs/2. (39)

These factors correspond to the fundamental seasonal element and the harmonically
related elements, including the final element at the Nyquist frequency of π radians
per sample interval. Such generalisations have been pursued by Findley and Martin
(2006).

The Structural Times Series Model and STAMP

The so-called structural time series model, which is the basis of the STAMP
program, can be expressed via the equation

y(z) =
{

zν(z)
∇2(z)

+
ξ(z)
∇(z)

}
+

ζ(z)
Σ(z)

+ η(z)

= ρ(z) + κ(z) + η(z),
(40)

wherein ζ(z), ξ(z), ν(z) and η(z) are the z-transforms of independently distributed
white-noise sequences. The structural model is well identified and its estimation
requires only the determination of the variances of the four white-noise processes.

The first two terms on the RHS of (40) can be combined to give

ρ(z) =
zν(z)
∇2(z)

+
ξ(z)
∇(z)

=
1 − µz

∇2(z)
ε(z), (41)

which stands for a doubly integrated first-order moving-average process wherein
ε(t) is also a white-noise process. This component of the model is intended to
capture the trend in the data.

By combining the terms of equation (40), an ARIMA model is derived that has
the same autoregressive operator as the airline passenger model as well as a mov-
ing average operator of the same order. Therefore, notwithstanding the different
restrictions that are applied to the moving-average coefficients, it is unsurprising
that these models should deliver similar estimates of the aggregate autocovariance
function, as has been observed by Maravall (1985).

The differences between the filters derived from the STAMP model and those
that are derived from the airline passenger model are mainly on account of the
principle of canonical decomposition that is applied to the latter. However, there
is no reason why the principle cannot be applied to the STAMP model as well.

Figure 3 shows, via the continuous line, the gain of the trend-estimation filter
that is derived from the STAMP model. Also shown on the diagram, via the
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Figure 3. The gain of the trend extraction filter associated with the structural time

series model (the solid line) together with that of the canonical version of the filter (the

broken line).

broken line, is the canonical version of the filter. This is obtained by subtracting
the white-noise contaminations from the trend and the seasonal components and
by assigning them to the irregular component. It will be observed that frequency
responses of the canonical filters of the airline passenger model and of the STAMP
model are similar.

In practice, in the absence of the canonical modification, it will be found
that, whenever the data sequence has a significant proportion of high-frequency
variation, the trend that is estimated by the STAMP procedure will have a rougher
profile than the estimate of TRAMO–SEATS. (See Pollock, 2002.)

The Model-Based Procedure of IDEOLOG

A further method that is aimed at the seasonal adjustment of the data is based
on an heuristic model in which the underlying trajectory of the data is typically
represented by a polynomial function, albeit that other functions may serve the
purpose. The equation of the model is

y(z) = ρ(z) +
Σ(θz)
Σ(z)

ζ(z) + η(z)

= ρ(z) + κ(z) + η(z),
(42)

where y(z) is the z-transform of the logarithms of the data and where ρ(z) is z-
transform of the underlying trajectory of the data, or its broad trend. Also, ζ(z)
and η(z) correspond to mutually independent white-noise processes.

The model incorporates a representation of the seasonal component, which
embodies the numerator polynomial

Σ(θz) = 1 + θz + θ2z2 + · · · + θs−1zs−1 =
1 − θszs

1 − θz
, (43)

where θ < 1 is a positive number close to unity. Thus, in comparing equation (42)
with equation (30) of the airline passenger model, and assuming that Θ = θs > 0,
we see that

N(z)
∆(z)

=
(1 − φz)(1 − θz)Σ(θz)

(1 − z)2Σ(z)
. (44)
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Figure 4. The gain of the seasonal adjustment filter associated with the monthly version

of the heuristic model. The solid line corresponds to the parameters θ = 0.99 and

λ = σ2
η/σ2

ζ = 0.125 and the broken line corresponds to the parameters θ = 0.6 and

λ = 0.125.
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Figure 5. The effect of applying seasonal adjustment filter of the heuristic model to the

logarithms of the monthly index of U.S. total sales from January 1953 to December 1964.

The parameters of the model are θ = 0.99 and λ = σ2
η/σ2

ζ = 0.125.

The additional factor {(1− φz)(1− θz)}/(1− z)2 of the airline passenger model is
the means by which it captures the trend in the data.

The seasonal-adjustment filter that extracts η(z) from g(z) = y(z) − ρ(z) is
also the filter that extracts Σ(z)η(z) from

Σ(z)g(z) = Σ(θz)ζ(z) + Σ(z)η(z). (45)

The z-transform of the filter, which is derived according to the Wiener–Kolmogorov
principle, is

βC(z) =
σ2

ηΣ(z)Σ(z−1)
σ2

ηΣ(z)Σ(z−1) + σ2
ζΣ(θz)Σ(θz−1)

. (46)

Setting z = exp{−iω} and letting ω run from 0 to π generates the frequency
response of the filter. The modulus or gain is plotted in Figure 4 for the case where
θ = 0.99 and λ = σ2

η/σ2
ζ = 0.125, via the solid line, and for the case where θ = 0.6,
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via the broken line. There is hardly a difference between the gain in Figure 4, in
the latter case, and that of Figure 2, which relates to the seasonal-adjustment filter
associated with the airline passenger model.

In fact, βC(z) is a classic comb filter in which the zeros of the polynomial
Σ(z), which are located on the perimeter of the unit circle, are balanced by poles
of the polynomial Σ(θz) that fall on the same radii but which are located outside
the circle at a short distance from the perimeter.

The poles counteract the effects of the zeros, except in the neighbourhoods of
the seasonal frequencies and its harmonics, where the zeros account for the notches
in the gain function. As θ → 1, the gain of the filter approaches unity at all points
other than those in the vicinities of the zeros, which eliminate the elements at the
seasonal frequency and its harmonics.

To derive the finite-sample version of the Wiener–Kolmogorov filter, we may
consider a vector g = [g0, g1, . . . , gT−1, ]′ that has a seasonal component κ and a
noise component η:

g = y − ρ = κ + η. (47)

To cast the equations into a form analogous to (45), it is necessary to define
the matrix counterparts of the polynomial operators Σ(θz) and Σ(z). By replacing
z in the polynomial operators by the matrix LT = [e1, e2, . . . , eT−1, 0], we get

Σ(θLT ) =
[

Q′
∗Θ

Q′
Θ

]
and Σ(LT ) =

[
Q′

∗Σ
Q′

Σ

]
. (48)

These are banded lower-triangular Toeplitz matrices. Since the matrices Q′
∗Θ and

Q′
∗Σ suffer from end effects, they are liable to be discarded leaving Q′

Θ and Q′
Σ,

which are of order (T − s + 1) × T .
With these matrices, the following equation is formed, which is the matrix

analogue of (45):
Q′

Σg = Q′
Θζ + Q′

Ση. (49)

Here, ζ is a vector of order T of white-noise elements from the sequence ζ(t). A
demonstration by Pollock (2007) serves to show that the minimum-mean-square-
error estimate of the vector η is given by

h = QΣ(Q′
ΣQΣ + λ−1Q′

ΘQΘ)−1Q′
Σg. (50)

The matrix of the transformation mapping from g to h is seen to be the analogue
of the filter function βC(z) of (46).

A simple procedure for calculating the estimate of h is to solve the following
equations in succession:

(Q′
ΣQΣ + λ−1Q′

ΘQΘ)b = Q′
Σg and h = QΣb. (51)

Since Q′
ΣQΣ and Q′

ΘQΘ correspond to the narrow-band dispersion matrices of
moving-average processes, the solution to the first equation of (51) may be found
via a Cholesky factorisation that sets Q′

ΣQΣ + λ−1Q′
ΘQΘ = GG′, where G is

a lower-triangular matrix with a limited number of nonzero bands. The system
GG′b = Q′

Σg may be cast in the form of Gp = Q′
Σg and solved for p. Then,

G′b = p can be solved for b.
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Once the residual sequence from the polynomial detrending has been season-
ally adjusted, it can be added back to the interpolated polynomial. Although the
seasonally-adjusted sequence is ostensibly an estimate of the white-noise compo-
nent η, its properties may differ from those of white noise. Any departures of the
trend from the fitted polynomial function will be captured by this sequence, and
they will be restored to the trend when it is added to the polynomial.

Figure 5 shows the logarithms of 144 monthly observations on retail sales in
U.S. for the period from January 1953 to December 1964. The data have been taken
from the monograph of Shiskin et al. (1967) that described the X-11 program for
seasonal adjustment. The figure also displays, via a bold line, a seasonally-adjusted
version of the data. This has been obtained by applying a filter to the residuals
from a linear detrending and, thereafter, by adding the filtered sequence to the
line.

The parameters of the filter are θ = 0.99 and λ = 0.125. Its frequency response
is depicted by the solid line in Figure 4. The filter nullifies only the elements at the
seasonal frequency and at its harmonic frequencies. Elements at other frequencies
are virtually unaffected.

The perception that the seasonal component can be attributed wholly to these
few elements is based on an inspection of the periodogram of Figure 6. However, it
might be proposed that a further element that is at a frequency slightly in excess
of frequency 2π/3, where the fourth spectral spike is to be found, should also be
included in the synthesis of the seasonal component.

The alternative method of seasonal adjustment that we propose in the fol-
lowing sections requires the elements that constitute the seasonal component to
be identified by inspecting the periodogram of the detrended data. Once these
elements have been identified, the seasonal component can be synthesised and sub-
tracted thereafter from the original data sequence to produce a seasonally-adjusted
version.

6. The Discrete Fourier Transform

In a Fourier analysis, an arbitrary function is resolved into a weighted combination
of sine and cosine functions or, alternatively, of complex exponential functions.
The domain of such periodic functions is either the perimeter of a circle, or else it
is the entire real line.

A finite data sequence that is subject to a Fourier analysis must be regarded as
a single cycle of a periodic function. The periodicity is achieved either by mapping
the sequence onto the circumference of a circle, or else by extending it indefinitely
in both directions by successive replications.

If a data sequence contains a significant trend, then there will be a sharp
disjunction at the point on the circle where the beginning of the sequence joins its
end. Alternatively, there will be successive disjunctions in the periodic extension
of the sequence at points where the end of one replication of the data joins the
start of the next replication. Then, the effect will be to create the appearance of
the serrated edge of a saw blade.

The spectrum of a saw tooth function has a one-over-f profile in the form
of a rectangular hyperbola that extends from a high point adjacent to the zero
frequency to a low point at the limiting Nyquist frequency of π radians per sample
interval. Such a profile is liable to mask the spectral information that is of genuine
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Figure 6. The periodogram of the residual sequence obtained from the linear detrending

of the logarithmic sales data.

interest. Therefore, for a spectral analysis to be successful, the trend must be
eliminated from the data at first.

The data can be detrended by differencing. Alternatively, a broad trend func-
tion can be interpolated into the data and the residual deviations can be subjected
to the analysis. In the context of the seasonal adjustment of the data, the latter
approach is preferable, since the pattern of seasonal fluctuations can be obscured
by taking differences. For the present, we shall assume that the detrended data
are available in the vector g. Later, we shall describe various devices that can
accompany the process of polynomial detrending, which are intended to minimise
the problem of the disjunctions.

It is more convenient to work with complex Fourier coefficients and with com-
plex exponential functions in place of sines and cosines. In these terms, the Fourier
transform and its inverse are given by

γj =
1
T

T−1∑

t=0

gte
−iωjt ←→ gt =

T−1∑

j=0

γje
iωjt, (52)

where ωj = 2πj/T is the jth Fourier frequency, which, in the case of j < T/2,
relates to a sinusoidal element that completes j cycles in the period spanned by
the data. The conjugate frequencies ωT−j = −ωj are to be found within cos(ωj) =
{exp(iωj) + exp(iωT−j)}/2 and sin(ωj) = −i{exp(iωj) − exp(iωT−j)}/2.

For a matrix representation of these transforms, one may define

U = T−1/2[exp{−i2πtj/T}; t, j = 0, . . . , T − 1],

Ū = T−1/2[exp{i2πtj/T}; t, j = 0, . . . , T − 1],
(53)

which are unitary complex matrices such that UŪ = ŪU = IT . Then,

γ = T−1/2Ug ←→ g = T 1/2Ūγ, (54)

where g = [g0, g1, . . . gT−1]′ and γ = [γ0, γ1, . . . γT−1]′ are the vectors of the (de-
trended) data and of their spectral ordinates, respectively.
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Figure 6 shows the periodogram of the residual sequence from a least-squares
fitting of linear function to the logarithmic sales data. Although the broad trend
has been eliminated from the data, there remains a low-frequency component that
is bounded by the fundamental seasonal frequency of π/6.

There is liable to be a minor disjunction at the point in the circular wrapping
of the data sequence where its starting point is adjacent to its end point or, equiv-
alently, in the periodic extension of the data where one segment is followed by the
next. The effects of this will be also be felt throughout the residual sequence.

In the next section, it will be shown how the low-frequency component can
be extracted from the residual sequence and how, in the process, the problem of
the disjunction can be overcome. By adding the low-frequency component to the
linear or log-linear trend, a representation of the so-called trend-cyle component
can be derived.

The method of frequency-domain filtering can also be applied to the prob-
lem of extracting the seasonal component. By subtracting this from the original
logarithmic data sequence, a seasonally-adjusted data sequence can be derived.

7. Filtering in the Frequency Domain

In the method of frequency-domain filtering, the ordinates of the Fourier transform
of a stationary data sequence are modified or weighted according to the desired
frequency response of the filter. Then, they are carried back to the time domain
by an application of the inverse Fourier transform to form the filtered sequence.

Let J be a diagonal weighting matrix of order T . In the case of an ideal fre-
quency selective filter, the diagonal elements of J consists of units that correspond
to the frequencies of the pass band and zeros that correspond to the frequencies
of the stop band. Then, the selected Fourier ordinates are the nonzero elements of
the vector Jγ, and the filtered sequence is

w = ŪJUg = Ψg. (55)

Here, ŪJU = Ψ=[ ψ◦
|i−j|; i, j = 0, . . . , T − 1] is a circulant matrix of the filter

coefficients that would result from wrapping the infinite sequence of the coefficients
of the ideal bandpass filter around a circle of circumference T and adding the
overlying elements. Thus

ψ◦
k =

∞∑

q=−∞
ψqT+k. (56)

Applying the wrapped filter to the finite data sequence via a circular convo-
lution is equivalent to applying the original filter to an infinite periodic extension
of the data sequence. In practice, the wrapped coefficients of the time-domain
filter matrix Ψ would be obtained from the Fourier transform of the vector of the
diagonal elements of the matrix J . However, it is more efficient to perform the
filtering by operating upon the Fourier ordinates in the frequency domain, which
is how the program IDEOLOG operates.

Tapering and Extrapolations

Various devices are available within IDEOLOG for ensuring that, when the
data sequence is wrapped around the circumference of a circle, there is no disjunc-
tion at the point where its head joins its tail.
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The conventional means of avoiding such disjunctions is to taper a detrended
and mean-adjusted sequence so that both ends decay to zero. (See Bloomfield
1976, for example.) The disadvantage of this recourse is that it falsifies the data
at the ends of the sequence, which is particularly inconvenient if, as is often the
case in economics, attention is focussed on the most recent data. To avoid this
difficulty, the tapering can be applied to some extrapolations, which can be added
to the data, after it has been subject to a preliminary detrending.

The preliminary detrending can be achieved by interpolating a polynomial
function of time or by using the Leser or Hodrick–Prescott filter. (This filter, which
is commonly attributed by economists to Hodrick and Prescott (1980, 1997), was
expounded by Leser (1961) in an earlier publication.) The interpolated function
should be a stiff one containing only periodic elements of the lowest frequencies. It
is also desirable that the function should pass through the midst of the scatters of
points at either end of the data sequence. For this purpose, a method of weighted
least-squares polynomial regression can be used that allows extra weight to be
placed upon the initial and the final runs of observations.

The method of weighted least-squares can also be used in the context of the
Leser filter. Here, an additional flexibility is available by allowing the value of the
smoothing parameter to vary. By attributing a low value to the parameter within
the appropriate locality, a sharp turn in the data or an evident structural break
can be absorbed by the trend, thereby allowing the residual sequence to maintain
its normal behaviour.

A tapered sequence, based on successive repetitions of the ultimate seasonal
cycle, can be added to the end of the data sequence, and a similar sequence, based
on the first cycle, can be added before the start. However, such extrapolations
tend to misrepresent the seasonal fluctuations by imposing gradual reductions in
their amplitude. The amplitudes can be preserved by inserting a segment into the
circular data sequence in which the seasonal pattern in the final year is transformed
gradually into the pattern of the first year. This process can described as one
of morphing the data, which is an allusion to a popular technique in computer
graphics.

Let s be the number of months or seasons in the year, and let the data be
supplemented by a sequence of points, indexed by j = 0, 1, . . . , Ns − 1 that cor-
respond to an integral number of years. To avoid the use of subscripted indices,
let the (detrended) sample points be denoted by g[t]; t = 0, 1, . . . , T − 1. Then,
the first year and the final year are replicated N times in sequences in which the
elements are defined, respectively, by

gS [j] = g[j mod s] and gF [j] = g[T − s + (j mod s)]. (57)

A convex combination of these sequences with varying weights is given by

gE [j] = λjg
F [j] + (1 − λj)gS [j], with

λj =
1
2
{cos(θj) + 1}, where θj =

πj

Ns
.

(58)

The weights λj , which are described by a half-cycle of a raised cosine function,
decline from unity and zero as the index j increases from 0 to Ns. (This function
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Figure 7. The residuals from a linear detrending of the sales data, with an interpola-

tion of four years length inserted between the end and the beginning of the circularised

sequence, marked by the shaded band.
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Figure 8. The logarithms of U.S. total retail sales from January 1953 to December 1964

with an interpolated trend-cycle function.
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Figure 9. The sequence of residual deviations of the sales data from their trend, which

may be regarded as the seasonal component.
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Figure 10. The periodogram of the residual deviations of the sales data from the trend

depicted in Figure 8.
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Figure 11. The seasonal component synthesised from the elements at the seasonal

frequencies πj/6; j = 1, . . . , 6 and from an element adjacent to the frequency of 2π/3.

is the mirror image of a sigmoid function on a finite support.) The resulting
sequence can be added to the end of the linear data sequence, which means that
it will be interpolated between the finish and the start of the circular sequence.

The device of morphing is illustrated in a sequence of graphs relating to the
logarithms of 144 monthly observations on retail sales in U.S. for the period from
January 1953 to December 1964.

Figure 7 contains the residual deviations obtained by interpolating a linear
trend through the logarithmic sales data, which are shown both in Figure 5 and in
Figure 8. The residuals from the mid point of the sample to its end are displayed
on the left of the figure. They are followed by a segment of artificial data, of four
years duration, in which the pattern of the fluctuations of the final year of the data
is gradually transformed into the pattern of the first year. This is followed by the
residuals from the beginning of the sample to its mid point.

An inspection of the periodogram of Figure 6 of the residual sequence from the
linear detrending shows that it possesses a low-frequency component falling in the
interval [0,π/8]. By removing this component, discarding the artificial elements
and adding the remainder to the linear trend, the revised trend of Figure 8 is
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generated.
By subtracting the revised trend from the data, a residual sequence is derived

that is depicted in Figure 9. Its periodogram is displayed in Figure 10. Given
that this periodogram contains almost nothing other than the prominent spikes
at the seasonal frequency and its harmonics, it seems appropriate to regard this
residual sequence as the seasonal component and to regard the revised trend—or
trend-cycle—of Figure 8 as the seasonally adjusted data sequence.

A representation of the seasonal component can also be created from a syn-
thesis of the six elements at the seasonal frequency and its harmonics and from
the element that corresponds to the small spike in the periodogram at a frequency
that is marginally in excess of 2π/3. The resulting sequence is displayed in Figure
11. It closely resembles the residual sequence of Figure 9.

It follows that, by subtracting the synthesised seasonal sequence from the data,
a sequence should be obtained that represents both the trend and the seasonally
adjusted data. In fact, this sequence is affected by some of the roughness that is
seen in seasonally adjusted data of Figure 5, which have been produced by a filter
operating in the time domain. If it can be agreed that this roughness conveys no
extra information, then it is indeed reasonable to regard the trend of Figure 8 as
the most appropriate version of the seasonally-adjusted data.
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