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Abstract

An account is given of recursive regression and Kalman filtering that gathers the im-
portant results and the ideas that lie behind them. It emphasises areas where econo-
metricians have made contributions, including methods for handling the initial-value
problem associated with nonstationary processes and algorithms for fixed-interval
smoothing.
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1 Introduction

The algorithms for recursive estimation and Kalman filtering are being
used increasingly in applied econometrics, but econometricians have been
slower than other statisticians to exploit them. The second section of the
paper describes how the use has developed.

The third section lays essential groundwork by expounding the algorithm
for ordinary recursive regression. This provides a preparation for the complex-
ities of the Kalman filter, whose features are more easily understood when
related to something similar but simpler.

The treatment given recursive regression in Sections 3 and 4 has a Bayesian
flavour and relies on the calculus of conditional expectations, whose essentials
are provided in an appendix.

Section 5 examines the prediction-error decompositions associated with
recursive regression, whilst Section 6 deals with extensions and elaborations
of recursive regression and describes some applications in control engineering
that can be exploited by econometricians.

Section 7, treats the Kalman filter, depicted as an elaboration of the pre-
ceding regression algorithm. The next two sections deal with the likelihood
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function and the starting-value problem. The smoothing operations described
in Section 10 take account of this problem.

An extensive bibliography contains references to the work of econome-
tricians on recursive estimation and the sources on which they have relied.
Because of the complexity and diversity of the notation, readers of this ma-
terial are advised to maintain a glossary to assist in making the necessary
translations and comparisons.

Many contributions to the literature on Kalman filtering assume familiar-
ity with the algebra. Those by econometricians have come in small increments
through long sequences of papers that often refer only to their immediate
predecessors. Seldom do they recapitulate the original motivations. Such liter-
ature makes for difficult reading. One of the purposes of this paper is to make
the important results and the ideas that lie behind them more accessible by
gathering them in one place.

2 Historical Aspects

Least-squares regression originates with two people. Legendre (1805) gave
the first published account of the theory and coined the term Moindres Carrés
or least squares. However, Gauss developed the method as a statistical tool
by giving the errors a probabilistic treatment. Confusion over priority arises
because Gauss claimed that he had formulated his ideas many years before
his first published exposition of the method, which appeared in 1809 in Theo-
ria Motus Corporum Celestium. These matters are dealt with in the book of
Stigler (1986) on the History of Statistics.

Gauss’s first exposition of the method of least squares in Theoria Motus
deals with the estimation of the six coefficients that determine the elliptical
orbit of a planetary body when the available observations exceed the number
of parameters. His second exposition was presented in a series of papers from
1821, 1823 and 1826, collected together under the title Theoria Combinationis
Observationum Erroribus Minimis Obnoxiae. It was here that Gauss presented
the famous theorem, now known as the Gauss–Markov theorem, that amongst
all linear unbiased estimators, the least-squares estimator has minimum mean-
square error.

The relevance of Gauss’s second exposition to recursive least-squares es-
timation and the Kalman filter lies in a brief passage where he shows that it
is possible to find the changes which the most likely values of the unknowns
undergo when a new equation is adjoined, and to determine the weights of
these new determinations. This refers to a method of augmenting the normal
equations with new observations which is, effectively, the algorithm of recur-
sive least-squares estimation. The French translation of this passage, due to
Bertrand (1855), is reproduced by Young (1984) in an appendix accompanied
by a synoptic commentary that interprets the results in a modern notation.

Gauss’s algorithm for recursive least-squares estimation was ignored for
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almost a century and a half before it was rediscovered twice. The first redis-
covery was in Plackett (1950), before the advent of efficient on-line electronic
computing. This passed almost unnoticed. The second rediscovery was in 1960
in the context of control theory; and this was a spur to a rapid growth of in-
terest. Stemming from Kalman (1960) and Kalman and Bucy (1961), a vast
literature on Kalman filtering has accumulated.

Plackett’s exposition of recursive least-squares invokes only the statistical
concepts of the classical linear regression model. Kalman’s derivation is within
the context of a state-space model with time-varying parameters. Although
the core of the Kalman filter is still the Gauss–Plackett algorithm, widening
the context greatly increases the extent and complexity of the algebra.

It seems certain that Kalman was unaware of the contributions of Gauss
and Plackett. His techniques for deriving the algorithm are quite different from
theirs. He uses orthogonal projectors in deriving the minimum-mean-square-
error predictors within an infinite-dimensional Hilbert space.

Since Kalman’s seminal paper, several other derivations have been offered,
creating a welter of alternative notation. Most avoid Hilbert spaces and use
terminology closer to that of ordinary least-squares regression. Others adopt
a maximum-likelihood or a Bayesian standpoint.

The derivation that first attracted the attention of econometricians is in
Duncan and Horn (1972). It exploits the concept of mixed estimation de-
veloped in Theil and Goldberger (1961) and extended in Theil (1963). An
account of this method is found in Theil (1971, pps. 347–352). Recent accounts
adopt a Bayesian approach, as in Durbin and Koopman (2001).

The slowness of econometricians in adopting the Kalman filter may reflect
their reluctance to espouse time-varying parameters. They have tended to
assume that, instead of flexing or bending, their structural models will break at
identifiable points. As we shall describe in Sections 5 and 6, recursive regression
is being used increasingly in detecting such breaks.

The principal econometric uses of the Kalman filter and the associated
fixed-interval smoothing algorithms, have been in trend estimation and sig-
nal extraction, of which there is now a considerable literature. Harrison and
Stevens (1976), which foreshadows the development of structural time series
models, has been highly influential here as have Harvey and Todd (1983) and
Gersch and Kitigawa (1983) and the book of Harvey (1989).

An equally influential alternative methodology, implemented by means
other than the Kalman filter, such as the method of Burman (1980), is found
in Cleveland and Tiao (1976), Hillmer and Tiao (1982) and Maravall (1985).
Much of the relevant literature is cited in Pollock (2000, 2001a, 2001b, 2002),
where alternatives to the Kalman filter are employed.

Another growing use of the Kalman filter is as a device for calculating
the likelihood functions of time series models when estimating their parame-
ters. After a model is represented in state-space form, the likelihood function
can be evaluated via the prediction-error decomposition, as was demonstrated
originally in Schweppe (1965).
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Early econometric examples include the algorithms for evaluating the like-
lihood of autoregressive moving-average (ARMA) models as given in Gardner,
Harvey and Phillips (1980) and Mélard (1983). Jones (1980) uses this ap-
proach for fitting ARMA models to time series with missing observations.
Several state-space representations for ARMA models are described in Pol-
lock (1999). However, current applications of this method of evaluating the
likelihood function extend far beyond classical univariate time series models.

The growing econometric use of the Kalman filter and other recursive al-
gorithms has encouraged the development of relevant software such as SsfPack
described in Koopman, Shephard and Doornik (1999), and that provided in
Bomhoff (1994).

The scientific community is now well served by freely available resources
relating to the Kalman filter. An excellent starting point is the Website of
Welch and Bishop 〈http://www.cs.unc.edu/~welch/kalman〉.

3 Recursive Regression

We may use the theory of conditional expectations in the appendix to
derive the algorithm for recursive estimation of the classical linear regression
model. The tth instance of the regression relationship is

yt = x′
tβ + εt, (1)

where yt is a scalar value and xt is a vector of k elements. The disturbances
εt are assumed to be serially independent and normally distributed with

E(εt) = 0 and V (εt) = σ2 for all t. (2)

To initiate the recursion, one needs an initial estimate of β and its disper-
sion matrix. In classical regression theory, this dispersion matrix is regarded
as the variance–covariance matrix of the estimator. Here, we attribute a dis-
tribution to β with a mean b0 = E(β) and a dispersion matrix σ2P0 = D(β).
This is, in effect, a Bayesian prior.

The information It available at time t comprises the observations and
I0, which is {b0, σ

2P0}, if there is prior information, and the emptyset in
the absence of such information. Thus, It = {yt, It−1} = {yt, . . . , y1, I0}.
Initially, we assume that the prior for β is fully specified, giving rise to a
marginal distribution N(y1; I0) and to a sequence of conditional distributions
N(yt|It−1); t = 2, . . . , T , each of which presupposes its predecessors.

Our object is to derive the estimates bt = E(β|It) and σ2Pt = D(β|It)
from the information available at time t making the best use of the previous
estimates bt−1 = E(β|It−1) and σ2Pt−1 = D(β|It−1). First we must to evaluate

E(β|It) = E(β|It−1) + C(β, yt|It−1)D
−1(yt|It−1){yt − E(yt|It−1)}, (3)
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which is derived directly from (A.8.i) within the appendix. Three components
on the RHS require further development. The first is

yt − E(yt|It−1) = yt − x′
tbt−1 (4)

= ht.

This is the error in predicting yt from the information available at time t− 1.
According to (A.8.vi), the prediction error is uncorrelated with the ele-

ments of the information set It−1. Moreover, it is independent of the previ-
ous prediction error ht−1, which depends solely on the information in It−1 =
{yt−1, It−2}. By reverting this argument to the start of the sample, the predic-
tion errors are seen to form a sequence of mutually independent random vari-
ables. Moreover, given I0 = {b0, σ

2P0}, there is a one-to-one correspondence
between the observations and the prediction errors; and so the information at
time t is also represented by It = {ht, . . . , h1, I0}.

The second component is the dispersion matrix associated with the pre-
diction:

D(yt|It−1) = D{x′
t(β − bt−1)} + D(εt) (5)

= σ2x′
tPt−1xt + σ2 = D(ht),

and the third is the covariance

C(β, yt|It−1) = E{(β − bt−1)y
′
t} (6)

= E{(β − bt−1)(x
′
tβ + εt)

′}
= σ2Pt−1xt.

Employing these elements in equation (3), we get

bt = bt−1 + Pt−1xt(x
′
tPt−1xt + 1)−1(yt − x′

tbt−1). (7)

There must also be a means for deriving the dispersion matrix D(β|It) =
σ2Pt from its predecessor D(β|It−1) = σ2Pt−1. Equation (A.8.ii) indicates that

D(β|It) = D(β|It−1) − C(β, yt|It−1)D
−1(yt|It−1)C(yt, β|It−1). (8)

It follows from (5) and (6) that the desired result is

σ2Pt = σ2Pt−1 − σ2Pt−1xt(x
′
tPt−1xt + 1)−1x′

tPt−1. (9)

For future reference, we shall anatomise the components of the algorithm
of recursive regression as follows:

ht = yt − x′
tbt−1, Prediction Error (10)

σ2ft = σ2(x′
tPt−1xt + 1), Error Dispersion (11)

κt = Pt−1xtf
−1
t , Filter Gain (12)
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bt = bt−1 + κtht, Parameter Estimate (13)

σ2Pt = σ2(I − κtx
′
t)Pt−1. Estimate Dispersion (14)

Alternative expressions are available for Pt and κt:

Pt = (P−1
t−1 + xtx

′
t)

−1, (15)

κt = Ptxt. (16)

To confirm (15), the matrix inversion formula of (A.3.iii) is used to recover
the original expression for Pt given by (9) and (14). To verify the identity
Pt−1xtf

−1
t = Ptxt, which equates (12) and (16), we write it as P−1

t Pt−1xt =
xtft, which is readily confirmed using the expression for Pt from (15) and the
expression for ft from (11).

Equation (15) indicates that

P−1
t = P−1

t−1 + xtx
′
t (17)

= P−1
0 +

t∑
i=1

xix
′
i.

Apart from P−1
0 , which becomes inconsequential when t is large, this is just

the familiar moment matrix of ordinary least-squares regression.
Using (15) and (16) in (13), we get the following expression for the recur-

sive regression estimate:

bt = bt−1 + (P−1
t−1 + xtx

′
t)

−1xt(yt − x′
tbt−1) (18)

= bt−1 + Ptxt(yt − x′
tbt−1).

This formula appears to be simpler than (7). However, it is computation-
ally less efficient. Equation (7) requires the inverse of the scalar element
ft = xtPt−1x

′
t + 1, which is the variable factor in the dispersion of the predic-

tion error, whilst (18) requires a matrix inversion in forming Pt. Using (18)
instead of (7) looses the computational advantages of the recursive regression
algorithm.

However, (18) provides an opportunity for unravelling the recursive sys-
tem. Multiplying the second expression for bt by P−1

t gives

P−1
t bt = (P−1

t − xtx
′
t)bt−1 + xtyt (19)

= P−1
t−1bt−1 + xtyt.

Pursuing a recursion on the RHS and using (17) on the LHS, one finds that
(P−1

0 +
∑t

i=1 xix
′
i)bt = P−1

0 b0 +
∑t

i=1 xiyi. Setting t = T and gathering the data
into X = [x1, . . . , xT ]′ and y = [y1, . . . , yT ]′ gives the equation from which the
following full-sample estimator is obtained:

bT = (X ′X + P−1
0 )−1(X ′y + P−1

0 b0). (20)
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This is the so-called mixed estimator of Theil and Goldberger (1961), which
is derivable by minimising the function

S(y, β) = S(y|β) + S(β) (21)

= (y − Xβ)′(y − Xβ) + (β − b0)
′P−1(β − b0)

in respect of β.

4 Initialising a Recursive Regression

In practice, when the recursive formulae are used in an ordinary regression
analysis, the initial estimates of the parameter vector and their dispersion ma-
trices are determined by an initial stretch of data. If Xk = [x1, . . . , xk]

′ is a full-
rank matrix of k initial observations on the regressors and Yk = [y1, . . . , yk]

′

contains observations on the dependent variable, then the recursion begins
with bk = X−1

k Yk and Pk = (X ′
kXk)

−1. The full-sample estimator is the ordi-
nary least-squares estimator b = (X ′X)−1X ′y.

To understand the initial solution bk, consider an arbitrarily chosen finite
value b0 with a dispersion matrix P0 containing large diagonal elements to
reflect a lack of confidence in b0. (One might set P0 = ρI with ρ−1 → 0, for
example.) These are so-called diffuse initial conditions. Then, if the numerical
accuracy of the computer were sufficient to calculate the sequence b1, . . . , bk

via equation (7), one would find bk within an epsilon of X−1
k Yk

There are more sophisticated ways to initialise the recursive procedure,
using pseudo or ‘diffuse’ information, that enable iterations to begin at t = 0.
When t = k, there is sufficient empirical information to determine a unique
parameter estimate, and the system should be purged of the pseudo informa-
tion.

In one such a method, the dispersion matrix Pt of the estimated parameter
vector is resolved into two components such that Pt = P ∗

t + ρP ◦
t , where P ∗

t

relates to the sample information and P ◦
t relates to the diffuse presample

information. The latter is used to initialise the recursive process at time t = 0.
As observations accrue, the new information is incorporated into P ∗

t and any
conflicting pseudo information is removed from P ◦

t .
To implement the updating formulae, we need expressions for f−1

t and κt

that reflect the nature of the information. Let

ft = f ∗
t + ρf ◦

t with f ∗
t = x′

tP
∗
t−1xt + 1, f ◦

t = x′
tP

◦
t−1xt. (22)

On the assumption that f ◦
t �= 0, there is ft = ρf ◦

t (1− ρ−1q) with q = −f ∗
t /f◦

t .
Since ρ > 1, there is a series expansion of the inverse of the form

f−1
t =

1

ρf ◦
t

(
1 +

q

ρ
+

q2

ρ2
+ · · ·

)
(23)
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=
g1

ρ
+

g2

ρ2
+

g3

ρ3
+ · · · .

To find the terms of this expansion, consider the equation 1 = ftf
−1
t written

as

1 = (f ∗
t + ρf ◦

t )

(
g1

ρ
+

g2

ρ2
+

g3

ρ3
+ · · ·

)
(24)

= f ◦
t g1 +

1

ρ
(f ∗

t g1 + f ◦
t g2) +

1

ρ2
(f ∗

t g2 + f ◦
t g3) + · · · .

Here, the first term in the product on the RHS is unity, whereas the remaining
terms, associated with negative powers of ρ, are zeros. It follows that

g1 = (f ◦
t )−1 and g2 = −(f ◦

t )−2f ∗
t . (25)

One can ignore g3 and the coefficients associated with higher powers of 1/ρ,
which vanish from all subsequent expressions as ρ increases. Next, there is

κt = Pt−1xtf
−1
t = (P ∗

t−1xt + ρP ◦
t−1xt)

(
g1

ρ
+

g2

ρ2
+

g3

ρ3
+ · · ·

)
(26)

= P ◦
t−1xtg1 +

1

ρ
(P ∗

t−1g1 + P ◦
t−1g2)xt +

1

ρ2
(P ∗

t−1g2 + P ◦
t−1g3)xt + · · ·

= d0 +
d1

ρ
+

d2

ρ2
+ · · · ,

where

d0 = P ◦
t−1xt(f

◦
t )−1 and d1 = P ∗

t−1xt(f
◦
t )−1 − P ◦

t−1xt(f
◦
t )−2f ∗

t . (27)

As ρ → ∞, only the first term of (26) survives, giving κt = P ◦
t−1xt(f

◦
t )−1 = κ◦

t .
Therefore, when f ◦

t �= 0, the updating equation for the parameter estimate is

bt = bt−1 + P ◦
t−1xt(f

◦
t )−1ht. (28)

Finally, consider the updating equation for the dispersion of the estimate.
This embodies

κtx
′
tPt−1 =

(
d0 +

d1

ρ
+

d2

ρ2
+ · · ·

)
(x′

tP
∗
t−1 + ρx′

tP
◦
t−1) (29)

= ρd0x
′
tP

◦
t−1 + (d0x

′
tP

∗
t−1 + d1x

′
tP

◦
t−1) + · · · .

Putting the leading terms into (14) and separating Pt = P ∗
t +ρP ◦

t into its two
parts gives

P ◦
t = P ◦

t−1 − P ◦
t−1xt(f

◦
t )−1x′

tP
◦
t−1, (30)

P ∗
t = P ∗

t−1 + P ◦
t−1xt(f

◦
t )−1f ∗

t (f ◦
t )−1x′

tP
◦
t−1 (31)

−P ◦
t−1xt(f

◦
t )−1x′

tP
∗
t−1 − P ∗

t−1xt(f
◦
t )−1x′

tP
◦
t−1.
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Using the notation

κ◦
t = P ◦

t−1xt(x
′
tP

◦
t−1xt)

−1 and Λ◦
t = I − κ◦

t x
′
t, (32)

equation (28) may be written as

bt = bt−1 + κ◦
t (yt − x′

tbt−1) (33)

= Λ◦
t bt−1 + κ◦

t yt.

Using the same notation, equations (30) and (31) can be written as

P ◦
t = Λ◦

t P
◦
t−1, (34)

P ∗
t = Λ◦

t P
∗
t−1Λ

◦′
t + κ◦

t κ
◦′
t . (35)

The updating equation of (34), which is associated with the diffuse infor-
mation, has the form of P ◦

t = (I−κ◦
t x

′
t)P

◦
t−1, where κ◦

t x
′
t = P ◦

t−1xt(x
′
tP

◦
t−1xt)

−1x′
t

and I − κ◦
t x

′
t are idempotent matrices. Thus, P ◦

t is formed by projecting P ◦
t−1

onto the subspace orthogonal to xt, with the result that

x′
sP

◦
t = 0 when t ≥ s. (36)

Unless κ◦
t x

′
t = 0 the matrix Λ◦

t = I − κ◦
t x

′
t will have less than full rank. If the

vectors x′
t; t = 1, . . . , k are linearly independent, then after k steps, the loss of

rank will lead to

k∏
j=1

Λ◦
j =

k∏
j=1

(I − κ◦
jx

′
j) = 0, (37)

and, therefore, to P ◦
k =

∏k
j=1(I − κ◦

jx
′
j)P

◦
0 = 0. Beyond that point, there will

be f ◦
t = x′

tP
◦
t−1xt = 0 and, therefore, ft = f ∗

t . It follows from the logic of the
preceding derivation that the recursive equations will assume the standard
forms of (7) and (9).

In the absence informative prior information, the procedure can be ini-
tialised with P ∗

0 = 0, P ◦
0 = I and with an arbitrary value for b0. With these

initialisations, the algorithm gives bk = X−1
k YK and Pk = (X ′

kXk)
−1 when

t = k, regardless of the starting value b0.
The algorithm that we have described was proposed in Ansley and Kohn

(1985a), where it was developed in the context of the Kalman filter. Koopman
(1997) provides some elaborations, and an accessible exposition is in Durbin
and Koopman (2001).

Example.To illustrate the process of initialisation, consider the case of k = 3.
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Running the recursion (33) for three iterations, we get
b1

b2

b3

 =


Λ◦

1

Λ◦
2Λ

◦
1

Λ◦
3Λ

◦
2Λ

◦
1

 b0 +


κ◦

1 0 0

Λ◦
2κ

◦
1 κ◦

2 0

Λ◦
3Λ

◦
2κ

◦
1 Λ◦

3κ
◦
2 κ◦

3




y1

y2

y3

 . (38)

To prove that that b3 = X−1
3 Y3, regardless of the value of b0, we must show

that

(i) Λ◦
3Λ

◦
2Λ

◦
1 = 0 and (ii)

[
Λ◦

3Λ
◦
2κ

◦
1 Λ◦

3κ
◦
2 κ◦

3

]
= X−1

3 . (39)

Here, (i) is subsumed under (37). To demonstrate (ii), consider the fact that,
in view of (36),

κ◦
t = P ◦

t−1xt(f
◦
t )−1 has x′

sκ
◦
t =

{
1, if t = s,

0, if t > s,
(40)

and , consequently,

Λ◦
t = I − κ◦

t x
′
t has x′

sΛ
◦
t =

{
0, if t = s,

x′
s, if t > s.

(41)

It follows immediately that

X3X
−1
3 =


x′

1Λ
◦
3Λ

◦
2κ

◦
1 x′

1Λ
◦
3κ

◦
2 x′

1κ
◦
3

x′
2Λ

◦
3Λ

◦
2κ

◦
1 x′

2Λ
◦
3κ

◦
2 x′

2κ
◦
3

x′
3Λ

◦
3Λ

◦
2κ

◦
1 x′

3Λ
◦
3κ

◦
2 x′

3κ
◦
3

 = I, (42)

which proves (ii).
Next, we wish to show that that P3 = P ∗

3 = (X ′
3X3)

−1. Consider the first
three iterations of (35). With P ◦

0 = I and P ∗
0 = 0, we get

P ∗
1 = κ◦

1κ
◦′
1 , (43)

P ∗
2 = Λ◦

2κ
◦
1κ

◦′
1 Λ◦′

2 + κ◦
2κ

◦′
2 ,

P ∗
3 = Λ◦

3Λ
◦
2κ

◦
1κ

◦′
1 Λ◦′

2 Λ◦′
3 + Λ◦

3κ
◦
2κ

◦′
2 Λ◦′

3 + κ◦
3κ

◦′
3 .

Reference to (39.ii) shows that the last of these is just the product X−1
3 (X−1

3 )′,
which is the result that we are seeking.

5 The Prediction-Error Decomposition

The equations of the regression model containing the full set of observa-
tions can be written in the familiar form of y = Xβ + ε, where E(ε) = 0
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and D(ε) = σ2I. When a prior distribution is available for β, we also have
E(β) = b0 and D(β) = σ2P0. Combining these gives

E(y) = XE(β) + E(ε)

= Xb0

and
D(y) = XD(β)X ′ + D(ε)

= σ2XP0X
′ + σ2I.

(44)

Assuming that the stochastic elements are normally distributed, the marginal
density function of y is

N(y) = (2πσ)−T/2|XP0X
′ + I|−1/2 exp{−S(y)/(2σ2)}, (45)

whose quadratic exponent is

S(y) = (y − Xb0)
′(XP0X

′ + I)−1(y − Xb0) (46)

= (y − Xb0)
′{I − X(X ′X + P−1

0 )−1X ′}(y − Xb0).

The second equality follows from (A.3.iii).
The recursive regression algorithm (10)–(14) entails a decomposition of

the marginal function N(y) called the prediction-error decomposition. This
takes the form

N(y1, . . . , yT ; I0) = N(y1; I0)
T∏

t=2

N(yt|It−1). (47)

For t > 1, the factors on the RHS take the form

N(yt|It−1) = (2πσ2ft)
−1/2 exp

{
− 1

2σ2

(yt − x′
tbt−1)

2

1 + x′
tPt−1xt

}
. (48)

The marginal density function N(y1; I0), which is the first factor of the decom-
position, is obtained by specialising (45) to the case of a single observation or,
equally, by setting t = 1 in N(yt|It−1). Thus, the quadratic function in (46)
can be written alternatively as

S(y) =
T∑

t=1

(yt − x′
tbt−1)

2

1 + x′
tPt−1xt

=
T∑

t=1

h2
t

ft

=
T∑

t=1

w2
t . (49)

A one-to-one correspondence can be demonstrated between the errors yt−
x′

tb0 and the prediction errors ht = yt − x′
tbt−1. Consider recursive formula

bt = bt−1 + κt(yt − x′
tbt−1) (50)

= Λtbt−1 + κtyt,

11



where Λt = I − κtx
′
t. Running the recursion for the first few iterations, we get

b1

b2

b3

 =


Λ1

Λ2Λ1

Λ3Λ2Λ1

 b0 +


κ1 0 0

Λ2κ1 κ2 0

Λ3Λ2κ1 Λ3κ2 κ3




y1

y2

y3

 . (51)

Then, since ht = yt − x′
tbt−1,

h1

h2

h3

h4


=



1 0 0 0

−x′
2κ1 1 0 0

−x′
3Λ2κ1 −x′

3κ2 1 0

−x′
4Λ3Λ2κ1 −x′

4Λ3κ2 −x′
4κ3 1





y1

y2

y3

y4


−



x′
1

x′
2Λ1

x′
3Λ2Λ1

x′
4Λ3Λ2Λ1


b0. (52)

On defining Λj,m = ΛjΛj−1 · · ·Λm, with Λj,j = Λj and Λj,j+1 = I, the generic
expression for the prediction error becomes

ht = yt − x′
tbt−1 (53)

= yt − x′
tΛt−1,1b0 − x′

t

t−1∑
j=1

Λt−1,j+1κjyj.

Equation (52) can be summarised as h = Ly − Wb0. But E(h) = 0 and
E(y) = Xb0, so the equation indicates that LXb0 = Wb0, or W = LX, since
b0 can take any value. (The equality W = LX can also be demonstrated
algebraically without resort to the expectations operator.) Substituting this
back into the original equation gives h = L(y − Xb0), which holds for any
extension of the recursion. This establishes the relationship between the errors
yt − x′

tb0 and the prediction errors ht = yt − x′
tbt−1. Thus, the marginal sum

of squares of (46) can also be written as

S(y) = (y − Xb0)
′(XP0X

′ + I)−1(y − Xb0) (54)

= (y − Xb0)
′L′F−1L(y − Xb0) = h′F−1h,

where σ2F = σ2diag{f1, . . . , fT} is the matrix of the prediction-error disper-
sions.

The case with no prior information on β may be handled by concentrating
the likelihood function N(y) in respect of b0 and P0. The minimising value
for b0 is the ordinary least-squares estimator b = (X ′X)−1X ′y, as will be
demonstrated in Section 8, and the minimising value for P0 is zero.

The condition P0 = 0 normally signifies that there is complete information
regarding β. This is clearly at variance with the actual circumstance of no prior
information. This anomaly indicates that the appropriate way to estimate β
in the absence of prior information is by minimising the conditional function
S(y|β) = (y − Xβ)′(y − Xβ) instead of the marginal function S(y).

12



Setting β = b0 = b reduces both S(y) and S(y|β) to the concentrated
function

Sc(y) = e′e = y′{I − X(X ′X)−1X ′}y = ε′{I − X(X ′X)−1X ′}ε, (55)

where e = [e1, . . . , eT ]′ stands for the vector of ordinary least-squares residuals.
In the absence of prior information, the concentrated function has a prediction-

error decomposition of the form (49), but the index of summation begins at
t = k + 1, instead of t = 1, and the starting values are bk = X−1

k Yk and
Pk = (X ′

kXk)
−1—see Pollock (1999, p. 231). The notation X = [X ′

1, X
′
2]

′,
y = [y′

1, y
′
2]

′, where X ′
1 = [x1, . . . , xk]

′ and y′
1 = [y1, . . . , yk]

′, may be used to
denote the partition of the sample into the first k elements and the remain-
der. Then, the starting values become b1 = X−1

1 y1 and P1 = (X ′
1X1)

−1, and
an expression for Sc(y) arises that is analogous to that of (54):

Sc(y) = (y2 − X2b1)
′{X2(X

′
1X1)

−1X ′
2 + I}−1(y2 − X2b1) (56)

= (y2 − X2b1)
′L′

2F
−1
2 L2(y2 − X2b1) = h′

2F
−1
2 h2.

Here, L2 and F2 = diag{fk+1, . . . , fT} are analogous to the matrices defined in
respect of (54). The vector h2 = [hk+1, . . . , hT ]′ contains the prediction errors,
whose normalised versions wt = ht/ft are in the vector w.

In the absence of prior information concerning the regression parame-
ters, the normalised prediction errors are conventionally described as recursive
residuals. The essential conditions affecting the recursive residuals are that

E(w) = 0 and D(w) = σ2IT−k, (57)

which is to say that they possess a spherical distribution.
There are various alternative residuals associated with the classical regres-

sion model that have statistical properties similar to those of the recursive
residuals and which can also be used for testing the assumptions of the model.
Thus, Theil (1971) has defined the LUS class of linear unbiased residuals with
a scalar covariance matrix (i.e. a scalar multiple of the identity matrix). It is
helpful, for later reference, to demonstrate how these are derived.

Observe that, since X ′X is a full-rank symmetric matrix of order k, there
exists a matrix T such that T ′T = (X ′X)−1. Therefore, X(X ′X)−1X ′ =
XT ′TX ′ = C1C

′
1, where C1 is a T × k matrix of orthonormal vectors such

that C ′
1C1 = Ik. Let C2 be the T × (T − k) orthogonal complement to C1 so

that C ′
2C1 = C ′

2X = 0, C ′
2C2 = IT−k and C1C

′
1 + C2C

′
2 = IT . Then,

Sc(y) =
T∑

t=1

e2
t = y′{I − X(X ′X)−1X ′}y (58)

= y′C2C
′
2y =

T∑
t=k+1

v2
t .
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This equation relates the ordinary least-squares residuals C2C
′
2y = e = [e1, . . . , eT ]′,

to the LUS residuals C ′
2y = C ′

2e = v = [vk+1, . . . , vT ]′.
Now observe that v = C ′

2(y − Xβ) = C ′
2ε. Since E(εε′) = σ2IT and

C ′
2C2 = IT−k, it follows that

E(v) = 0 and D(v) = C ′
2E(εε′)C2 = σ2IT−k, (59)

which shows that the LUS residuals possess a spherical distribution. Indeed,
the recursive residuals are just an instance of the LUS residuals. An explicit
expression for the matrix C in this case has been given by Dufour (1982).

Since they are independently and identically distributed under the as-
sumptions of the regression model, the recursive residuals enable exact tests
of the assumptions to be derived with ease. Harvey (1990) indicates that the
recursive residuals are amenable to an exact von Neumann ratio test aimed
at detecting serial correlation in the disturbances, which is preferable to the
Durbin–Watson test constructed from the ordinary least-squares residuals.
Since the least-squares residuals are dependent on the values in X, it is not
possible to derive exact significance points that apply to every instance of that
test.

Another leading use of recursive residuals is in the CUSUM test, proposed
by Brown, Durbin and Evans (1975). This detects instability in regression
parameters, rejecting the hypothesis of invariance if the trajectory of the cu-
mulative sum of the recursive residuals crosses an upper or lower critical line.
The lines are calculated with reference to the boundary-crossing probabili-
ties of a Brownian motion defined on a unit interval, which approximates the
CUSUM process with increasing accuracy as the sample size increases—see
Durbin (1971).

A simple alternative to the CUSUM statistic is provided by the ratio

t =

∑T
t=k+1 wt/

√
T − k{∑T

t=k+1(wt − w̄)2/(T − k − 1)
}1/2

, (60)

where w̄ is the arithmetic mean of the recursive residuals. This statistic, pro-
posed in Harvey and Collier (1977), is distributed as Students t with T −k−1
degrees of freedom under the null of parametric constancy.

The use of recursive residuals for detecting functional misspecification
and parametric change has been further investigated in Dufour (1982) and
Krämer, Ploberger and Alt (1988). The latter assesses the use of the CUSUM
test when there are lagged dependent variables among the regressors, and
shows that the test retains its asymptotic significance levels in dynamic mod-
els.

A closely related test is the fluctuations test of Ploberger, Krämer and
Kontros (1989), which is based on successive parameter estimates rather than
on recursive residuals. It can be seen, in reference to (16) and (18), that the
differences between successive parameter estimates, which are elements of the
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vectors bt−bt−1 = κt(yt−x′
tbt−1), are scalar functions of the recursive residuals.

Dufour (1982) has recommended that one should track the trajectories of
these elements.

The fluctuations test is based upon the deviations of the current estimates
from the full-sample estimate. These quantities bt − bT =

∑T
s=t+1(bs−1 − bs),

bear a one-to-one relationship with the vectors of differences. The test is based
on the maximum value of the deviations. Developments and extensions of the
test have been provided in Kuan and Hornik (1995) and in Kuan (1998).

The techniques of recursive estimation are exploited in Banerjee, Lums-
daine and Stock (1992) in specification tests for nonstationary dynamic mod-
els. Their aim is to determine whether the data are best described by a trend-
stationary model or a difference-stationary model with a unit root within an
autoregressive operator, which is their null hypothesis. (The models of the
null and alternative hypotheses are nested within a comprehensive model in
the manner of Bhargava (1986).) They also devise tests to investigate the
possibility that the time series is stationary around a broken trend line.

The test of the unit-root hypothesis entails a recursive calculation of the
Dickey–Fuller (1979) statistics. The trajectories of the test statistics under the
null hypothesis are depicted in terms of Brownian motion on the unit interval.
In this respect, the work adopts the methodology of Brown, Durbin and Evans
(1975). The applicability of such an approach to the theory of time-series mod-
els with autoregressive unit roots is demonstrated in Phillips (1987), which
has become the mainstay of many subsequent econometric studies of inte-
grated and co-integrated time series. An extensive survey of the econometric
literature on unit roots, structural breaks and trends has been provided in
Stock (1994).

6 Extensions of the Recursive Least-Squares Algorithm

The algorithm presented in the previous sections represents little more
than an alternative means for computing the ordinary least-squares regression
estimates. If the parameters of the process generating the data are constant,
then we can expect the estimate bt to converge to a limit as the number of ob-
servations t increases. At the same time, the elements of the dispersion matrix
σ2Pt will decrease in value, as will the filter gain κt. Thus, the impact of suc-
cessive prediction errors on the estimate of β diminishes as more information
is included.

If there is doubt about the constancy of the regression parameter, it may
appropriate to discard data that have reached a date of expiry. As each new
observation is acquired another observation may be removed so that, at any
instant, the estimator comprises only n points. Such an estimator has been
described as a rolling or moving-window regression. Implementations are avail-
able in recent versions of the more popular econometric computer packages
such as Microfit 4.0 and PCGive 10.0.
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To extend the algorithm of the previous section to produce a rolling re-
gression, one needs to remove the data that were acquired at time t − n. The
first step is to adjust the moment matrix to give P ∗−1

t = P−1
t−1 −xt−nx

′
t−n. The

matrix inversion formula of (A.3.ii) indicates that

P ∗
t = (P−1

t−1 − xt−nx
′
t−n)−1 (61)

= Pt−1 + Pt−1xt−n(x′
t−nPt−1xt−n − 1)−1x′

t−nPt−1.

Next, an intermediate estimate b∗t , based on the reduced information, is ob-
tained from bt−1 via

b∗t = bt−1 − P ∗
t xt−n(yt−n − x′

t−nbt−1) (62)

= bt−1 − Pt−1xt−n(x′
t−nPt−1xt−n − 1)−1(yt−n − x′

t−nbt−1).

This formula can be understood by considering the inverse problem of ob-
taining bt−1 from b∗t by the addition of the information from time t − n. A
rearrangement of the resulting expression for bt−1 gives the first expression
for b∗t on the RHS of (62). The second expression depends on the identity
(P−1

t−1 −xt−nx
′
t−n)−1xt−n = Pt−1xt−n(x′

t−nPt−1xt−n − 1)−1, which is in the form
of a−1c = bd−1 and which can be confirmed by recasting it as cd = ab. Finally,
the estimate bt, which is based on the n data points xt, . . . , xt−n+1, is obtained
from (7) by replacing bt−1 with b∗t and Pt−1 with P ∗

t .
The method of rolling regression is useful for initialising an ordinary recur-

sive regression that lacks prior information for the regression parameters. A
rolling regression can be set in motion using pseudo information, such as b0 = 0
and P0 = I. Then, as the regression rolls forwards, the pseudo information is
replaced by sample information until t = k, at which point there is only sample
information in the data window. Then, the rolling regression can be converted
to an ordinary recursive regression with bk = X−1

k Yk and Pk = (X ′
kXk)

−1. This
use of the rolling regression algorithm, which is a straightforward extension of
the recursive algorithm, allows one to dispense with a matrix inversion routine
in finding the initial values.

In econometrics, increasing use is being made of test statistics based upon
rolling regression. Banerjee, Lumsdaine and Stock (1992), for example, have
accompanied recursive tests with ones based on rolling regressions. However,
they are not explicit about the exact nature of the alternative hypotheses that
motivate such tests.

This matter is elucidated in Chu, Hornik and Kuan (1995), where the
possibility of a temporary parameter shift within a regression model with sta-
tionary explanatory variables is considered. Such shifts can be overlooked by
recursive statistics if their values are too strongly influenced by a stable past.
They are more likely to be detected via the fluctuations of moving estimates
computed from a sequence of subsamples demarcated by a rolling data win-
dow. Under the null hypothesis of parametric constancy, the deviations of
the rolling estimates from the full-sample estimates converge weakly in prob-
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ability to the increments of a Brownian bridge. This provides the basis for
determining the critical values of the tests.

Smith and Taylor (2001) uses the techniques of recursive and rolling
regression in testing the constancy of a seasonal process described in terms
of an autoregressive model with complex roots whose arguments correspond
to the seasonal frequency and its harmonics. The paper describes tests of the
hypothesis that the seasonal process entails roots of unit modulus against an
alternative of stable roots for part of its history in respect of some, if not all,
of the seasonal frequencies.

The test statistics are modelled on those in Hylleberg, Engle, Granger and
Yoo (1990), which describes a structure within which hypotheses relating
to the various seasonal roots may be tested individually, via t-tests in the
case of real-valued roots, or via F -tests in case of conjugate complex roots.
(Alternative test statistics, that entertain the null hypothesis of no seasonal
unit roots, are proposed in Canova and Hansen (1995) which adapts the
statistics of Kwiatkowski, Phillips, Schmidt and Shin (1992) that are aimed
at detecting real-valued roots.)

The tests of Smith and Taylor are based on maximum and minimum val-
ues from sequences of t and F -statistics generated by recursive and rolling
regressions, running in both directions, together with the differences of these
values. Their approach to deriving the critical values for their tests is via
Brownian motion described on the unit interval. This is a modern alternative
to the methods used in Dickey, Hasza and Fuller (1984) for developing tests
of the null hypothesis that there are unit roots at every seasonal frequency
against an alternative hypothesis of no seasonal unit roots.

Discarding observations beyond a date of expiry is appropriate when the
processes generating the data are liable to undergo sudden structural changes.
It ensures that any misinformation conveyed by the data that predates the
structural change will not be kept on record permanently. However, if the
processes are expected to change gradually in a more or less systematic fash-
ion, then a gradual discounting of old data may be more appropriate. An
exponential weighting scheme applied to the data might serve this purpose.

Let λ ∈ (0, 1] be the factor by which the data are discounted from one
period to the next. Then the expression for Pt in (9) would be replaced by

Pt = (λP−1
t−1 + xtx

′
t)

−1 (63)

=
1

λ

{
Pt−1 − Pt−1xt(x

′
tPt−1xt + λ)−1x′

tPt−1

}
.

The formula for the parameter estimate becomes

bt = bt−1 + Pt−1xt(x
′
tPt−1xt + λ)−1(y − x′

tbt−1). (64)

Discounted regression has yet to achieve widespread use in econometrics. It
has been used extensively in adaptive control, beginning with Åström, Boris-
son, Ljung and Wittenmark (1977). Its purpose in this context is to prevent
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the recursive estimator from converging and to accommodate parametric drift
in the system subject to control. Examples are provided in Kiparissides and
Shah (1983) and Wellstead and Zarrop (1991).

Lozano (1983) provides an analysis of the convergence of discounted least
squares under favourable conditions of persistent excitation. This shows the
dispersion of the estimated regression parameters tending to constancy. How-
ever, a problem arises with a constant forgetting factor if the system is para-
metrically stable and the inputs become quiescent. Then the old information
is forgotten while little new information is added. This can make the control
system overly sensitive to disturbances and susceptible to numerical and com-
putational difficulties, symptomised by an explosive growth in elements of the
dispersion matrix of the regression estimate.

The problem can be solved by devising systems of variable forgetting fac-
tors aimed at maintaining a constant information content within successive
estimates. Such systems are analysed in Zarrop (1983), Sanoff and Well-
stead (1983) and Canetti and España (1989); and Fortescue, Kershenbaum
and Ydstie (1981) describe an implementation. More sophisticated memory
shaping systems are possible that will allow the information content to grow
indefinitely if there is no hint of parametric inconstancy and that discard
information rapidly when there is clear evidence of change.

A belief in the parametric constancy of economic systems might not be
the only reason why econometricians have proved resistant to devices such as
discounted regression. Whereas occasional structural breaks can be accommo-
dated easily, continuous structural change is liable to subvert the very objec-
tives of structural econometric analysis. Also, both rolling regression and dis-
counted regression are incapable of producing estimates that are statistically
consistent, although, as noted, this objection may be overcome by sophisti-
cated memory shaping.

A final objection to the algorithms of recursive regression concerns their
laggardly and backward-looking nature. Recursive regressions that hold only
past data in their memories are liable to react to structural changes with
considerable delay. This objection can be overcome if one is prepared to look
forward in time as well as backward by replacing recursive regression by a com-
bination of the Kalman filter, which is backward-looking, and its associated
smoothing algorithms, which are forward-looking.

7 The Kalman Filter

The basic equations of the Kalman filter will be derived in the briefest possible
manner. The state-space model that underlies the Kalman filter consists of two
equations

yt = Htβt + ηt, Observation Equation (65)

βt = Φtβt−1 + νt, Transition Equation (66)

18



where yt is a vector of observations on the system and βt is the state vector
of k elements. The observation error ηt and the state disturbance νt are mu-
tually uncorrelated, normally distributed, random vectors of zero mean with
dispersion matrices

D(ηt) = Ωt and D(νt) = Ψt. (67)

The observation equation is analogous to the regression equation of (1), but
yt may be a vector quantity. The transition equation is new.

It is assumed that the matrices Ht, Φt, Ωt and Ψt are known for all t =
1, . . . , T and that an initial estimate E(β0) = b0 is available for the state
vector β0 at t = 0 together with a dispersion matrix D(β0) = P0. The initial
information is I0. The information available at time t is It = {yt, . . . , y1, I0}.

The Kalman-filter equations determine the state-vector estimates bt|t−1 =
E(βt|It−1) and bt = E(βt|It) and their associated dispersion matrices D(βt −
bt|t−1) = Pt|t−1 and D(βt − bt) = Pt. From bt|t−1, the prediction E(yt|It−1) =
Htbt|t−1 is formed, which has an associated dispersion matrix D(yt|It−1) = Ft.
A summary of these equations is as follows:

bt|t−1 = Φtbt−1, State Prediction (68)

Pt|t−1 = ΦtPt−1Φ
′
t + Ψt, Prediction Dispersion (69)

et = yt − Htbt|t−1, Prediction Error (70)

Ft = HtPt|t−1H
′
t + Ωt, Error Dispersion (71)

Kt = Pt|t−1H
′
tF

−1
t , Kalman Gain (72)

bt = bt|t−1 + Ktet, State Estimate (73)

Pt = (I − KtHt)Pt|t−1. Estimate Dispersion (74)

It is useful to define

Λt = (I − KtHt)Φt. (75)

There are two additions to the recursive regression algorithm (10)–(14):
equation (68) for the state prediction and equation (69) for its dispersion.
These arise from the transition equation (66); and they vanish if Φ = I, νt = 0
and D(νt) = Ψt = 0 so that Pt|t−1 becomes Pt−1 in the remaining equations.

The Kalman filter can be derived using the algebra of conditional expecta-
tions, given in (A.8). Amongst (68)–(74), equations (70) and (72) are merely
definitions. To demonstrate (68), use (A.8.iii) to show that

E(βt|It−1) = E{E(βt|βt−1)|It−1} (76)

= E{Φtβt−1|It−1}
= Φtbt−1.

Use (A.8.v) to demonstrate (69):
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D(βt|It−1) = D(βt|βt−1) + D{E(βt|βt−1)|It−1} (77)

= Ψt + D{Φtβt−1|It−1}
= Ψt + ΦtPt−1Φ

′
t.

To obtain (71), substitute (65) into (70) to give et = Ht(βt−bt|t−1)+ηt. Then,
in view of the statistical independence of the terms on the RHS, one has

D(et) = D{Ht(βt − bt|t−1)} + D(ηt) (78)

= HtPt|t−1H
′
t + Ωt = D(yt|It−1).

To demonstrate the updating equation (73), begin by noting that

C(βt, yt|It−1) = E{(βt − bt|t−1)y
′
t} (79)

= E{(βt − bt|t−1)(Htβt + ηt)
′}

= Pt|t−1H
′
t.

It follows from (A.8.i) that

E(βt|It) = E(βt|It−1) + C(βt, yt|It−1)D
−1(yt|It−1){yt − E(yt|It−1)} (80)

= bt|t−1 + Pt|t−1H
′
tF

−1
t et.

The dispersion matrix in (74) for the updated estimate is obtained via (A.8.ii):

D(βt|It) = D(βt|It−1) − C(βt, yt|It−1)D
−1(yt|It−1)C(yt, βt|It−1) (81)

= Pt|t−1 − Pt|t−1H
′
tF

−1
t HtPt|t−1.

It is useful for later analysis to express the current state vector in terms
of the initial state vector and a sequence of state disturbances. By repeated
back substitution in (66), we obtain

βt = Φt,1β0 +
t∑

j=1

Φt,j+1νj, (82)

where Φt,j+1 = Φt · · ·Φj+1, with Φj,j = Φj and Φj,j+1 = I. Substituting this
into the equation yt = Htβt + ηt from (65) gives another useful expression:

yt = HtΦt,1β0 + Ht

t∑
j=1

Φt,j+1νj + ηt (83)

= Xtβ0 + εt.

On defining the vectors y = [y′
1, . . . , y

′
T ]′, ε = [ε′1, . . . , y

′
T ]′ and the matrix

X = [X ′
1, . . . , X

′
T ]′, the T observations can be compiled to give

y = Xβ0 + ε, where E(ε) = 0 and D(ε) = Σ. (84)

The remaining task of this section is to show that the information of
{y1, . . . , yt} is also conveyed by the prediction errors or innovations {e1, . . . , et}
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and that the latter are mutually uncorrelated random variables. For this pur-
pose, consider substituting (68) and (70) into (73) to give

bt = Φtbt−1 + Kt(yt − HtΦtbt−1) (85)

= Λtbt−1 + Ktyt,

where Λt = (I − KtHt)Φt is from (75). Repeated back-substitution gives

bt = Λt,1b0 +
t∑

j=1

Λt,j+1Kjyj, (86)

where Λt,j = Λt · · ·Λj is a product of matrices that specialises to Λt,t = Λt

and to Λt,t+1 = I. It follows that

et = yt − HtΦtbt−1 (87)

= yt − HtΦtΛt−1,1b0 − HtΦt

t−1∑
j=1

Λt−1,j+1Kjyj,

which is a straightforward generalisation of (53). On defining the vector e =
[e′1, . . . , e

′
T ]′, the T equations can be written as

e = Ly − Wb0 = L(y − Xb0), with E(e) = 0 and D(e) = F. (88)

Here, the matrix L is lower-triangular with units on the diagonal. The second
equality follows from the fact that E(e) = 0 and E(y) = Xb0, whence Wb0 =
LXb0 for all b0 and, therefore, W = LX.

Equation (87) shows that each error et is a linear function of y1, . . . , yt.
Next, we demonstrate that each yt is a linear function of e1, . . . , et. By back-
substitution in the equation bt−1 = Φt−1bt−2 +Kt−1et−1, derived from (68) and
(73), we get

bt−1 = Φt−1,1b0 +
t−1∑
j=1

Φt−1,j+1Kjej. (89)

Substituting bt|t−1 = Φtbt−1 into equation (70) gives

yt = Htbt|t−1 + et (90)

= HtΦt,1b0 + Ht

t−1∑
j=1

Φt,j+1Kjej + et.

Given that there is a one-to-one linear relationship between the observa-
tions and the prediction errors, it follows that we can represent the information
set in terms of either. Thus, we have It−1 = {et−1, . . . , e1, I0}; and, given that
et = yt − E(yt|It−1), it follows from (A.8.vi) that et is uncorrelated with the
preceding errors e1, . . . , et−1. The result indicates that the prediction errors
are mutually uncorrelated.
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8 Likelihood Functions and the Initial State Vector

Considerable attention has been focused by econometricians on the prob-
lem of estimating the initial state vector β0 when the information concerning
its distribution is lacking. This is a complicated matter that must be ap-
proached with care. The present section lays the necessary groundwork.

It has been assumed that the initial state vector has a normal prior dis-
tribution with E(β0) = b0 and D(β0) = P0. The sample data are generated
by the equation y = Xβ0 + ε of (84), where the disturbances are normally
distributed with E(ε) = 0 and D(ε) = Σ. Thus E(y) = XE(β0) + E(ε) and
D(y) = XD(β0)X

′ + D(ε), so

E(y) = Xb0, (91)

D(y) = XP0X
′ + Σ, (92)

E(β0) = b0, (93)

D(β0) = P0, (94)

C(y, β0) = XP0. (95)

The joint density function of y and β0 is

N(y, β0) = (2π)−(T+k)/2|D(y, β0)|−1/2 exp{−S(y, β0)/2}, (96)

whose exponent, according to (A.6), can be written variously as

S(y, β0) =

 y − Xb0

β0 − b0


′  XP0X

′ + Σ XP0

P0X
′ P0


−1  y − Xb0

β0 − b0

 (97)

=

 y − E(y|β0)

β0 − b0


′  Σ 0

0 P0


−1  y − E(y|β0)

β0 − b0



=

 y − Xb0

β0 − E(β0|y)


′  XP0X

′ + Σ 0

0 (X ′Σ−1X + P−1
0 )−1


−1  y − Xb0

β0 − E(β0|y)

 .

In the final expression, the identity

P0 − P0X
′(XP0X

′ + Σ)−1XP0 = (X ′Σ−1X + P−1
0 )−1, (98)

which follows from (A.3.iii), has been used to obtain the expression for D(β0|y) =
(X ′Σ−1X + P−1

0 )−1.
In equation (97), there are two conditional expectations. The first, which is

the mean of the conditional density function N(y|β0), is the familiar E(y|β0) =
Xβ0. The second, which is the mean of N(β0|y), can be found by applying the
regression formula (A.8.i). It is given by
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E(β0|y) = b0 + P0X
′(XP0X

′ + Σ)−1(y − Xb0) (99)

= b0 + (X ′Σ−1X + P−1
0 )−1X ′Σ−1(y − Xb0)

= (X ′Σ−1X + P−1
0 )−1(X ′Σ−1y + P−1

0 b0) = b∗,

where, to obtain the second expression, we have used the identity

P0X
′(XP0X

′ + Σ)−1 = (X ′Σ−1X + P−1
0 )−1X ′Σ−1. (100)

(This identity, which is in the form of BD−1 = A−1C, can be converted to the
form of AB = CD, from which it can be verified easily.)

Equation (97) can be written in a summary notation as

S(y, β0) = S(y|β0) + S(β0) (101)

= S(β0|y) + S(y),

where the following quadratic forms are from the exponents of the density
functions N(y|β0), N(β0), N(β0|y) and N(y) respectively:

S(y|β0) = (y − Xβ0)
′Σ−1(y − Xβ0), (102)

S(β0) = (β0 − b0)
′P−1

0 (β0 − b0), (103)

S(β0|y) = (β0 − b∗)
′(X ′Σ−1X + P−1

0 )(β0 − b∗), (104)

S(y) = (y − Xb0)
′(XP0X

′ + Σ)−1(y − Xb0) (105)

= (y − Xb0)
′{Σ−1 − Σ−1X(X ′Σ−1X + P−1

0 )−1X ′Σ−1}(y − Xb0).

The second expression for S(y) on the RHS of (105) follows from (A.3.iii).
There is also a relationship |D(y, β0)| = |D(y|β0)||D(β0)| = |D(β0|y)||D(y)|
relating the determinantal terms of the various distributions, which gives rise
to the identity

|P0| = |XP0X
′ + Σ||X ′Σ−1X + P−1

0 |−1. (106)

The various ways for estimating β0 can be considered in the light of the
foregoing algebraic results. First, the estimator can be obtained by maximis-
ing, in respect of β0, the likelihood function corresponding to the conditional
density function N(y|β0). In this approach, β0 tends to be regarded as a para-
metric constant, rather the realised value of a random variable, so that the
conditional likelihood function becomes unconditional. In any event, the re-
sult obtained by minimising the quadratic function S(y|β0) of (108), will be
described as the unconditional full-sample estimator:

b0|T = (X ′Σ−1X)−1X ′Σ−1y. (107)

Substituting this into N(y|β0) gives the concentrated function

N c(y) = (2π)−T/2|Σ|−1/2 exp{−Sc(y)/2}, (108)
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wherein

Sc(y) = y′{Σ−1 − Σ−1X(X ′Σ−1X)−1X ′Σ−1}y. (109)

The concentrated function provides a criterion function from which to de-
rive the maximum-likelihood estimates of the fundamental system parameters
that are to be found within Ht, Φt, Ωt and Ht.

Next, consider the estimator of the initial state vector determined by the
conditional expectation b∗ = E(β0|y), specified in alternative forms by (99).
This estimator can also be derived by minimising S(y, β0) = S(y|β0) + S(β0)
in respect of β0 according to the principle of mixed estimation, which is equiv-
alent to maximising the likelihood function corresponding to the joint density
function N(y, β0). By, letting P0 → ∞ in (99), which is tantamount to negat-
ing the priori information on β0, we get the unconditional estimator b0|T of
(107), as one might expect.

In the absence of informative prior information, we can also attempt to
obtain an estimate of E(β0) = b0 from the likelihood function corresponding
to the marginal density function

N(y) = (2πσ)−T/2|XP0X
′ + Σ|−1/2 exp{−S(y)/2}, (110)

wherein the quadratic exponent S(y) is given by (105). Differentiating S(y)
with respect to b0 and setting the result to zero gives a first-order condition
from which to obtain the maximum-likelihood estimator

b̂0 = {X ′(XP0X
′ + Σ)−1X}−1X ′(XP0X

′ + Σ)−1y (111)

= (X ′Σ−1X)−1X ′Σ−1y = b0|T .

The second expression, which is just the unconditional estimator of β0, follows
from the result on equivalent regression metrics. This result indicates that the
generalised least-squares estimators of β in the regression models (y; Xβ, Ω1)
and (y; Xβ, Ω2) are identical if and only if the columns of the matrices Ω−1

1 X
and Ω−1

2 X span the same space—see Pollock (1979, p. 86). The equality can be
demonstrated directly by reference to (100), which gives X ′(XP0X

′ + Σ)−1 =
P−1

0 (X ′Σ−1X + P−1
0 )X ′Σ−1. After substituting this in the first expression on

the RHS of (111), the factors P−1
0 and (X ′Σ−1X +P−1

0 ) can be cancelled with
their inverses to give the second expression.

Setting b0 = b0|T in the marginal density function gives a concentrated
likelihood function whose quadratic exponent is Sc(y) of (109). This can be
seen via the second expression of (105). The likelihood can be maximised
further by setting P0 = 0. The result is, once more, the function N c(y) of
(108). Setting P0 = 0 is an unnatural recourse in circumstances where there is
no prior information regarding β0. However, it accords with the fact that the
dispersion of the estimate b0|T is a function of sample information alone.

Finally, we should allow P0 → ∞ within the marginal distribution N(y)
of (110) which will set S(y) → Sc(y) in the exponent. This creates what is
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described in de Jong (1988a, 1991) and Ansley and Kohn (1985a, 1990) as a
diffuse distribution. Taking limits within the determinantal term is problem-
atic, since XP0X

′ is unbounded. However, in view of (106), the term can be
written as |XP0X

′ + Σ|−1/2 = |P0|−1/2|X ′Σ−1X + P−1
0 |−1/2. Therefore, it has

been proposed by de Jong to omit the factor |P0|−1/2 and define the diffuse
likelihood function by

Nd(y) = |X ′Σ−1X|−1/2(2π)−T/2 exp{−Sc(y)/2}. (112)

The exponent Sc(y) of the diffuse likelihood, which is the essential part, is
identical to that arising from concentrating the marginal likelihood function
N(y) of (110) in respect of b0 and P0 or, equally, from concentrating the
conditional likelihood function N(y|β0) in respect of β0.

It is arguable that negating the prior information by letting P0 → ∞
is best done in the context of the joint distribution factorised as N(y, β0) =
N(y|β0)N(β0). This confines the difficulties of the limiting process to the factor
N(β0).

Example. There are several alternative ways for deriving the quadratic com-
ponent of the marginal distribution N(y) that lead to expressions so different
that it is difficult demonstrate their equivalence.

Setting β0 = E(β0|y) = b∗ within the exponent S(y, β0) = S(β0|y) + S(y)
of the product N(y, β0) = N(β0|y)N(y) gives S(y), since the term S(β0|y) is
thereby eliminated. This result holds true however the expression for S(y, β0)
is derived. Thus, setting β0 = b∗ in S(y, β0) = S(β0) + S(y|β0) gives

S(y) = (b∗ − b0)
′P−1

0 (b∗ − b0) + (y − Xb∗)
′Σ−1(y − Xb∗). (113)

This expression has been exploited by Goméz and Maravall (1994), and the
same procedure has been followed in Box and Jenkins (1976) in finding the
“unconditional sum of squares” of an ARMA model.

An alternative route to the marginal distribution is via the identity N(y) =
N(y|β0)N(β0)/N(β0|y). This leads to S(y) = S(y|β0)+S(β0)−S(β0|y), which
becomes

S(y) = (y − Xβ0)
′Σ−1(y − Xβ0) + (β0 − b0)

′P−1
0 (β0 − b0) (114)

−(β0 − b∗)
′(X ′Σ−1X + P−1

0 )(β0 − b∗).

After expanding the quadratics, the terms in β0 can be cancelled from this
expression. This formulation has been employed by de Jong (1988a, 1991).

When either (113) or (114) are used as the criterion function for estimating
b0, the functional dependence of b∗ = E(β0|y) on b0 must be taken into account.
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9 Calculating the Estimate of the Initial State

There are various practical means for obtaining the values of I0 = {b0, P0}
to start the Kalman filter. Often analytic expressions for b0 and P0 can be
found by assuming that the state vectors are generated by a stationary process.
Then, the matrices Ht, Φt, Ωt and Ψt become constant and loose their temporal
subscripts.

For stationarity, the eigenvalues of the transformation matrix Φ must lie
within the unit circle, which implies that lim(n → ∞)Φn = 0. Then, the
unconditional moments E(β0) = b0 = 0 and D(β0) = P0 = ΦP0Φ

′ + Ψ from
(66) provide the starting values. The initial dispersion matrix can be found
by calculating P0 = (I − Φ ⊗ Φ)−1vecΨ via a matrix inversion. Alternatively,
it can be found via a convergent iterative process whose ith step is described
by Pi = ΦPi−1Φ

′ + Ψ.
When the state space equations (65) and (66) represent an ARMA process,

there are well-known methods for finding the autocovariances of the process
that can be used in forming P0—see Pollock (1999). The state-space rep-
resentation of the ARMA model may be formulated to facilitate the direct
derivation of P0, as in Mittnik (1987a, 1987b) and Diebold (1986a, 1986b).

In the econometric literature, there is a tendency to adopt the transforma-
tions approach to initialise the Kalman filter when it is applied to a nonsta-
tionary process. This reflects the influence of Ansley and Kohn (1985a). The
purpose of the transformation is to eliminate the dependence of the likelihood
upon unknown initial values with a diffuse or improper distribution.

The transformations approach can cause confusion when it is used as a
theoretical device with no intended application. Indeed, the modified Kalman
filter of Ansley and Kohn (1985a) is designed to avoid transformations of the
data that obstruct the handling of the problem of missing observations.

To illustrate the theoretical approach of Ansley and Kohn, consider the
orthonormal matrix C = [C1, C2] defined in Section 5 in connection with the
LUS residuals. The columns of C1 span the same space as those of X, whereas
C ′

2X = 0. Therefore, transforming the equation y = Xβ0 + ε of (84) by C ′

gives

 C ′
1y

C ′
2y

 =

 C ′
1Xβ0

0

 +

 C ′
1ε

C ′
2ε

 , (115)

where D(C ′
2y) = C ′

2ΣC2. The likelihood function of C ′
2y embodies the concen-

trated sum of squares

Sc(y) = y′C2(C
′
2ΣC2)

−1C ′
2y = y′{Σ−1 − Σ−1X(X ′Σ−1X)−1X ′Σ−1}y.(116)

The second equality of (116) follows from the fact that, if Rank[W, X] = T
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and if W ′Σ−1X = 0, then

W (W ′Σ−1W )−1W ′Σ−1 = I − X(X ′Σ−1X)−1X ′Σ−1. (117)

The equality is obtained by premultiplying both sides of (117) by Σ−1 and
then setting W = ΣC2.

The expression for Sc(y) on the RHS of (116), which is also given by
(109), can be obtained by replacing β0 in S(y|β0) = (y − Xβ0)

′Σ−1(y − Xβ0)
by the full-sample estimate b0|T of (107). Equally, it can be obtained from
S(y) of (105) by setting b0 = b0|T . Observe that, when Σ = I, equation (116)
specialises to (58), which represents the sum of squares of the LUS residuals
of the ordinary regression model.

To fulfil the conditions of (115) and (116), C does not have to be an or-
thonormal matrix. An alternative transformation, which can be used in prac-
tice, has been proposed in Bell and Hillmer (1991) in the context of their
treatment of the unobserved components model. They set X = [X ′

1, X
′
2]

′ and
y = [y′

1, y
′
2]

′, where X1 and y1 comprise the first k observations and k is the
dimension of β0. Then, they form z1

z2

 =

 X−1
1 0

−X2X
−1
1 I


 y1

y2

 =

 β0

0

 +

 X−1
1 ε1

−X2X
−1
1 ε1 + ε2

 . (118)

Here, X−1
1 y1 = b0|k is an estimator of β0 based on minimal data, whilst

Sc(y) = z′2D
−1(z2)z2 = (y2 − X2b0|k)

′D−1(z2)(y2 − X2b0|k) (119)

is an alternative representation of the concentrated sum of squares. This ex-
pression is analogous to (56), which relates to ordinary recursive regression in
the absence of prior information. One should note that, if D(ε) = Σ = I, then
D(z2) = X2(X

′
1X1)

−1X ′
2 + I, which would make the RHS of (119) identical

to (56). Observe that, if C ′
1 = [X−1

1 , 0] and C ′
2 = [−X2X

−1
1 , I], then C ′

1y = z1

and C ′
2y = z2 satisfy (115) and (116).

Equations (116) and (119) represent the same quantity; and comparing
them shows that the concentrated function may be expressed in terms of the
minimal estimate b0|k as well as the full-sample estimate b0|T . This seeming
paradox, which is analogous to a feature of ordinary recursive regression, de-
scribed in Section 5, points to two ways of handling the start-up problem.

We shall begin by describing a procedure that incorporates the full-sample
estimates of the start-up values. Then we shall show how the procedure can be
modified to incorporate the minimal estimates, which are repeatedly enhanced
as the data are assimilated during the process of the recursive estimation.

Consider the following expression for the quadratic function within N(y):

S(y) = (y − Xb0)
′(XP0X

′ + Σ)−1(y − Xb0) (120)

= (y − Xb0)
′L′F−1L(y − Xb0) = e′F−1e,
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where F is a block-diagonal matrix with Ft as the tth diagonal block. Here, the
first expression on the RHS is from (105), whereas the second expression, which
reflects the identities of (88), is the form proposed originally by Schweppe
(1965).

It has been show, in Section 8, that the value that minimises S(y) is the
estimator b0|T = (X ′Σ−1X)−1X ′Σ−1y of (107) and (111), which is invariant
with respect to the value of P0. Therefore, in estimating b0, one is liable to
set P0 = 0, which is tantamount to replacing the marginal function S(y) by
the conditional function S(y|β0) = (y −Xβ0)

′Σ−1(y −Xβ0) of (102). (Setting
P0 = 0, in this context does not carry the literal interpretation that β0 is now
known with certainty. Nor should it convey the usual interpretation that β0 is
to be regarded as a “constant”. The only reasonable interpretation is that it
signals a replacement of the marginal function by the conditional function.)

The form of the estimator b0|T given under (107) is not computable. To
derive an operational form, consider writing equation (87) as

et =
{
yt − HtΦt

t−1∑
j=1

Λt−1,j+1Kjyj

}
− HtΦtΛt−1,1b0 (121)

= e∗t − Wtb0,

where e∗t and Wtb0 are the tth subvectors, respectively, of Ly and Wb0 = LXb0,
which are to be found in equation (88). Substituting in S(y) =

∑T
t=1 e′tF

−1et,
which is the final expression from (120), gives

S(y) =
T∑

t=1

(e∗t − Wtb0)
′F−1

t (e∗t − Wtb0). (122)

The estimated starting value, obtained by minimising this in respect of b0, is

b0|T =
( T∑

t=1

W ′
tF

−1
t Wt

)−1
T∑

t=1

W ′
tF

−1
t e∗t = M−1

T mT . (123)

The elements of this expression can be accumulated via the recursions

mt = mt−1 + Λ′
t−1,1Φ

′
tH

′
tF

−1
t e∗t , (124)

Mt = Mt−1 + Λ′
t−1,1Φ

′
tH

′
tF

−1
t HtΦtΛt−1,1,

which begin with m0 = 0, M0 = 0. They should be run parallel to the Kalman
filter initialised with b0 = 0 and P0 = 0. To accumulate Λt−1,1, we can define
a recursion

Λt,1 = (Φt − KtHtΦt)Λt−1,1, (125)

which starts with Λ1,1 = Λ1. Notice, however, in reference to (121), that the
requisite quantities can be obtained by exploiting the recursion that gives rise
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to the sequence of prediction errors. By starting that recursion with b0 = 0, the
sequence {e∗t} is generated instead of the sequence {et = et(b0)}. By replacing
b0 by an identity matrix and the observations yt by zeros, the sequence {Wt}
is generated.

The estimation of the initial conditions can, therefore, be accomplished by
extending two of the equations of the Kalman filter and by adding an extra
one:

Et = Yt − HtΦtBt−1, Extended Prediction Error (126)

Bt = ΦtBt−1 + KtEt, Extended State Estimate (127)

Gt = Gt−1 + E ′
tF

−1
t Et. Cross − Product Accumulation (128)

Here, (126) and (127) are extensions of (70) and (73), respectively. The ma-
trices Et = [e∗t , Wt] and Bt = [b∗t , Λt,1] have the prediction error and the state
estimate of the ordinary Kalman filter (assuming a starting value of b0 = 0)
in their leading columns, respectively, whilst Yt = [yt, 0]. The starting values
of the extended filter are B0 = [0, I], P0 = 0 and G0 = 0. The matrix Gt is
as follows:

Gt =

 St mt

m′
t Mt

 . (129)

This contains the quantities defined in (124) together with the sum of squares
of the prediction errors scaled by their variance.

The algorithm is attributable to Rosenberg (1973). It is expounded in
Harvey (1989), and elsewhere, and it is used in de Jong (1988a, 1988b, 1989,
1991a, 1991b). The procedure of Rosenberg was to generate the full sequence
of state estimates b∗1, . . . , b

∗
T on the basis of the starting value b0 = 0 and then

to adjust them using the estimate b0|T of (123). It follows from (86) that the
adjusted estimate of βt is bt = b∗t + Λt,1b0|T .

An alternative procedure, described by de Jong (1991a, 1991b), which is in
accordance with the prescriptions of Bell and Hillmer (1991), is to collapse the
extended filter at the earliest opportunity by absorbing the minimal estimate
b0|k = M−1

k mk of the starting value into the state estimate. Then, ek = e∗k −
WkM

−1
k mk and bk = b∗k+Λk,1M

−1
k mk can be formed. The succeeding prediction

errors and state estimates have values given by

et = e∗t − WtM
−1
t mt, (130)

bt = b∗t + Λt,1M
−1
t mt,

if one were to calculate the quantities on the RHS. Thus, the standard Kalman
filter implicitly enhances the estimate of the initial state as the iterations
proceed, but the enhanced estimate itself will not be available. The dispersion
of the state estimate is
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D(bt) = D(b∗t ) + Λt,1D(b0|t)Λ
′
t,1 (131)

= P ∗
t + Λt,1M

−1
t Λ′

t,1 = Pt,

which is generated directly by the standard (collapsed) filter—see de Jong and
Chu-Chun-Lin (1994).

A problem that may arise from collapsing filter is how to estimate the state
vectors β1, . . . , βk−1, that predate the collapse at t = k, when the first estimate
of the starting value is formed. One solution, outlined in de Jong and Chu-
Chun-Lin (2003), uses the estimate b0|k = M−1

k mk to adjust the pre-collapse
values just as b0|T = M−1

T mT is used in Rosenberg’s procedure. The resulting
state estimates will be enhanced in a subsequent smoothing operation. In the
case of the unobserved components model, the start-up values are the initial
values of the component sequences; and they coincide with the elements of the
initial state vector. Therefore, the problem does not arise.

The smoothed estimates of the state vectors are unaffected by whether
b0|k or b0|T has been used in preliminary estimates obtained from filtering.
Smoothing adds information that is missing from the estimates, but it has no
effect if the information has already been incorporated.

The essence of a different method for initialising the filter due to Ansley
and Kohn (1985a) has been presented already in Section 4 in the context of an
ordinary recursive regression. This requires setting Pt = P ∗

t + ρP ◦
t , where P ◦

t

relates to the diffuse component of the prior information and where ρ → ∞.
When P ◦

t > 0 and f ◦
t > 0, the algorithm is summarised by equations (28),

(30) and (31). When P ◦
t = 0 and, therefore, f ◦

t = 0, these are replaced by the
corresponding equations of the standard algorithm.

Some minor elaborations are required to apply the method in the present
context. First, we have Pt|t−1 = P ∗

t|t−1 + ρP ◦
t|t−1, where

P ◦
t|t−1 = ΦtP

◦
t−1Φ

′
t and P ∗

t|t−1 = ΦtP
∗
t−1Φ

′
t + Ψt. (132)

Then, the components of the prediction-error dispersion Ft = F ∗
t + ρF ◦

t must
be defined:

F ◦
t = HtP

◦
t|t−1H

′
t and F ∗

t = HtP
∗
t|t−1H

′
t + Ωt. (133)

Usually, one can assume that, when it is nonzero, F ◦
t is nonsingular—see

Durbin and Koopman (2001). In the process of initialisation, when P ◦
t > 0

and F ◦
t > 0, the following equations are employed:

bt = bt|t−1 + P ◦
t|t−1H

′
tF

◦−1
t (yt − Htbt|t−1), (134)

P ◦
t = P ◦

t|t−1 − P ◦
t|t−1H

′
tF

◦−1
t HtP

◦
t|t−1, (135)

P ∗
t = P ∗

t|t−1 + P ◦
t|t−1H

′
tF

◦−1
t F ∗

t F ◦−1
t HtP

◦
t|t−1 (136)

−P ◦
t|t−1H

′
tF

◦−1
t HtP

∗
t|t−1 − P ∗

t|t−1H
′
tF

◦−1
t HtP

◦
t|t−1.
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When the initialisation is complete, the conditions F ◦
t = 0 and P ◦

t = 0
prevail, and the equations above are replaced by

bt = bt|t−1 + P ∗
t|t−1H

′
tF

∗−1
t (yt − Htbt|t−1), (137)

P ◦
t = P ◦

t|t−1, (138)

P ∗
t = P ∗

t|t−1 − P ∗
t|t−1H

′
tF

∗−1
t HtP

∗
t|t−1. (139)

These are just the equations of the standard Kalman filter.
On defining

K◦
t = P ◦

t|t−1H
′
tF

◦−1
t and Λ◦

t = (I − K◦
t Ht)Φt, (140)

we can write the equations (134), (135) and (136) as

bt = Λ◦
t bt−1 + K◦

t yt, (141)

P ◦
t = (I − K◦

t Ht)P
◦
t|t−1 = (I − K◦

t Ht)P
◦
t|t−1(I − H ′

tK
′◦
t ), (142)

P ∗
t = (I − K◦

t Ht)P
∗
t|t−1(I − H ′

tK
′◦
t ) + K◦

t ΩtK
′◦
t . (143)

The original derivation in Ansley and Kohn (1985a) is somewhat labori-
ous, and a subsequent abbreviated derivation in Kohn and Ansley (1986) is
more accessible. The use of the algorithm in estimating nonstationary ARMA
models has been described in Ansley and Kohn (1985b) and Kohn and Ans-
ley (1986). A modified version of the algorithm, claiming superior numerical
accuracy, is provided in Ansley and Kohn (1990). Other derivations are given
in Snyder (1988), which considers a square-root version of the Kalman filter,
and in Koopman (1997) which treats the most general case, where F ◦

t > 0 is
not necessarily nonsingular.

One virtue of the foregoing method for initialising the filter is that it pro-
vides a complete sequence of state estimates and their corresponding disper-
sion matrices for t = 1, . . . , T that is amenable to a modified or supplemented
version of the smoothing algorithm.

10 The Smoothing Algorithms

The Kalman filter, used as a real-time or on-line algorithm, estimates of
the state vectors from current and past information. Often, it is possible to
enhance these estimates using subsequent information.

In processing speech digitally, before its transmission by telephone, it is
acceptable to impose a small delay for gathering extra information. A fixed-
lag smoothing algorithm can then be used to enhance the digital signal. In
econometrics, with no immediate real-time constraint, all the subsequent in-
formation within a given sample can be used to enhance the state estimates
via the so-called fixed-interval smoothing algorithms.
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Smoothing algorithms quickly followed the publication of Kalman (1960).
A notable contribution is Rauch (1963), and the early work is surveyed in
Meditch (1973). Whereas the fixed-lag smoothing algorithms feature promi-
nently in the engineering literature, fixed-interval algorithms have received less
attention; and econometricians have found scope for developing them. Notable
contributions are Ansley and Kohn (1982), Kohn and Ansley (1989), de Jong
(1988b, 1989) and Koopman (1993). All classes of smoothing algorithms are
surveyed and compared in Merkus, Pollock and de Vos (1993).

This section concentrates exclusively on the fixed-interval algorithms, tak-
ing the sequence of prediction errors IT = {e1, . . . , eT} to represent the infor-
mation set. Because the prediction errors are mutually independent, (A.8.i)
implies that

E(βt|IT ) = E(βt|It) +
T∑

j=t+1

C(βt, ej)D
−1(ej)ej. (144)

This indicates how the estimate bt = E(βt|It) is updated using the information
{et+1, . . . , eT}, which has arisen after time t, to produce the definitive estimate
bt|T = E(βt|IT ). According to (A.8.ii), the dispersion matrix is

D(βt|IT ) = D(βt|It) −
T∑

j=t+1

C(βt, ej)D
−1(ej)C(ej, βt). (145)

To realise these equations, we need a computationally efficient recursion.
Consider

ek = HkΦk(βk−1 − bk−1) + Hkνk + ηk, (146)

which comes from substituting the transition equation (66) into the observa-
tion equation (65) to give yk = Hk(Φkβk−1 + νk) + ηk and then subtracting
Hkbk|k−1 = HkΦkbk−1. Within this expression, there is

βk−1 − bk−1 = Λk−1(βk−2 − bk−2) + (I − Kk−1Hk−1)νk−1 − Kk−1ηk−1.(147)

This is obtained by subtracting bk−1 = Φk−1bk−2+Kk−1ek−1 from the transition
equation and then substituting the expression for ek−1 from (146) into the
result. The equation is amenable to recursion, running from k − 1 down to t,
which gives

βk−1 − bk−1 = Λk−1,t+1(βt − bt) +
k−1∑

j=t+1

Λk−1,j+1{(I − KjHj)νj − Kjηj}.(148)

The summation comprises stochastic elements that are subsequent to t and,
therefore, independent of the prediction error et. After incorporating (148) in
(146), it follows, when k > t, that
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C(βt, ek) = E{βt(βt − bt)
′Λ′

k−1,t+1Φ
′
kH

′
k} (149)

= PtΛ
′
k−1,t+1Φ

′
kH

′
k.

Now consider

C(βt+1, ek) = Pt+1Λ
′
k−1,t+2Φ

′
kH

′
k. (150)

Comparing (149) and (150) shows that

C(βt, ek) = PtΛ
′
t+1P

−1
t+1C(βt+1, ek) (151)

= PtΦ
′
t+1P

−1
t+1|tC(βt+1, ek).

Here, the identity P−1
t+1Λt+1 = P−1

t+1|tΦt+1, giving the second equality, comes

via (74) and (75), which indicate that Pt+1 = Λt+1Φ
−1
t+1Pt+1|t. Equation (151)

provides the recursion to implement the formulae of (144) and (145). The
classical fixed-interval smoother is derived from

E(βt|IT ) = E(βt|It) + PtΦ
′
t+1P

−1
t+1|t

T∑
j=t+1

C(βt+1, ej)D
−1(ej)ej, (152)

which is obtained by substituting the identity of (151) into (144). But

E(βt+1|IT ) = E(βt+1|It) +
T∑

j=t+1

C(βt+1, ej)D
−1(ej)ej, (153)

so it follows that (152) can be rewritten as

bt|T = bt + PtΦ
′
t+1P

−1
t+1|t{bt+1|T − bt+1|t}, (154)

where bt+1|T = E(βt+1|IT ) and bt+1|t = E(βt+1|It) have been used for concise-
ness. This is the classical formula for the fixed-interval smoother.

A similar strategy can be used to derive the dispersion matrix of the
smoothed estimate. Corresponding to (153), we have

D(βt+1|IT ) = D(βt+1|It) −
T∑

j=t+1

C(βt+1, ej)D
−1(ej)C(ej, βt+1)ej. (155)

Therefore, (145) can be written as

Pt|T = Pt − PtΦ
′
t+1P

−1
t+1|t{Pt+1|T − Pt+1|t}P−1

t+1|tΦt+1Pt. (156)

The classical formulae presuppose a sequence bt; t = 1, . . . , T of state
estimates generated by forward filtering. Smoothing is effected by running
backward through the sequence using a first-order feedback in respect of the
smoothed estimates. The algorithm is due to Rauch (1963) and its derivation
can be found in Anderson and Moore (1979) amongst other sources.
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In circumstances where PtΦ
′
t+1P

−1
t+1|t can be represented by a constant

matrix, the classical algorithm is efficient and easy to implement. This occurs
if there is constant transition matrix Φ and if the filter gain Kt converges to
a constant. In all other circumstances, it is necessary recompute the factor at
each iteration and the algorithm is liable to cost time and invite numerical
inaccuracies. The burden of inverting of Pt+1|t can be avoided at the expense
of generating a supplementary sequence to accompany the smoothing process.

Consider the summation within (144), which, using (149), can be written
as

T∑
j=t+1

C(βt, ej)D
−1(ej)ej (157)

= Pt

T∑
j=t+1

Λ′
j−1,t+1Φ

′
jH

′
jF

−1
j ej = Ptqt+1.

Within (145), there is also

T∑
j=t+1

C(βt, ej)D
−1(ej)C(βt, ej) (158)

= Pt

{ T∑
j=t+1

Λ′
j−1,t+1Φ

′
jH

′
jF

−1
j HjΦjΛj−1,t+1

}
Pt = PtQt+1Pt.

Here, the terms qt+1 and Qt+1 are elements of sequences generated by recur-
sions running backwards in time that take the form

qt = Φ′
tH

′
tF

−1
t et + Λ′

t+1qt+1, (159)

Qt = Φ′
tH

′
tF

−1
t H ′

tΦ
′
t + Λ′

t+1Qt+1Λt+1,

and that are initiated with qT = Φ′
T H ′

T F−1
T eT and QT = Φ′

T H ′
T F−1

T HT ΦT .
These are the counterparts of the recursions of (124) that run forwards in
time. The recursions of (159) provide an alternative to the classical fixed-
interval smoothing algorithm. Thus, putting (157) and (158) into (144) and
(145), respectively, gives

bt|T = bt + Ptqt+1, (160)

Pt|T = Pt − PtQt+1Pt.

This algorithm is due to de Jong (1989).
The smoothing algorithms can be adapted to take account of diffuse ini-

tial conditions. Let t = k be the point where there is just sufficient sample
information to determine unique state estimates. This is the point at which
the diffuse filter makes its transition to the standard form. Then, for t < k,
we have Pt = P ∗

t + ρP ◦
t and Ft = F ∗

t + ρF ◦
t . The latter gives rise to

F−1
t = (F ∗

t + ρF ◦
t )−1 (161)

34



= ρ−1(F ◦
t )−1 − ρ−2(F ◦

t )−1F ∗
t (F ◦

t )−1 + · · ·
= ρ−1(F ◦

t )−1 + O(ρ−2),

and to

Λt = (I − KtHt)Φt = (I − K◦
t Ht)Φt − ρ−1K∗

t HtΦt + O(ρ−2), (162)

= Λ◦
t + O(ρ−1),

where K◦
t = P ◦

t|t−1HtF
◦−1
t and Λ◦

t = (I − KtHt)Φt are defined in (140) and
where

K∗
t = P ∗

t−1Ht(F
◦
t )−1 − P ◦

t−1Ht(F
◦
t )−1F ∗

t (F ◦
t )−1. (163)

These results follow analogously to those Section 4.
Now consider the expression

C(βt, ej)D
−1(ej)ej = (P ∗

t + ρP ◦
t )Λ′

j−1,t+1Φ
′
jH

′
jF

−1
j ej, (164)

which is found in the formula (144) for the fixed-interval smoother in the case
when t < k if there are diffuse initial conditions. First, in view of (162) and
(163), we find that, when ρ → ∞,

P ∗
t Λ′

j−1,t+1Φ
′
jH

′
jF

−1
j = 0, when t < k. (165)

When j ≥ k, P ◦
t Λ◦′

j−1,t+1 = P ◦
0 Λ◦′

j−1,1 = 0. Thus, when ρ → ∞,

ρP ◦
t Λ′

j−1,t+1Φ
′
jH

′
jF

−1
j =

{
0, if t < k ≤ j,

P ◦
t Λ◦′

j−1,t+1Φ
′
jH

′
j(F

◦
j )−1, if t < j < k.

(166)

Recognising these conditions, we can extend the algorithm (159) and (160)
to the case of diffuse initial conditions. The standard recursion, indicated by
(159), runs from t = T down to t = k and generates values that may be
denoted by q∗t . Thereafter, from t = k − 1 down to t = 1, the values of this
sequence, together with the values q◦t of a supplementary sequence, beginning
with q◦k = 0, are generated by the recursions

q∗t = Λ◦
t q

∗
t+1, (167)

q◦t = Φ′
jH

′
j(F

◦
j )−1ej + Λ◦

t q
◦
t+1.

The two sequences are incorporated into the smoothed estimates from t = k−1
down to t = 1 by the formula

bt|T = bt + P ∗
t q∗t+1 + P ◦

t q◦t+1. (168)
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Conclusion

The Kalman filter is a complex device of great power and flexibility. Its
exposition tends to generate an inordinate quantity of algebra. In the hands
of the econometricians, the filter has undergone further developments that are
conveyed in a literature that is challenging at the best of times.

One may expect that, when these developments are eventually assimilated
into the mainstream of econometric methodology, some of their algebraic elab-
orations will fall into abeyance. Then a judgment will have been reached on
which of the various competing formulations are the most useful or the most
intelligible.
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A Appendix

The Partitioned Matrix Inverse: If A = A′ and C = C ′ are full rank
symmetric matrices, then A B

B′ C

 =

 I BC−1

0 I


 A − BC−1B′ 0

0 C


 I 0

C−1B′ I

 , (A.1)

whence A B

B′ C


−1

=

 I 0

0 −C−1B′


 (A − BC−1B′)−1 0

0 C−1


 I −BC−1

0 I

 (A.2)

=

 (A − BC−1B′)−1 −(A − BC−1B′)−1BC−1

−C−1B′(A − BC−1B′)−1 C−1 + C−1B′(A − BC−1B′)−1BC−1

 .

These results are confirmed by direct multiplication.

The Matrix Inversion Lemma: In reference to (A.2), there are the following
matrix identities:

(i) (C − B′A−1B)−1 = C−1 + C−1B′(A − BC−1B′)−1BC−1, (A.3)
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(ii) (A − BC−1B′)−1 = A−1 + A−1B(C − B′A−1B)−1B′A−1,

(iii) (C + B′A−1B)−1 = C−1 − C−1B′(A + BC−1B′)−1BC−1.

Results (i) and (ii) are proved by comparing

 A B

B′ C


−1

=

 I −A−1B

0 I


 A−1 0

0 (C − B′A−1B)−1


 I 0

−B′A−1 I

 (A.4)

=

 A−1 + A−1B(C − B′A−1B)−1B′A−1 −A−1B(C − B′A−1B)−1

−(C − B′A−1B)B′A−1 (C − B′A−1B)−1


with (A.2) above. To prove (iii), C is replaced in (i) by −C and both sides of
the equation are multiplied by −1.

The Partitioned Normal Distribution: The probability density function
of a normal vector x of n elements with a mean vector of E(x) = µ and a
dispersion matrix of D(x) = Σ is

N(x; µ, Σ) = (2π)−n/2|Σ|−1/2 exp[−{x − E(x)}′Σ−1{x − E(x)}/2]. (A.5)

If x = [x′
1, x

′
2]

′, then the quadratic function S(x) = {x−E(x)}′Σ−1{x−E(x)}
may be partitioned conformably to give

S(x1, x2) =

 x1 − E(x1)

x2 − E(x2)


′  Σ11 Σ12

Σ21 Σ22


−1  x1 − E(x1)

x2 − E(x2)

 (A.6)

=

 x1 − E(x1)

x2 − E(x2|x1)


′  Σ11 0

0 Σ22 − Σ21Σ
−1
11 Σ12


−1  x1 − E(x1)

x2 − E(x2|x1)



=

 x1 − E(x1|x2)

x2 − E(x2)


′  Σ11 − Σ12Σ

−1
22 Σ21 0

0 Σ22


−1  x1 − E(x1|x2)

x2 − E(x2)

 ,

where x1 − E(x1)

x2 − E(x2|x1)

 =

 I 0

−Σ21Σ
−1
11 I


 x1 − E(x1)

x2 − E(x2)

 , (A.7)

 x1 − E(x1|x2)

x2 − E(x2)

 =

 I −Σ12Σ
−1
22

0 I


 x1 − E(x1)

x2 − E(x2)

 .

These results follow immediately from (A.2) and (A.4).
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The Calculus of Conditional Expectations: Consider the jointly dis-
tributed normal random vectors x and y which bear the linear relationship
E(y|x) = α + B′{x − E(x)}. Then, the following conditions apply:

(i) E(y|x) = E(y) + C(y, x)D−1(x){x − E(x)}, (A.8)

(ii) D(y|x) = D(y) − C(y, x)D−1(x)C(x, y),

(iii) E{E(y|x)} = E(y),

(iv) D{E(y|x)} = C(y, x)D−1(x)C(x, y),

(v) D(y) = D(y|x) + D{E(y|x)},
(vi) C{y − E(y|x), x} = 0.

These results are obtained from (A.6) and (A.7) by setting x1 = y, x2 = x,
Σ11 = D(y), Σ22 = D(x) and Σ12 = C(y, x). Then, it is recognised that
α = E(y) and B′ = C(y, x)D−1(x) = Σ12Σ

−1
22 .
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