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This tutorial paper analyses the structure of a discrete dyadic wavelet anal-

ysis in a manner that facilitates its computation. A clear connection is

maintained between the continuous function that is the object of the anal-

ysis and the discrete sequences that are its products.

The Dyadic Decomposition of a Space of Functions

A discrete wavelet analysis is based on the supposition that the elements
of the data sequence {yk; k = 0, 1, 2, . . . , T − 1} have been sampled from a
continuous function f(t) with t ∈ [0, T ). It is presumed that the function can
be reconstituted, to some degree of approximation, by associating a scaling
function kernel or father wavelet φ0,k = φ(t− k) to each of these ordinates and
by summing the result:

f(t) �
T−1∑
k=0

ykφ(t − k). (1)

The scaling functions are designed to constitute an orthonormal basis of the
space V0 in which the function f(t), or its approximation, resides. Therefore,

∫
t

φ(t − j)φ(t − k)dt = 〈φ(t − j), φ(t − k)〉 =
{ 1, if j = k,

0, if j �= k.
(2)

Then, the elements of the data sequence, which are the amplitude coefficients
of the associated scaling functions, are given by

yk =
∫

t

f(t)φ(t − k)dt = 〈f(t), φ(t − k)〉. (3)

The basis φ0,k = φ(t − k); k = 0, 1, . . . , T − 1, which is ordered in time,
may be described as the initial basis of scaling functions. Scaling functions
have nominal frequency contents that extend from a limiting frequency down
to the zero frequency.

In a dyadic wavelets analysis, the T amplitude coefficients of equation (1),
which are associated with the initial basis, and which are the sampled values,
are transformed into a hierarchy of T coefficients that are associated with an
alternative basis, which is ordered both according to the temporal locations of
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Figure 1. The partitioning of the time–frequency plane according to a multiresolu-

tion analysis of a data sequence of 128 = 27 points.

the wavelets and according to their frequency contents. This constitutes the
final basis.

The hierarchy of wavelets within the final basis can be described with
reference to a so-called mosaic diagram that defines a partitioning of the time-
frequency plane, which corresponds to the space V0. This is illustrated for a
sample of size T = 128 = 27 by Figure 1. In the figure, the height of a cell
corresponds to a bandwidth in the frequency domain, whereas its width denotes
a temporal duration.

The highest frequency in the mosaic diagram is the Nyquist frequency of
π radians per sample interval, which represents the maximum frequency that is
detectable via the process of discrete sampling. Centred on each cell, but liable
to extend beyond its temporal boundaries, there is a wavelet. The frequency
contents of the wavelet is also liable to extend beyond the nominal bandwidth
that is indicated in the figure.

Apart from the final cell, which stretches across the width of the diagram
and which is bounded by the zero frequency, the cells within mosaic diagram
and bounded above and below by positive frequencies. These cells are occu-
pied by mother wavelets, which have a different form from that of the scaling
functions.

The horizontal bands of the mosaic diagram are obtained by successive
divisions of the frequency range. First, the range of frequencies [0, π] of the
space V0 is divided into the equal subintervals [0, π/2] and (π/2, π]. The upper
frequency interval will have T/2 wavelet functions, denoted by ψ1,k(t); k =
0, 1, . . . , [T/2] − 1, separated one from the next by two time intervals. These
wavelets will constitute a basis for a space denoted by W1.

The lower frequency interval will have the same number T/2 of scaling
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functions, denoted by φ1,k(t); k = 0, 1, . . . , [T/2] − 1, also separated by two
intervals. These scaling functions will constitute a basis for a space denoted by
V1. The division of V0 is such that its two subspaces W1 and V1 are mutually
orthogonal. Their orthogonality, which can be denoted by writing V1⊥W1,
entails the fact that V1 ∩W1 = 0.

The direct sum of the two subspaces is W1⊕V1 = V0. This means that any
element in f(t) ∈ V0 can be expressed as f(t) = w1(t) + v1(t) with w1(t) ∈ W1

and v1(t) ∈ V1, which is the sum of two orthogonal functions.
In the next stage of the decomposition of V0, the lower interval is subdi-

vided into the intervals [0, π/4] and (π/4, π/2], which are filled, respectively,
with T/4 scaling functions, denoted by φ2,k(t); k = 0, 1, . . . , [T/4]− 1, and T/4
wavelets, denoted by ψ2,k(t) =; k = 0, 1, . . . , [T/4] − 1, separated by four time
intervals. These will constitute the basis functions, respectively, of the spaces
V2 and W2, which are mutually orthogonal subspaces of V1

The process of subdivision continues, by dividing successively the lower
subintervals, until it can go no further. If there are T = 2n points in the
sample, then T can be divided n times, and there will be a total of n + 1
horizontal bands, with the cells of all but the final band filled with wavelets.
The final band will contain a single scaling function.

The process of subdivision generates a nested sequence of vector spaces,
each of which is spanned by a set of scaling functions:

V0 ⊃ V1 ⊃ · · · ⊃ Vn. (4)

The jth stage of the process, which generates Vj , also generates the accompa-
nying space Wj of wavelet functions, which is its orthogonal complement within
Vj−1. The complete process can be summarised by displaying the successive
decompositions of V0:

V0 = W1 ⊕ V1

= W1 ⊕W2 ⊕ V2

...
= W1 ⊕W2 ⊕ · · · ⊕Wn ⊕ Vn.

(5)

The elements the final expression correspond to the successive horizontal bands
of the mosaic diagram.

Given the decomposition of V0 as a sum of mutually orthogonal subspaces,
represented by equation (5), and given that f(t) ∈ V0, it is possible to represent
the function f(t) as a sum of orthogonal components residing in the subspaces.
Thus

f(t) = w1(t) + w2(t) + · · · + wn(t) + vn(t), (6)

with wj(t) ∈ Wj for j = 1, . . . , n and with vn(t) ∈ Vn.
The generic component of this decomposition may be represented, relative

to the basis functions ψj,k(t); k = 0, 1, . . . , [T/2j ] − 1 of Wj , by

wj(t) =
[T/2j ]−1∑

k=0

βjkψj,k(t). (7)
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Here, βjk is the amplitude coefficient of the kth wavelet function. The two
final elements of the decomposition of (6) are the wavelet function wn(t) =
βn0ψn,0(t) and the scaling function vn(t) = γn0φn,0(t), which have been scaled
by the amplitude coefficients βn0 and γn0, respectively.

Given that the function f(t) is represented, in practice, by its T sampled
ordinates yk; k = 0, 1, 2, . . . , T − 1, it is appropriate to express the components
of the decomposition of (6) in terms of their ordinates sampled at the integer
points. Thus, one purpose of the wavelet analysis is to generate the expression

yk = w1k + w2k + · · · + wnk + vnk; k = 0, 1, . . . , T − 1, (8)

which is the discrete-time counterpart of equation (6). This leads to the fol-
lowing expression for the continuous function:

f(t) =
∑

k

ykφ0,k(t) =
T−1∑
k=0

{ n∑
j=1

wjk + vnk

}
φ0,k(t). (9)

Given the decomposition of (8) and (9), it is possible to perform various
operations that are designed to enhance the representation of the underlying
signal.

A common purpose is to remove from f(t) the traces of an additive noise
contamination. If the noise resides within a limited set of wavelets bands, which
are liable to be the high-frequency bands, then the signal can be enhanced by
removing the corresponding components from the sum.

If the only part of the signal that is of interest resides within a limited set
of adjacent bands, then it can be isolated in a straightforward way by forming
the partial sum of the corresponding components.

Another common purpose in a wavelets analysis is to achieve a measure of
data compression. If the absolute value of the amplitude coefficient βjk asso-
ciated with the wavelet basis function ψj,k(t) ∈ Wj is below a predetermined
level of significance, then it can be set to zero. In this way, it may become
possible to convey the essential information of the signal in far fewer than the
T coefficients that are present in equation (1).

The Dilation Equations

The scaling functions and the wavelets in successive bands represent di-
lated or stretched versions of the functions in the bands above. Let V0 be the
space spanned by the scaling functions φ0,k(t) = φ(t − k), which constitute an
orthonormal basis, and let V1 ⊂ V0 be the subspace containing functions at half
the resolution. Then, V1 will be spanned by the basis functions φ1,k(t), which
represent versions of the functions φ0,k(t) = φ(t − k) that have been stretched
by a factor of 2. That is to say that, if φ0,k(t) is supported on a finite interval,
then φ1,k(t) will be supported on an interval of double the length.

The relationship between the two sets of functions is such that

φ1,k(t) = 2−1/2φ(2−1t − k). (10)
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Replacing t by 2−1t means that a basis function of V1 will evolve at half the rate
of a basis function of of V0. Multiplying the functions by the factor 2−1/2 en-
sures that their squares will continue to integrate to unity, which is a necessary
normalisation. This follows from observing that∫

φ2
1,0(t)dt =

1
2

∫
φ2(2−1t)dt =

1
2

∫
φ2(τ)

dt

dτ
dτ = 1, (11)

where t = 2τ and dt/τ = 2, and where the integral of φ2(τ) is unity in conse-
quence of (2).

Also observe that the basis functions of V1 are separated one from the next
by intervals of 2 points. Thus, whereas φ1,k(t) = 2−1/2φ(2−1t− k) will have its
centre at the point t = 2k, which is the solution of 2−1t− k = 0, φ1,k+1(t) will
have its centre at the point t = 2k + 2.

Equation (10) may be generalised to give

φj,k(t) = 2−j/2φ(2−jt − k), (12)

which is a basis function of Vj . It should be noted that, whereas the present
notation has V1 ⊂ V0, it is common to reverse the order of the indices so that
the space of higher dimension acquires the higher index.

It is possible to express the scaling function φ1,0(t) ∈ V1 as a linear com-
bination of the elements of the basis of a space V0 of twice the resolution. The
appropriate expression is

φ1,0(t) = 2−1/2φ(2−1t) =
∑

k

gkφ(t − k), (13)

were
gk = 〈φ1,0(t), φ(t − k)〉 =

∫ ∞

−∞
φ1,0(t)φ(t − k)dt (14)

Equation (13) is the so-called dilation equation of the scaling function. The
coefficients gk of the dilation equation are also the coefficients of a lowpass
filter. More generally, the relationship between the basis elements of Vj and
those of Vj−1 is indicated by

φj,0(t) =
∑

k

gkφj−1,k(t). (15)

Various conditions must be imposed on the coefficients of the dilation
equations. The first condition concerns the sum of the coefficients, which must
be ∑

k

gk = 21/2. (16)

The necessity of this condition is established by integrating both sides of equa-
tion (13). Assuming that the integration and the summation can be commuted,
this gives

2−1/2

∫
φ(2−1t)dt = 2−1/2

∫
φ(τ)

dt

dτ
dτ =

∑
k

gk

∫
φ(t − k)dt. (17)
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Here, the variable of integration has been changed from t to τ = t/2,
which accounts for the factor dt/dτ = 2. The value of the integral of φ(t − k)
is independent of the translation k, which may be set to zero. Therefore,
equation (17) leads directly to equation (16). This condition is regardless any
orthogonality conditions that are imposed on the wavelets.

The next condition is that the sum of squares of the coefficients of the
dilation is unity: ∑

k

g2
k = 1. (18)

This follows from the fact that the scaling functions at all levels constitute
orthonormal bases. Thus, at level 1, there is

1 =
∫

t

φ2
1,0(t)dt =

∫
t

{∑
k

gkφ(t − k)
}2

dt

=
∑

j

∑
k

gjgk

∫
t

φ(t − j)φ(t − k)dt =
∑

k

g2
k,

(19)

where the final equality follows from the conditions of orthonormality of (2).
A further important condition affecting the coefficients is that

∑
k

gkgk+2m = 0. (20)

This also follows from the orthogonality of the scaling functions and from the
dilation equation. The orthogonality of any two separate scaling functions at
level 0 implies that, if m �= 0, then, in view or (13), there is

0 =
∫

t

φ(2−1t)φ(2−1t − m)dt

= 2
∫

t

∑
j

∑
k

gjgkφ(t − j)φ([t − 2m] − k)dt

= 2
∑

j

∑
k

gjgk

∫
t

φ(t − j)φ(t − [2m + k])dt.

(21)

The integral within the final expression will be zero-valued unless j = k + 2m.
In that case, the expression will deliver the term 2gkgk+2m, which must be
equal to zero. It follows that equation (20) is a necessary condition for the
orthogonality of the scaling functions.

The orthogonal complement within V0 of the space V1 of scaling functions
is the space W1 of wavelets functions. The W1 space is spanned by the wavelets
functions ψ1,k(t); k = 0, 1, . . . , [T/2]−1, which constitute an orthonormal basis.
Since W1 ⊂ V0, it is possible to express the wavelet function ψ(t) as a linear
combination of the elements of the basis of V0. The appropriate expression is

ψ1,0(t) = 2−1/2ψ(2−1t) =
∑

k

hkφ(t − k), (22)
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where
hk = 〈ψ1,0(t), φ(t − k)〉 =

∫ ∞

−∞
φ1,0(t)ψ(t − k)dt (23)

Equation (22) is the dilation equation of the wavelet function. The coefficients
hk of the equation are also the coefficients of a highpass filter that is comple-
mentary to the lowpass filter that entails the coefficients gk.

More generally, there is

ψj,0(t) =
∑

k

gkφj−1,k(t), (24)

and, in parallel with equation (12), there is

ψj,k(t) = 2−j/2ψ(2−jt − k). (25)

The coefficients of the dilation equation of the wavelets must fulfil con-
ditions that are equivalent to those that affect the scaling function dilation.
Thus

p0 =
∑

k

h2
k = 1 and p2m =

∑
k

hkhk+2m = 0. (26)

These are necessary conditions for the sequential orthogonality of separate
wavelets within the band in question; and they represent restrictions on an
autocovariance function. In addition, it is required that

∑
k

hk = 0. (27)

This is sufficient to ensure that the areas of the level-1 wavelets are zero.
Conditions must also be imposed to ensure that the wavelets are orthogonal

to the scaling functions. To ensure that the scaling function φ(t) and the wavelet
ψ(t − m) that are at different displacements will be mutually orthogonal, it is
sufficient to impose the condition that

∑
k

gkhk+2m = 0. (28)

It is also necessary to ensure the orthogonality of wavelets and scaling
functions that are at the same displacement. It is assumed that the two dilation
equations contain the same number M of coefficients, and that this is an even
number. Then, a sufficient condition for orthogonality is that

∑
k

gkhk = 0. (29)

If the coefficients of the scaling function dilation equation are g0, g1, . . . , gM−1,
then the conditions of (28) and (29) can be realised by setting

hk = (−1)kgM−1−k, which implies that gk = (−1)k+1hM−1−k. (30)
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Figure 2. The squared gains of the complementary lowpass and highpass filters.

An example is provided by the case where M = 4. Then, there are

g0,

g1,

g2,

g3,

h0 = g3,

h1 = −g2,

h2 = g1,

h3 = −g0;

(31)

and the conditiond of (28) and (29) are clearly satisfied.
It can be helpful to express these relationships in terms of the z-transforms

of the coefficient sequences. These are

G(z) = g0 + g1z + g2z
2 + g3z

3 = z3H(−z−1),

H(z) = g3 − g2z + g1z
2 − g0z

3 = −z3G(−z−1).
(32)

The autocovariance generating function formed from the coefficients of the
dilation equation of the scaling function is

P (z) = G(z)G(z−1). (33)

The conditions of sequential orthogonality affecting the scaling function imply
that the coefficients of P (z) associated with the even powers of z must be zeros.
The coefficients in question are comprised by the function P (z) + P (−z), from
which the odd powers of z are absent. On taking account of the condition that
p0 = 1, it can be seen that the condition for sequential orthogonality is that

P (z) + P (−z) = G(z)G(z−1) + G(−z)G(−z−1)

= G(z)G(z−1) + H(z)H(z−1) = 2.
(34)

Equation (34) indicates the complementary nature of the highpass and
lowpass filters that are derived from the coefficients of the dilation equations.
Setting z = exp{iω} with ω ∈ [−π, π] within H(z)H(z−1) and G(−z)G(−z−1)
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gives the squared gains of the filters. These are plotted in Figure 2 for the case
of the Daubechies D4 filters that are to be specified in the section that follows.

The cross-covariance generating function formed from the coefficients of
the highpass and lowpass filters is Q(z) = G(z)H(z−1). The condition of
(28), which imposes the mutual orthogonality of the wavelets and the scaling
functions at displacements that are multiples of two points, is equivalent to the
condition that

Q(z) + Q(−z) = G(z)H(z−1) + G(−z)H(−z−1) = 0. (35)

Given that

G(−z) = g0 − g1z + g2z
2 − g3z

3 = −z3H(z−1) and

H(−z−1) = g3 + g2z
−1 + g1z

−2 + g0z
−3 = z−3G(z),

(36)

It follows that this condition is automatically satisfied by choosing G(z) and
H(z) to be complementary filters.

The conditions that ensure the mutual orthogonality of the elements of the
bases of V1 and W1, which are associated with the first round of the dyadic
decomposition, will guarantee the mutually orthogonality of all of the elements
of the final basis that reside in different bands. The orthogonality of such
elements may be described as lateral orthogonality.

Generating Wavelets and Scaling Functions

In the majority of cases, there are no analytic functions to represent the
wavelets and the scaling functions in the time domain. Therefore, iterative
procedures must be used for generating graphical representations of these func-
tions. Such iterative procedures are based on the appropriate dilation equa-
tions.

Consider the equation (13). This indicates that, moving in the direction
of higher resolution, there is

φ(t) = 21/2
M−1∑
k=0

gkφ(2t − k). (37)

The scaling functions on the RHS of (37) are supported on intervals of
half the width of the interval supporting φ(t) and they are separated one from
the next by distances 1/2 a unit. The amplitude coefficients g0, g1, . . . , gM−1

form a discrete sequence of which the elements can be attributed to the central
points of the corresponding wavelets.

The scaling functions on the RHS of (37) are themselves amenable to
expansions via the dilation equation. Thus

φ(2t − k) = 21/2
M−1∑
j=0

gjφ(2[2t − k] − j). (38)
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When equation (38) is substituted into the RHS of equation (37), for all values
of k, the result is an expression for φ(t) that contains M2 contracted scaling
functions. Each of these is supported on an interval that has 1/4th of the length
of the support of φ(t).

In the resulting expression for φ(t), the scaling functions on the RHS of
(38) are separated one from the next by distances of 1/4 of a unit, as are the
corresponding amplitude coefficients. Some of these contracted functions share
the same supports; and, together, they are supported on the same interval as
φ(t). The amplitude coefficients come in batches of M elements at a time.
Successive batches, indexed by k, are separated by distances of 1/2 a unit.

The manner in which the coefficients of the second expansion are generated
may be illustrated by the case where M = 4. The coefficients are the products
of the following multiplications:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 0 0 0
g1 0 0 0
g2 g0 0 0
g3 g1 0 0
0 g2 g0 0
0 g3 g1 0
0 0 g2 g0

0 0 g3 g1

0 0 0 g2

0 0 0 g3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

g0

g1

g2

g3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 0 0 0 0 0 0
g1 g0 0 0 0 0 0
g2 g1 g0 0 0 0 0
g3 g2 g1 g0 0 0 0
0 g3 g2 g1 g0 0 0
0 0 g3 g2 g1 g0 0
0 0 0 g3 g2 g1 g0

0 0 0 0 g3 g2 g1

0 0 0 0 0 g3 g2

0 0 0 0 0 0 g3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g0

0
g1

0
g2

0
g3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

The expression on the LHS corresponds to the manner of forming the coeffi-
cients that has already been described. That is to say, four batches of the four
coefficients, separated by a fixed interval, are shifted successively by a double
interval before being multiplied in turn by the coefficients g0, g1, g2 and g3.

The expression on the RHS embodies the lower-triangular Toeplitz matrix
of a linear filter. The sequence that is subject to the filter is obtained by
interpolating zeros between the elements of the pre-existing vector of derived
amplitude coefficients. This is described as an upsampling operation.

Successive expansions of the sum of wavelets can proceed in the manner
indicated by the expression on the RHS of (39), by upsampling the sequence of
amplitude coefficients derived in the previous expansion and then by subjecting
the result to a process of filtering.

As the number of expansions increases, an increasing number of amplitude
coefficients are mapped into the interval that supports φ(t). In the process,
the supports of the wavelets associated with the coefficients are successively
diminished. Eventually, the wavelets will be adequately represented by spikes
of unit area based on a point, which are Dirac delta functions. By that stage,
the profile of φ(t) will be well represented by the closely spaced sequence of the
derived amplitude coefficients.

The dilation equation for the wavelets functions at level 0, which is given

10
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Figure 3. The Daubechies D4 wavelet function calculated via a recursive

method.
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Figure 4. The Daubechies D4 scaling function calculated via a recursive

method.

in (22), can be represented as follows:

ψ(t) = 21/2
M−1∑
k=0

hkφ(2t − k) (40)

This can be expanded in the same way as the scaling function to generate
a sequence of closely spaced coefficients that will represent the profile of the
wavelet.

An example of a pair of wavelet and scaling functions that have dilation
equations of four coefficients is provided by Daubechies’ D4 functions. In this
case, there are

g0 = (1 +
√

3)/(4
√

2), g1 = (3 +
√

3)/(4
√

2),

g2 = (3 −
√

3)/(4
√

2), g3 = (1 −
√

3)/(4
√

2),
(41)

and there are h0 = g3, h1 = −g2, h2 = g1 and h3 = −g0, in accordance with
(31). The profiles of the functions are represented in Figures 3 and 4.
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The Decomposition of a Function in V0

If the approximation of equation (1) is replaced by an exact equality, then
the equation will become

f(t) =
∑

k

〈
φ(t − k), f(t)

〉
φ(t − j) =

∑
k

ykφ(t − k). (42)

This equation represents the projection of f(t) on the basis vectors of V0. Since
V0 = W1⊕V1, an alternative representation of f(t) is obtained by projecting it
on the conjunction of the basis vectors of W1 and V1, to generate the orthogonal
components v1(t) and w1(t) of f(t) = w1(t) + v1(t).

The projection on the level-1 scaling functions gives

v1(t) =
∑
m

〈
f(t), φ1,m(t)

〉
φ1,m(t). (43)

But, in view of the dilation equation of (13), there is

φ(2−1t − m) = 21/2
∑

k

gkφ(2[2−1t − m] − k)

= 21/2
∑

k

gkφ(t − [k + 2m]) = 21/2
∑

k

gk−2mφ(t − k)
(44)

which indicates that φ1,m(t) =
∑

k−2m gkφ0,k(t). Therefore, the coefficient
associated with the basis function φ1,m(t) is

〈
f(t), φ1,m(t)

〉
=

∑
k

gk−2m

〈
f(t), φ0,k(t)

〉

=
∑

k

gky2m−k.
(45)

The projection of f(t) on the level-1 wavelets gives

w1(t) =
∑
m

〈
f(t), φ1,m(t)

〉
ψ1,m(t). (46)

In this case, it can be shown, as in the case of the scaling functions, that the
coefficient associated with ψ1,m(t) is

〈
f(t), ψ1,m(t)

〉
=

∑
j

hky2m−k. (47)

The equations

γ1m =
T−1∑
k=0

gky2m−k; m = 0, 1, . . . , [T/2] − 1, (48)

β1m =
T−1∑
k=0

hky2m−k; m = 0, 1, . . . , [T/2] − 1, (49)

12
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of (45) and (47), which deliver the coefficients of the level-1 scaling func-
tions and wavelets respectively, can be construed as the equations of a pair
of complementary linear filters that are applied to a common data sequence
y0, y1, . . . , yT−1 of T elements. Equation (48) describes a lowpass filter and
equation (49) describes a highpass filter.

These filters move through the sample in step with the index 2m, which is
to say that they take steps of two points at a time. When this index is replaced
by m, it becomes necessary to select alternate values of the filtered outputs via
a process that is commonly described as down sampling.

Since the data sequence is finite, there will be problems in applying the
filters at the ends of the sample where data are required that lie beyond the
ends. To overcome the problem, the filter can be applied to the data via a
process of circular convolution, which is equivalent to applying the filter to the
periodic extension of the data.

To accommodate this adaptation within equation (48) and (49), it is suffi-
cient to replace yt by yt mod T . When t ∈ {0, T −1} there will be yt mod T = yt.
Otherwise, when it appears to lie outside the sample, yt will be replaced by a
value from within the sample.

The second stage of the decomposition, as well as all subsequent stages,
can be modelled on the first stage. Thus, the coefficients of the second stage
are given by

γ2n =
[T/2]−1∑

k=0

gkγ1,2n−k; n = 0, 1, . . . , [T/4] − 1, (50)

β2n =
[T/2]−1∑

k=0

hkγ1,2n−k; n = 0, 1, . . . , [T/4] − 1. (51)

The complete process of decomposition is best represented using a matrix no-
tation.

A Matrix Formulation of a Wavelets Analysis

Let y = [y0, . . . , yT−1]′, where T = 2n, represent the vector of observations,
which are associated with the scaling functions of the initial basis, and let
β = [β0, . . . , βT−1]′ represent the vector of the coefficients associated with the
wavelets of the final basis. Here, βT−1 = γn0 is the coefficient associated with
the single scaling function in the ultimate subdivision of the frequency range.
The mapping from y to β, denoted by β = Q′y, is effected by an orthonormal
matrix Q such that QQ′ = Q′Q = IT .

Since (Q′)−1 = Q, it follows that there is an inverse transformation from
the wavelet coefficients to the data of the form Qβ = y. This mapping from β to
y effects a wavelet synthesis. If β contains a single nonzero element representing
the amplitude coefficient of a solitary wavelet, then the mapping of β via Q will
generate the vector, corresponding to a single column of Q, containing elements
that approximate the ordinates of that wavelet, sampled at unit intervals.

13
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The T elements of the vector β can be ordered in a manner that corre-
sponds to a dyadic decomposition, such as is illustrated in Figure 1. Within
β, there is a succession of subvectors, which contain the coefficients associated
with the succession of the wavelet functions of the final basis. The subvectors
of

β = [β′
(1), β

′
(2), . . . , β

′
(n), γ

′
(n)]

′ (52)

are
β(1) = [β10, β11, . . . , β1,[T/2]−1]′,

β(2) = [β20, β21, . . . , β2,[T/4]−1]′,
...

β(n−1) = [βn−1,0, βn−1,1]′,

β(n) = [βn0, ],

γ(n) = [γn0].

(53)

A linear filter can be applied to a finite data sequence via a matrix trans-
formation of the vector y of the data. Let the z-transform of a causal filter be
represented by the polynomial c(z) = c0 + z1z + · · · + cM−1z

M−1 and assume
that the filter is applied to the data via a process of circular convolution.

Then, the matrix transformation that implements the filter can obtained by
replacing the powers of z by powers of a circulant matrix KT =
[e1, e2, . . . , eT−1, e0]. This matrix is formed from the identity matrix IT =
[e0, e1, e2, . . . , eT−1] by moving the leading vector e0 to the end of the array.
The resulting matrix is

c(KT ) = c0IT + z1KT + · · · + cM−1K
M−1
T , (54)

and the filtered vector is given by c(KT )y.
A process of down sampling can also be affected by a matrix transforma-

tion. The down sampling matrix is V = Λ′ = [e0, e2, e4, . . . , eT−2]′, which is
obtained by deleting alternate rows from the identity matrix IT .

To see in detail how the wavelet amplitude coefficients can be generated
in this manner, it is best to take a specific example. In the example, there
are T = 8 = 23 data points and there are M = 4 coefficients in the dilation
equations. Each stage of the process that converts the data into the wavelet
coefficients involves the application of a linear filter followed by a process of
down sampling.

The highpass filter that is to be applied to the data in the first round of
the wavelets decomposition has the following matrix representation:

H(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 0 0 h3 h2 h1

h1 h0 0 0 0 0 h3 h2

h2 h1 h0 0 0 0 0 h3

h3 h2 h1 h0 0 0 0 0
0 h3 h2 h1 h0 0 0 0
0 0 h3 h2 h1 h0 0 0
0 0 0 h3 h2 h1 h0 0
0 0 0 0 h3 h2 h1 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (55)

14
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Premultiplying this by the down sampling matrix is a matter of deleting alter-
nate rows:

VH(1) =

⎡
⎢⎣

h0 0 0 0 0 h3 h2 h1

h2 h1 h0 0 0 0 0 h3

0 h3 h2 h1 h0 0 0 0
0 0 0 h3 h2 h1 h0 0

⎤
⎥⎦ . (56)

When this matrix is combined with the matrix VG(1), which is the down
sampled version of the lowpass filter matrix, and when the data vector y is
mapped through the combined matrix, the result is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β10

β11

β12

β13

γ10

γ11

γ12

γ13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 0 0 h3 h2 h1

h2 h1 h0 0 0 0 0 h3

0 h3 h2 h1 h0 0 0 0
0 0 0 h3 h2 h1 h0 0

g0 0 0 0 0 g3 g2 g1

g2 g1 g0 0 0 0 0 g3

0 g3 g2 g1 g0 0 0 0
0 0 0 g3 g2 g1 g0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (57)

The transformation can be represented, in summary notation, by
[

β(1)

γ(1)

]
=

[
VH(1)

VG(1)

]
y. (58)

In the second round of the wavelets decomposition, the coefficients associ-
ated with the level-1 wavelets are preserved and the coefficients associated with
the level-1 scaling functions are subject to a further decomposition:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β10

β11

β12

β13

β20

β21

γ20

γ21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 h0 h3 h2 h1

0 0 0 0 h2 h1 h0 h3

0 0 0 0 g0 g3 g2 g1

0 0 0 0 g2 g1 g0 g3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β10

β11

β12

β13

γ10

γ11

γ12

γ13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (59)

The summary notation for this is
⎡
⎣β(1)

β(2)

γ(2)

⎤
⎦ =

⎡
⎣ I 0

0 VH(2)

0 VG(2)

⎤
⎦

[
β(1)

γ(1)

]
. (60)
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The effect of the down sampling upon the circular filter can be see in
equation (59). The two filters are defined on four points and, at this level,
only four data points are available. There are no zeros remaining within the
matrices VH ′

(2) and VG′
(2).

In the next round of filtering, there are only two data points to be mapped
through the filters. The consequence is that γ20 and γ21 must be used twice in
the third and final transformation. This can represented equally by

[
γ30

β30

]
=

[
h0 h3 h2 h1

g0 g3 g2 g1

]⎡
⎢⎣

γ20

γ21

γ20

γ21

⎤
⎥⎦ (61)

or by [
γ30

β30

]
=

[
h0 + h2 h3 + h1

g0 + g2 g3 + g1

] [
γ20

γ21

]
. (62)

On the LHS is a vector containing the amplitude coefficients, respectively, of a
wavelet and a scaling function stretching the length of the data sequence.

A general expression can now be given for the set of amplitude coefficients
associated with the projection of the function f(t) onto the basis of the subspace
Wj . These coefficients are contained in the jth vector of the sequence of (53),
which is given by

β(j) = VH(j)VG(j−1) · · ·VG(1)y = Q′
(j)y. (63)

In order to relieve the burden of notation, the subscripts have been omitted
from the succession of down sampling matrices that would indicate their orders.
Reading from right to left, the first down sampling matrix is V(1) of order
T/2 × T . The penultimate matrix is V(j−1) of order T/2j−1 × T/2j−2 and the
final matrix is V(j) of order T/2j × T/2j−1.

On the RHS of (63) is the matrix Q′
(j), which represents a submatrix

formed from a set of adjacent rows of the matrix Q′, which is entailed in
the mapping β = Q′y from the sampled ordinates of f(t) to the amplitude
coefficients of the final basis. Given that QQ′ = IT , it follows that Qβ = y
represents the synthesis of the vector y from the amplitude coefficients.

The vector β(j) of (63) is entailed in the synthesis of the component vector
wj = [w0j , w1j , . . . , wT−1,j ]′ of the decomposition of y = w1 + · · · + wn + vn.
The synthesis can be represented by

wj = Q(j)β(j) = G′
(1)Λ · · ·G′

(j−1)ΛH ′
(j)Λβ(j), (64)

where Λ = V′ represents the upsampling matrix, which interpolates zeros be-
tween the elements of any vector than it premultiplies.

The Two-Channel Quadrature Mirror Filter Bank

An understanding of the architecture of a dyadic wavelets analysis can be
reaffirmed by considering the nature of two-channel quadrature mirror filter.
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This should serve to highlight the symmetry and the essential simplicity of the
design.

Consider, therefore, the following way of processing a signal. First, the
signal is transmitted through two separate branches containing a lowpass filter
G and a highpass filter H. Then, the filtered signals are down sampled by
selecting alternate data points, indexed by even integers, and by discarding the
points indexed by odd numbers. This operation is denoted by (↓ 2). The two
parts of the signal are transmitted separately, and an estimate of the original
signal is produced by reassembling them.

Prior to the reassembly, zeros are interpolated between the elements of
the component signals to replace the discarded elements. This operation is
described as upsampling, and it is denoted by (↑ 2). Then, the upsampled
sequences are passed though separate smoothing filters E and D, designed to
replace the interpolated zeros by estimates of the missing values. Finally, the
two signals are added together.

Let the input signal be denoted by x(t) and its z-transform by x(z). Here,
z is generally taken to be the complex exponential e−iω. In that case, x(e−iω)
can be denoted more economically by x(ω). However, by using x(z), a greater
generality can be achieved at the same time as easing the burden of notation.

The path taken by the signal through the highpass branch of the network
may be denoted by

x(z) −→ H(z) −→ (↓ 2) −→ � −→ (↑ 2) −→ E(z) −→ w(z), (65)

whereas the path taken through the lowpass branch may be denoted by

x(z) −→ G(z) −→ (↓ 2) −→ � −→ (↑ 2) −→ D(z) −→ v(z). (66)

The symbol � denotes the storage and transmission of the signals. The output
signal, formed by merging the two branches, is y(t) = v(t) + w(t).

The immediate objective is to find the z-transform of the reconstituted
signal y(t). Consider any signal p(t) that has been subject to the processes of
downsampling and upsampling to produce the sequence q(t) = {p(t ↓ 2) ↑ 2}.

Let p(t) ←→ p(ω), which is to say that p(ω) is the Fourier transform of
p(t). Since ω ∈ [0, 2π], the domain of p(ω) is a circle. In the process of down
sampling, the angular velocity ω is replaced by ω/2 and the function evolves at
half the previous rate. Therefore, it is wrapped twice around the circumference
of the circle and the overlying ordinates are added. The effect is one of spectral
aliasing.

The effect is summarised by writing p(t ↓ 2) ←→ 1
2{p(ω/2) + p(π + ω/2).

Since e±iπ = −1 and e−i(π+ω/2) = −e−iω/2, and, in terms of the z-transform,
this becomes

p(t ↓ 2) ←→ 1
2
{p(z1/2) + p(−z1/2)}. (67)

Next, there is a process of upsampling, which doubles the value of the frequency
argument. This gives p{(t ↓ 2) ↑ 2} ←→ 1

2{p(ω)+ p(π +ω)}, which can also be
written as

p{(t ↓ 2) ↑ 2} ←→ 1
2
{p(z) + p(−z)}. (68)
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It follows that the signals that emerge from the two branches of the network
are given by

w(z) =
1
2
E(z){H(z)x(z) + H(−z)x(−z)},

v(z) =
1
2
D(z){G(z)x(z) + G(−z)x(−z)}.

(69)

Combining the two signals gives

y(z) =
1
2
{D(z)G(−z) + E(z)H(−z)}x(−z),

+
1
2
{D(z)G(z) + E(z)H(z)}x(z).

(70)

The term in x(−z) is due to aliasing and, by setting

D(z) = z−dH(−z), E(z) = −z−dG(−z), (71)

it can be eliminated to give

y(z) =
1
2
{D(z)G(z) + E(z)H(z)}x(z)

=
z−d

2
{H(−z)G(z) − G(−z)H(z)}x(z).

(72)

The terms z−d, which have been included in the definitions of D(z) and E(z),
can serve to compensate for the time lags that have been induced by the initial
the process of filtering via G(z) and H(z), and they may be omitted if it is
required to depict a process that operates in real time.

It should be observed that the conditions of (71) guarantee the alias can-
cellation for any choice of the filters G(z) and H(z). More restricted choices
are indicted if it is required that y(t) = x(t). In that case, it can be said that
the filters fulfil the condition of prefect reconstruction.

The restriction that the coefficients of the filters G(z) and H(z) should
constitute mutually orthogonal vectors indicates a unique choice of the anti-
aliasing filters. To illustrate this, we may consider the case where the filter span
is M = 4. Then, the following relationships prevail, which can be generalised
easily:

(i)
(ii)
(iii)
(iv)

G(z) = g0 + g1z + g2z
2 + g3z

3 = z3H(−z−1) = D(z−1)

H(z) = g3 − g2z + g1z
2 − g0z

3 = −z3G(−z−1) = E(z−1),

D(z) = g0 + g1z
−1 + g2z

−2 + g3z
−3 = z−3H(−z) = G(z−1),

E(z) = g3 − g2z
−1 + g1z

−2 − g0z
−3 = −z−3G(−z) = H(z−1).

(73)

Using such relationships, equation (72) can be rendered as

y(z) =
1
2
{G(z−1)G(z) + H(z−1)H(z)}x(z)

=
1
2
{D(z)G(z) + D(−z)G(−z)}x(z)

=
1
2
{P (z) + P (−z)}x(z).

(74)
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The condition that y(t) = x(t) indicates that

P (z) + P (−z) = 2, (75)

which is equation (29) again.
The coefficients of P (z) and P (−z) that are associated with odd powers of

z and −z will be cancelled within (75). To maintain the equality, the coefficients
associated with positive powers must be zeros. These zero-valued coefficients
of P (z) and P (−z) correspond to the orthogonality conditions of (17) and (22),
respectively, and so the requirement is satisfied.

Finally, the normalisations (15) and (21), which relate to the sums of
squares of the coefficients, provide the coefficients of unity that are associated
with z0 within P (z) and P (−z). Thus, the value on the RHS of (75) is con-
firmed.

The equation

1
2
{
G(z−1)G(z) + H(z−1)H(z)

}
= 1, (76)

which is an alternative form of (75), summarises the structure of the filter bank
with reference to the complementary highpass and low pass filters, represented
by H(z) and G(z), respectively. It shows their overall effect, which is to deliver
an output that is a perfect reconstruction of the input sequence.

It is straightforward to derive matrix representations of the filters from
their z-transforms, by replacing the powers of the argument z by powers of
the circulant matrix KT = [e1, e2, . . . , eT−1, e0]. Thus, for example, the filter
matrix of (55) is obtained by setting z = K8 within H(z) of (73, ii).

The negative powers of z are to be replaced by powers of the transposed
matrix K ′

T = [eT−1, e0, e1, . . . , eT−2]. Thus, the matrix associated with H(z−1)
corresponds to the transpose of the matrix associated with H(z).
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