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1. Introduction

A real circulant stochastic process of order T is one in which the autocovariance
matrix of a vector [x0, x1, . . . , xT−1], sampled from the process, is unchanged when
the elements of the vector are subjected to a cyclical permutation. Thus, for any
integers s, t ∈ [0, T − 1], the autocovariance should be

(1) γ|t−s| = C(xt, xs) = C{x(t+τ mod T ), x(s+τ mod T )},

where τ is an arbitrary integer. Such a process is the finite equivalent of a stationary
stochastic process.

An ordinary stationary process is, by definition, distributed over the set of all
positive and negative integers, which corresponds to a set of equally spaced points
on the time axis. It is statistically invariant with respect to translations along this
axis. A circular process, in comparison, is invariant with respect of translations
around a closed circuit where the successive stations are indexed by the integers
0, 1, . . . , T − 1.

One of the bugbears of time-series analysis is the need to cope with the fact
that all data series are finite with a definite beginning and an end. Often, we need
to infer the values of elements that lie outside the sample. Also, in attempting to
determine the sampling properties of time-series estimates, we have often to contend
with the disjunctions at the beginning and the end of the samples. Usually, we can
show that, as the sample size increases, the effect of these disjunctions upon our
estimates vanishes; but it is often difficult or laborious to demonstrate the fact.
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A virtue of circular processes is that they suffer from none of these end effects.
They are often easier to analyse than are the corresponding finite segments sampled
from stationary processes, and the results that are obtained are usually perfect
prototypes for the asymptotic results for stationary processes.

The theoretical importance of circular processes is reaffirmed once it is recog-
nised that all time-series methods that make use of the discrete Fourier transform
are effectively based upon the assumption that the data are from periodic processes,
which are circular processes in other words.

The purpose of this paper is to set forth some of the salient results in the
algebra of circulant matrices which can be used in time-series analysis. In the
course of doing so, we shall provide easy proofs of some results that are central to
the analysis of statistical periodograms and empirical spectral density functions.
We shall also derive a statistical test for the stationarity or homogeneity of an
empirical process. Once the algebra of circulant matrices has been digested, it
should appear that the test is of a familiar classical nature.

Circulant matrices have represented a mathematical curiosity ever since their
first appearance in the literature in a paper by Catalan [3]. The literature on cir-
culant matrices, from their introduction until 1920, was summarised in four papers
by Muir [7]–[10]. A recent treatise on the subject, which contains a useful bibliog-
raphy, has been provided by Davis [5]; but his book does not deal with problems
in time-series analysis.

Circulant matrices have been used, in passing, in the analysis of time series by
several authors, notably by Anderson [1] and by Fuller [6], but their usefulness in
organising the material of statistical Fourier analysis, or of time-series analysis in
the frequency domain, has not been fully exploited. It is hoped that the paper will
help in changing this.

2. Circulant Matrices and Polynomials

A circulant matrix is a Toeplitz matrix which has the general form of

(2) X =


x0 xT−1 xT−2 . . . x1

x1 x0 xT−1 . . . x2

x2 x1 x0 . . . x3
...

...
...

. . .
...

xT−1 xT−2 xT−3 . . . x0

 .

The vectors of such a matrix are generated by applying a succession of cyclic per-
mutations to the leading vector, which therefore serves to specify the matrix com-
pletely. The elements of the circulant matrix X = [xij ], which may be real or
complex numbers, fulfil the condition that xij = x{(i − j) mod T}. Hence, the
index for the supra-diagonal elements, for which 1 − T ≤ (i − j) < 0, becomes
(i− j) mod T = T + (i− j).

The operator which effects the cyclic permutation of the elements of any (col-
umn) vector of order T is the matrix K = [e1, . . . , eT−1, e0]. This is formed from
the identity matrix I = [e0, e1, . . . , eT−1] by moving the leading vector to the back
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of the array. Thus,

(3) K =



0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0

 .

We should observe that the following conditions hold:

(4)

(i) K−q = KT−q,

(ii) K0 = KT = I,

(iii) K ′ = KT−1 = K−1.

Any circulant matrix X of order T can be expressed as a linear combination
of the set of basis matrices I, K, . . . , KT−1; and thus X can be expressed as a
polynomial function

(5)
X = x0I + x1K + · · ·+ xT−1K

T−1

= x(K).

The conjugate of the matrix, obtained by replacing its elements by their complex
conjugates, will be denoted by X̄ = x̄(K).

If {γi} is an absolutely convergent sequence obeying the condition that
∑
|γi| <

∞, then the z-transform of the sequence, which is defined by γ(z) =
∑

γjz
j ,

is an analytic function on the unit circle. In that case, replacing z by K gives
rise to a circulant matrix Γ = γ(K) with finite-valued elements. Noting that
K ↑ q = K ↑ (q mod T ), it is found that

(6)
Γ =

{ ∞∑
j=0

γjT

}
I +

{ ∞∑
j=0

γ(jT+1)

}
K + · · ·+

{ ∞∑
j=0

γ(jT+T−1)

}
KT−1

= ψ0I + ψ1K + · · ·+ ψT−1K
T−1.

Given that {γi} is a convergent sequence, it follows that the sequence of the matrix
coefficients {ψ0, ψ1, . . . , ψT−1} converges to {γ0, γ1, . . . , γT−1} as T increases.

Notice that the matrix ψ(K) = ψ0I +ψ1K + · · ·+ψT−1K
T−1, which is derived

from a polynomial ψ(z) of degree T − 1, is a synonym for the matrix γ(K), which
is derived from the z-transform of an infinite convergent sequence.

The polynomial representation is enough to establish that circulant matrices
commute in multiplication and that their product is also a polynomial in K. That
is to say

(7) If X = x(K) and Y = y(K) are circulant matrices, then their product
W = XY = Y X is also a circulant matrix.
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The peculiar feature of such polynomials is that the powers of the argument
K form a T -periodic sequence such that Kj+T = Kj ; and thus the degrees of
the polynomial products never exceed T − 1. This periodicity is analogous to the
periodicity of the powers of the argument z = exp{−i2π/T} which is to be found
in the Fourier transform of a sequence of order T .

A symmetric circulant matrix G = G′ must have the following representation:

(8)
G = c0I + c1(K + K−1) + · · ·+ cT−1(KT−1 + K1−T )

= c0I + (c1 + cT−1)K + · · ·+ (cT−1 + c1)KT−1.

The implication of the condition is that gτ = (cτ + cT−τ ) = gT−τ .
Observe that this condition of matrix symmetry can be obtained directly from

the defining conditions of a circulant matrix. For, if xij = x{(i− j) mod T} is the
element in the ith row and the jth column and if xij = xji, then x{τ mod T} =
x{−τ mod T} where τ = i− j, which is to say that xτ = xT−τ .

Example 1. Imagine that T observations, running from t = 0 to t = T − 1,
have been taken on a stationary and invertible ARMA(p, q) process y(t) which is
described by the equation

(9) (1 + α1L + · · ·+ αpL
p)y(t) = (1 + µ1L + · · ·+ µqL

q)ε(t),

wherein ε(t) is a white-noise sequence of independently and identically distributed
random variables of zero mean, and L is the lag operator which has the effect that
Lε(t) = ε(t − 1). Corresponding to the observations, there is a set of T equations
which can be arrayed in a matrix format:

(10)



y0 y−1 . . . y−p
y1 y0 . . . y1−p
...

...
. . .

...
yp yp−1 . . . y0

...
...

. . .
...

yT−1 yT−2 . . . yT−p−1




1
α1
...

αp

 =



ε0 ε−1 . . . ε−q
ε1 ε0 . . . ε1−q
...

...
. . .

...
εq εq−1 . . . ε0

...
...

. . .
...

εT−1 εT−2 . . . εT−q−1




1
µ1
...

µq

 .

Here, the generic equation is

(11)
p∑
i=0

αiyt−i =
q∑
i=0

µiεt−i, where α0 = µ0 = 1.

Apart from the elements y0, y1, . . . , yT−1 and ε0, ε1, . . . , εT−1 which fall within the
sample period, these equations comprise the presample values y−p, . . . , y−1 and
ε−q, . . . , ε−1 which are to be found in the top-right corners of the matrices.

An alternative representation of the system of equations can be given which is
in terms of polynomials. Thus, if

(12)

y(z) = y−pz
−p + · · ·+ y0 + y1z + · · ·+ yT−1z

T−1,

ε(z) = ε−qz
−q + · · ·+ ε0 + ε1z + · · ·+ εT−1z

T−1,

α(z) = 1 + α1z + · · ·+ αpz
p and

µ(z) = 1 + µ1z + · · ·+ µqz
q,
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then

(13) y(z)α(z) = ε(z)µ(z).

By performing the polynomial multiplication of both sides of (13) and by equating
the coefficients of the same powers of z, it will be found that the equation associated
with zt is precisely the generic equation under (11).

To derive the circulant representation of order T of the ARMA equations, we
impose the conditions that yt = y(t mod T ) and that εt = ε(t mod T ). In terms of
equation (10), the effect of these conditions is to replace the presample elements by
elements from within the sample. Thus, y−1 = yT−1, . . . , y−p = yT−p and, likewise,
ε−1 = εT−1, . . . , ε−q = εT−q.

With these provisos, the polynomials of equation (13) can be converted to
circulant matrices simply by replacing the complex argument z by the matrix ar-
gument K.

3. Spectral Factorisation of Circulant Matrices

The matrix operator K has a spectral factorisation which is particularly useful in
analysing the properties of the discrete Fourier transform. To demonstrate this
factorisation, we must first define the so-called Fourier matrix. This is a symmetric
matrix U = T−1/2[W jt; t, j = 0, . . . , T − 1] whose generic element in the jth row
and tth column is

(14)
W jt = exp(−i2πtj/T ) = cos(ωjt)− i sin(ωjt),

where ωj = 2πj/T.

On taking account of the T -periodicity of W q = exp(−i2πq/T ), the matrix can be
written explicitly as

(15) U =
1√
T


1 1 1 . . . 1
1 W W 2 . . . WT−1

1 W 2 W 4 . . . WT−2

...
...

...
...

1 WT−1 WT−2 . . . W

 .

The second row and the second column of this matrix contain the T th roots of
unity. The conjugate matrix is defined as Ū = T−1/2[W−jt; t, j = 0, . . . , T − 1];
and, by using W−q = WT−q, this can be written explicitly as

(16) Ū =
1√
T


1 1 1 . . . 1
1 WT−1 WT−2 . . . W
1 WT−2 WT−4 . . . W 2

...
...

...
...

1 W W 2 . . . WT−1

 .
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It is readily confirmed that U is a unitary matrix fulfilling the condition

(17) ŪU = UŪ = I.

This is proved using the formula for the partial sum of a geometric progression:

(18)
T−1∑
t=0

W (j−k)t =


1−WT (j−k)

1−W (j−k)
= 0, if j 6= k,

T, if j = k.

The result follows, in both cases, from the fact that WTq = W 0 = 1.
It is helpful to note the following reciprocal relationships between the summa-

tion vector h = [1, 1, . . . , 1]′ and the vector e0 = [1, 0, . . . , 0]′ which is the leading
column of the identity matrix:

(19)
(i) h =

√
TUe0 =

√
T Ūe0,

(ii) e0 =
1√
T

Ūh =
1√
T

Uh.

Now consider postmultiplying the unitary matrix U by the diagonal matrix

(20) D =


1 0 0 . . . 0
0 WT−1 0 . . . 0
0 0 WT−2 . . . 0
...

...
...

. . .
...

0 0 0 . . . W

 .

Then, it is easy to see, by the direct multiplication of the matrices of (15) and (20),
that UD = KU , where K is the circulant operator from (3). From this, it follows
that

(21)
(i) K = UDŪ = ŪD̄U,

(ii) D = ŪKU,

(iii) D̄ = UKŪ,

where

(22) D̄ = diag{1, W, W 2, . . . , WT−1}

is both the conjugate and the inverse of D. These equalities follow from the fact
that K is a real-valued matrix which must equal its own conjugate.

Also, it can be shown that

(23) K ′ = K−1 = UD̄Ū = ŪDU.

The following conclusions can be reached in a straightforward manner:
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(24) If X = x(K) is a circulant matrix then

(i) X = x(K) = Ux(D)Ū = Ūx(D̄)U,

(ii) X ′ = x(K ′) = Ux(D̄)Ū = Ūx(D)U,

(iii) X−1 = x−1(K) = Ux−1(D)Ū .

4. Symmetric Circulant Matrices and their Fourier Transforms

We may describe the elements of the diagonal matrix x(D̄)/T as the spectral
ordinates of the circulant matrix X = x(K).

The jth diagonal element of the matrix x(D̄)/T is given by

(25) ξj =
1
T

∑
t

xtW
jt =

1
T

∑
t

(xret + iximt )
{

cos(ωjt)− i sin(ωjt)
}
,

where ωj = 2πj/T is described as the jth Fourier frequency. In fact, the sequence
{ξ0, ξ1, . . . , ξT−1} of the diagonal elements of x(D̄)/T is nothing but the discrete
Fourier transform (DFT) of the sequence {x0, x1, . . . , xT−1} of the elements in the
leading vector of X = x(K).

As well as x(D̄), we need to consider the matrix x(D) which features in the
equations of (24) and the matrix x̄(D) which is the conjugate of x(D̄).

(26) Let the jth element of x(D̄)/T be denoted by ξj . Then the jth element
of x̄(D)/T is ξ∗j (i.e. the complex conjugate of ξj) and the jth element
of x(D)/T is ξT−j .

These conditions can be used in establishing some basic results concerning real-
valued circulant matrices and symmetric circulant matrices.

(27) If X = X̄ is a real-valued circulant matrix such that x(K) = x̄(K),
and x(D) = x̄(D), then, equivalently, ξ∗j = ξT−j .

The implication is that, if X = x(K) = x̄(K) is a real-valued matrix, which is to
say that ximt = 0 for all t, then the sequence of complex numbers {ξ0, ξ1, . . . , ξT−1},
defined according to (25), which are the diagonal elements of x(D̄)/T , consists of a
real part which is an even or symmetric function of the index j and an imaginary
part which is an odd or anti-symmetric function.

(28) If X = X ′ is a symmetric circulant matrix such that x(K) = x(K ′),
and x(D) = x(D̄), then, equivalently, ξj = ξT−j .

Here, the condition that x(D) = x(D̄) arises out of the comparison of (24)(i) and
(24)(ii).

If a circulant matrix is both real-valued and symmetric, then the elements of
the corresponding Fourier transform will fulfil the same conditions as the elements
of the matrix. That is to say

(29) If X = x(K) = x̄(K) = x(K′) is a real-valued symmetric matrix with
xτ = x∗τ = xT−τ , then, equivalently, the diagonal elements of x(D̄)
will constitute a real-valued even sequence with ξj = ξ∗j = ξT−j .
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Of course, the condition of matrix symmetry, which is that xτ = xT−τ , ensures that
the terms in the sine function cancel within the sum defining ξj in (25). Thus, when
X is a real symmetric circulant matrix, its spectral ordinates ξj =

∑
t xt cos(ωjt) are

the products of a cosine Fourier transform which therefore constitute a real-valued
even sequence.

Example 2. Consider an ARMA process represented, in the form of an infinite-
order moving-average, by y(t) = φ(L)ε(t), where φ(L) = µ(L)/α(L) represents the
series expansion of a rational function of the lag operator. The autocovariance
generating function of the process is

(30) γ(z) = σ2φ(z)φ(z−1) =
∞∑
τ=0

γτ (zτ + z−τ ),

where γτ = σ2
∑∞
j=0 φjφj+τ is the autocovariance of lag τ .

Setting z = exp{−iωj} and recognising that exp{iωjτ} + exp{−iωjτ} =
2 cos(ωjτ) gives an ordinate of the spectral density function in the form of

(31) f(ωj) =
1
2π

γ(exp{iωj}) =
1
2π

{
γ0 + 2

∞∑
τ=1

γτ cos(ωjτ)
}

,

which represents the cosine Fourier transform of the infinite sequence of ordinary
autocovariances. The spectral density function is ordinarily regarded as a continu-
ous function of the frequency variable ω ∈ [0, π]. However, the spectral ordinates at
the frequency values ωj = 2πj/T ; j = 0, . . . , T − 1, which are equally spaced across
the interval [0, 2π), constitute an even real-valued sequence.

The same spectral ordinates can be obtained from the elements of the diagonal
matrix

(32)
1
2π

γ(D) =
1
2π

Ūγ(K)U =
σ2

2π
Ūφ(K ′)φ(K)U,

where γ(K) = Γ and φ(K) = Φ are the circulant matrices which are obtained when
z is replaced by K in γ(z) and φ(z) respectively. Observe that, whereas, in general,
the coefficients of γ(z) constitute an infinite sequence, the coefficients of γ(D) form
only a finite sequence of order T . The relationship between the coefficients of γ(z)
and those of γ(D) = ψ(D) is expressed in equation (6).

5. The Fourier Transform and the Periodogram

Let X = x(K) = Ux(D)Ū = Ūx(D̄)U be a real-valued circulant matrix. The DFT
of the vector x = x(K)e0, which is given by T−1/2Ux(K)e0 = T−1/2x(D̄)Ue0 =
T−1y(D̄)h, can be written as

(33) ξ = T−1/2Ux,
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Premultiplying the latter equation by T 1/2Ū gives

(34) x = T 1/2Ūξ;

which represents the inverse transform by which x is recovered from ξ = x(D̄)h/T .
By referring to (25), it can be seen that the jth element of ξ is

(35) ξj =
1
T

T−1∑
t=0

xtexp(−iωjt) =
1
T

T−1∑
t=0

{
xt cos(ωjt)− ixt sin(ωjt)

}
,

Observe that, with ωj = 2πj/T , there are cos(ω0t) = 1 and sin(ω0t) = 0 when
j = 0. Also, if T is even, then T/2 is an integer and ωT/2 = π. In that case, the
sum comprises cos(ωT/2t) = (−1)t, whereas sin(ωT/2t) = 0 vanishes.

Equation (35) is therefore amenable to various specialisations according to the
value of j. First, when j = 0 the formula delivers the sample mean:

(36) ξ0 =
1
T

T−1∑
t=0

xt = x̄ = α0.

Next, in consequence of the real-valued nature of the data, there are

(37) ξj =
αj − iβj

2
and ξT−j = ξ∗j =

αj + iβj
2

,

with

(38) αj =
2
T

T−1∑
t=0

xt cos(ωjt) and βj =
2
T

T−1∑
t=0

xt sin(ωjt),

where j = 1, . . . , (T−1)/2 if T is odd and j = 1, . . . , (T/2)−1 if T is even. Both cases
are covered by setting j = 1, . . . , [(T − 1)/2], where [(T − 1)/2] = trunc{(T − 1)/2}
is the integer part of (T − 1)/2. Finally, there is

(39) ξT/2 =
1
T

T−1∑
t=0

(−1)txt = αT/2 if T is even.

The elements of the inverse Fourier transform can be written as

(40) xt =
T−1∑
j=0

ξjexp(iωjt) =
T−1∑
j=0

{
ξj cos(ωjt) + iξj sin(ωjt)

}
.

However the conditions of (37) imply that

(41) αj = ξj + ξ∗j and βj = −i(ξj − ξ∗j ),
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where j = 1, . . . , [(T − 1)/2]. Therefore, on the understanding that βT/2 = 0 if T
is even, equation (40) can be written as

(42) xt =
[T/2]∑
j=0

{
αj cos(ωjt) + βj sin(ωjt)

}
= α0 +

[T/2]∑
j=1

ρj cos(ωjt− θj),

where ρ2
j = α2

j + β2
j and θj = tan−1(βj/αj), and where [T/2] = trunc(T/2).

The product G = T−1X ′X is the matrix of the so-called circular autocovari-
ances. Its elements g0, g1, . . . , gT−1 are given by the formula

(43)

gτ =
1
T

T−1∑
t=0

xtxt+τ ; where xt = x(t mod T )

or, equivalently,

gτ =
1
T

T−1−τ∑
t=0

xtxt+τ +
1
T

τ−1∑
t=0

xtxt+T−τ

= cτ + cT−τ .

If the mean x̄ of the data values x0, x1, . . . , xT−1 is non-zero, then its square is liable
to be subtracted from the circular autocovariances. The circular autocovariances,
which constitute an even sequence, differ from the ordinary autocovariances cτ ,
which are obtained from the first formula by setting xt = 0 when t > T −1, instead
of setting xt = xT−t, or from the second formula by taking only the leading sum.
The circular autocovariances constitute an even sequence.

The matrix of circular autocovariances can be expressed variously as

(44)
G = Ūg(D)U

= T−1X ′X = T−1Ūx(D̄)x(D)U.

The core of this expression is the real-valued diagonal matrix

(45) g(D) = T−1x(D̄)x(D) = Tdiag{|ξ0|2, |ξ1|2, . . . , |ξT−1|2}.

Consider premultiplying equation (44) by e′0 and postmultiplying it by e0.
Since e′0Ge0 = g0 and Ue0 = Ūe0 = T−1/2h, we get the following expression for
the mean square of the data:

(46) g0 = T−2h′x(D̄)x(D)h =
T−1∑
j=0

|ξj |2.

The terms in the sum on RHS can be specialised in various ways. When j = 0,
there is

(47) |ξ0|2 = α2
0 = x̄2.
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When j = 1, . . . , [(T − 1)/2], there are

(48) |ξj |2 = |ξT−j |2 =
α2
j + β2

j

4
=

ρ2
j

4
.

Finally, there is

(49) |ξn|2 = α2
n if T = 2n is even.

The terms |ξj |2 and |ξT−j |2 can be combined within the sum of equation (46). It
follows that, when T is even, the equation can be rewritten as

(50) g0 − α2
0 =

n−1∑
j=0

ρ2
j

2
+ α2

n.

When T is odd, the summation is extended to include the nth term which becomes
ρ2
n/2 = (α2

n+β2
n)/2. Observe that g0−α2

0 = T−1
∑
t(xt−x̄)2 is the sample variance

calculated from the mean-adjusted data.
The sequence {Tρ2

1/2, Tρ2
2/2, . . . , Tρ2

n−1/2, Tα2
n}, which applies when T is

even, together with the alternative sequence {Tρ2
1/2, Tρ2

2/2, . . . , Tρ2
n/2}, which

applies when T is odd, constitute the periodogram of the data. Equation (50)
represents an analysis of variance in terms of the periodogram.

Example 3. In equation (44), the matrix U represents a set of complex eigenvectors
of the matrix G. The diagonal matrix g(D) contains the corresponding set of real-
valued eigenvalues. A set of real-valued eigenvectors can be found to replace the
complex ones. Given that G = g(K) and g(D) are a real-valued matrices, it follow
from (44) that

(51) GU = Ug(D) and GŪ = Ūg(D).

By combining these equations in two ways, we can write

(52) GC = Cg(D) and GS = Sg(D),

where

(53) C =
(

U + Ū

2

)
and S =

(
U − Ū

2i

)
are, respectively, a matrix of cosines and a matrix of sines.

To reveal the structure of these matrices, we may adopt a notation whereby
cp = [cos(ωpt); t = 0, . . . , n]′ and sq = [sin(ωqt); t = 0, . . . , n]′, where n = [T/2].
Also, let h = [1, 1, . . . , 1]′ and j = [1,−1, . . . , (−1)T−1]′. Then

(54) C =

{
[h, c1, . . . , cn−1, j, cn−1, . . . , c1], if T is even;

[h, c1, . . . , cn−1, cn, cn, . . . , c1], if T is odd.

11
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Likewise,

(55) S =

{
[0, s1, . . . , sn−1, 0,−sn−1, . . . ,−s1], if T is even;

[0, s1, . . . , sn−1, sn,−sn, . . . ,−s1], if T is odd.

Now define the matrix which comprises the distinct elements of C and S ordered
by rising frequency. This is

(56) V =

{
[h, c1, s1, . . . , cn−1, sn−1, j], if T is even;

[h, c1, s1, . . . , sn−1, cn, sn], if T is odd.

The matrix V is square and of full rank, and it satisfies the equation

(57) GV = V g(D).

Therefore, we can describe the vectors of sines and cosines within V as the charac-
teristic vectors of the matrix of circular autocovariances.

When the characteristic vectors are ordered according to the decreasing sizes
of their associated eigenvalues, they constitute the so-called principal components
of the matrix X. The concept of principal components supplies additional meaning
to the analysis of the periodogram.

An analysis of the principal components of the data has been the basis of a
number of recent papers in paleoclimatology which purport to reveal the presence
in meteorological phenomena of hidden cycles. (See, for example, Schlesinger and
Ramankutty [12] and Vautard and Ghil [13].)

The procedure for uncovering the cycles, which is known as singular spectral
analysis, is not based upon circulant matrices. Instead, it is based, typically, upon
a data matrix which can be obtained from the leading matrix of equation (10) by
replacing the presample elements by zeros and by appending an upper triangular
matrix at the bottom whose nonzero elements are the remainder of the sample
values.

The reality of the climatological cycles has been disputed; and those who claim
to have uncovered them seem to be unable to provide convincing proof. There is a
suspicion that the cycles that have been identified are merely artifacts of the data
analysis. If the analysis were conducted using circulant matrices, then it should be
straightforward to employ standard techniques to assess whether the periodogram
ordinates are significantly different from those which might originate in a white-
noise process.

6. Complex Normal Distributions

In this section, we shall develop the statistical properties of a complex normal
vector which is obtained by applying a Fourier transform to a spherical normal
vector x ∼ N(0, σ2I), with a zero mean vector E(x) = 0 and with dispersion
matrix D(x) = σ2I, which represents a segment of a white-noise process. The
results will be used in the following section in analysing the statistical properties

12
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of the periodogram of a normal vector x ∼ N(0, σ2Q) obtained by sampling an
arbitrary stationary stochastic process.

The basic results, which are exact, are obtained under the assumption that x is
from a circular process and that, accordingly, the dispersion matrix Q is a circulant
matrix. These results provide asymptotically valid approximations for the more
general and realistic cases where x is generated by a linear stochastic process which
is not necessarily a normal process.

In order to develop the statistical theory of a complex normal vector, we need
to generalise some of the familiar operations of multivariate statistical analysis.

First we define the expectation of a complex random vector:

(58) If ξ is a complex vector with a generic element of ξj = (αj + iβj)/2,
then its expectation E(ξ) is a vector whose generic element is E(ξj) =
{E(αj) + iE(βj)}/2.

Next we define the dispersion matrix of a complex vector:

(59) If ξ is a complex vector of zero expectation with a generic element of
ξj = (αj + iβj)/2, then its variance–covariance matrix or dispersion
matrix D(ξ) = E(ξξ̄′) = Q has E(ξjξ∗k) = E{(αj + iβj)(αk − iβk)}/4
as the element in the j, kth position.

In general, the dispersion matrix of a complex vector is a Hermitian matrix
Q = Q̄′ which is equal to its own conjugate transpose. However, if ξ = T−1/2Ux is
the Fourier transform of a real-valued vector, then the real and imaginary elements
are uncorrelated, and its dispersion matrix Q = Q′ is real and symmetric.

We are interested, particularly, in the statistical properties of the Fourier trans-
form of a real-valued normal vector. The simplest case is that of a vector of inde-
pendently and identically distributed elements:

(60) If x ∼ N(0, σ2IT ) is a real-valued vector with a spherical normal
distribution and if U is a unitary transformation, then T 1/2ξ = Ux ∼
NC(0, σ2IT ) has a complex spherical normal distribution.

Here the subscripted C on NC indicates that this is the distribution of a complex
vector.

Notice that the elements of ξ are not statistically independent in the ordinary
sense since, if it is the transform of a real-valued vector x, then ξ will comprise both
ξj = (αj + iβj)/2 and its conjugate ξT−j = (αj − iβj)/2. However, the complex
coordinates αj , βj ; j = 0, . . . , n = [T/2] will be mutually uncorrelated, as will be
the corresponding complex moduli ρ2

j = α2
j + β2

j .
It is straightforward to associate a chi-square distribution with the modulus of

a complex normal vector with a spherical distribution.

(61) Let T 1/2ξ = Ux ∼ NC(0, σ2IT ) be a complex spherical normal vec-
tor which represents the Fourier transform of a real-valued spherical
normal vector x ∼ N(0, σ2IT ). Then T ξ̄′ξ/σ2 = x′x/σ2 ∼ χ2(T ).

According to Cochran’s theorem [4], if x ∼ N(0, σ2IT ) and if P = P ′ = P 2 is a
real-valued symmetric matrix of order T with rank(P ) = r, then x′Px/σ2 ∼ χ2(r)

13
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and x′(I − P )x/σ2 ∼ χ2(T − r) are statistically independent chi-square variates.
The following is a extension of the result which is appropriate to complex spherical
normal vectors:

(62) Let T 1/2ξ = Ux ∼ NC(0, σ2IT ) be a complex spherical normal vector
obtained from the real-valued vector x via the unitary Fourier matrix
U of (15). Let S = S′ = S2 be a real-valued selection matrix of order
T with r units and T − r zeros on the diagonal, which form an even
sequence, and with zeros elsewhere. Then ŪSU = P = P ′ = P 2 is a
real-valued symmetric idempotent circulant matrix with rank(P ) = r;
and it follows that T ξ̄′Sξ/σ2 = x′ŪSUx/σ2 ∼ χ2(r) and T ξ̄′(I −
S)ξ/σ2 = x′Ū(I−S)Ux/σ2 ∼ χ2(T − r) are statistically independent.

Here, we should recall that, according to (29), the condition that the diagonal
elements of S constitute a real-valued even sequence is sufficient to ensure that
P = ŪSU is a real-valued matrix.

Example 4. Let ξ = T−1/2Ux be the Fourier transform of a real-valued vector
x ∼ N(0, σ2IT ). Let ξj = (αj + iβj)/2 and let Sj = eje

′
j + eT−je′T−j , where

0 < j ≤ [(T − 1)/2]. Then Sj is a diagonal matrix of rank 2 with units on the
diagonal in the positions j and T − j and with zeros elsewhere. The diagonal
elements of Sj constitute a real and even sequence. Therefore, it follows from (29)
that ŪSjU is a real-valued symmetric idempotent circulant matrix. Hence

(63)

T

σ2
ξ̄′Sjξ =

T

σ2
(ξjξ∗j + ξT−jξ

∗
T−j)

=
T

2σ2
(α2
j + β2

j ) =
T

2σ2
ρ2
j ∼ χ(2).

If T = 2n is even, then both S0 = e0e
′
0 and Sn = ene

′
n are matrices of rank 1 whose

diagonal elements constitute even sequences. (An even sequence must have the
same element in the positions j and T − j; and, with j = 0 or j = n = T/2, the two
positions coincide.) Therefore, both ŪS0U and ŪSnU are real-valued symmetric
idempotent circulant matrices of rank 1, and it follows that

(64)

T

σ2
ξ0ξ
∗
0 = T

α2
0

σ2
= T

x̄2

σ2
∼ χ2(1)

and
T

σ2
ξnξ
∗
n = T

α2
n

σ2
∼ χ2(1).

If T = 2n + 1 is odd, then βn 6= 0 and there are ξn = (αn + iβn)/2 and ξT−n =
(αn − iβn)/2, which are adjacent values within the vector ζ. These give rise to a
χ2(2) variate in the manner of (63).

7. Statistical Properties of the Periodogram

To see the significance for the analysis of the periodogram of the results of the
foregoing section, let us consider the ARMA process of (9), which can be written
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in the form of y(t) = φ(L)ε(t), where φ(L) = µ(L)/α(L) represents the series
expansion of the rational operator. The process can also be represented, in terms
of the z-transform polynomials of (12), by putting y(z) = φ(z)ε(z).

The analysis proceeds by using the circulant version of the ARMA process. By
putting ε(t mod T ) in place of εt, which replaces the elements outside the sample
by elements from within the sample, and by replacing the complex argument z by
the matrix argument K, we derive the matrix equation Y = ΦE , where Y = y(K),
Φ = φ(K) and E = ε(K). The equation of the circulant process, together with that
of its Fourier transform, can therefore be expressed as

(65) y = Φε = Eφ and T−1/2Uy = ζy = φ(D)ζε,

where y = Y e0, φ = Φe0 and ε = Ee0 are the leading vectors of their respective
matrices.

We shall assume that y ∼ N(0, σ2Q), where Q = Φ′Φ, which implies that
ε = Φ−1y ∼ N(0, σ2I). The results of the previous section can be applied directly
to the Fourier transform of ε which is ζε = φ−1(D)ζy.

Let Sk = eke
′
k be the selection matrix with a unit in the kth diagonal position

and with zeros elsewhere. Then

(66)

ζεkζ
∗
εk = ζ̄ ′εSkζε

= ζ̄ ′yφ
−1(D̄)Skφ−1(D)ζy

=
ζykζ

∗
yk

qk
,

where qk is the kth diagonal element of the matrix ŪQU = q(D) = φ(D̄)φ(D).
Therefore, by putting ζyjζ

∗
yj/qj in place of ξjξ

∗
j in equation (63), we get

(67)
T

σ2qj
{ζyjζ∗yj + ζy(T−j)ζ

∗
y(T−j)} =

T

2σ2qj
ρ2
yj ∼ χ(2).

where j = 1, . . . , [(T − 1)/2]. If T = 2n is even, then, in addition,

(68)

T

σ2q0
ζ0ζ
∗
0 = T

α2
0

σ2q0
= T

ȳ2

σ2q0
∼ χ2(1)

and
T

σ2qn
ζnζ
∗
n = T

α2
n

σ2qn
∼ χ2(1).

If T = 2n + 1 is odd, then ζn and ζT−n are adjacent values within the vector ζ.
These give rise to a χ2(2) variate in the manner of (67).

Now recall that the expected value of a χ2(r) variate is r whilst its variance is
2r. Also recall that, according to (31), the value of the spectral density function at
the frequency ωj is f(ωj) = γ(exp{−iωj})/(2π) = σ2qj/(2π). It follows that

(69) E

(
T

2
ρ2
yj

)
= 2πf(ωj) and V

(
T

2
ρ2
yj

)
= (4π)2f2(ωj) if 0 < ωj < π.
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Also, at zero frequency, there is

(70) E(T ȳ2) = 2πf(0) and V (T ȳ2) = 2(2π)2f2(0),

whereas, if T = 2n is even, then, at the highest observable frequency, there is

(71) E(Tα2
n) = 2πf(ωn) and V (Tα2

n) = 2(2π)2f2(ωn) where ωn = π.

There remains the question of the validity of approximating a linear ARMA
process by a circular process. In the case of a white noise process, there is no
effective distinction between a linear process and a circular process—the results for
the periodogram analysis are identical.

In the case of an ordinary linear ARMA process, the generic element is yt =∑
j φjεt−j , whereas, for a circular process, it is yt =

∑
j φjε(t−j mod T ). The dif-

ference lies entirely in the replacement of the presample elements in the sequence
{εt; t = 0,±1,±2, . . .} by elements from within the sample.

It is clear that, if the sequence {φj ; j = 0, 1, 2, . . .} of ARMA parameters is
absolutely convergent, then the presample values of {εt} will be of diminishing
significance in the formation of yt as they recede in time. On this basis, it is to
be expected that, as the sample index t increases, the corresponding elements of
the two processes will converge. Therefore, as the sample size T increases, the
preponderance of the sample elements from the two process will converge, and this
should lead to the convergence of their periodograms.

The formal proposition which expresses these notions is as follows:

(72) Let y(t) = φ(L)ε(t), where ε(t) is a white-noise process such that
E(εt) = 0, V (εt) = σ2 for all t, and where the coefficients of the
operator φ(L) are absolutely summable such that

∑∞
j=0 |φj | < ∞.

Let qj = |φ(z)|2 with z = exp{−iωj}. Then the periodogram of y(t),
based on T observations, can be represented, at the Fourier frequency
ωj , by

T

2
ρ2
yj =

T

2
qjρ

2
εj + Rj ,

where E(Rj)→ 0 and V (Rj)→ 0 as T →∞.

Proofs of the proposition can be found, inter alia, in the texts of Priestley [11],
Brockwell and Davies [2] and Fuller [6]. However, these proofs make no explicit
reference to the circular process.

It appears from (69) that, when they are scaled by a factor of 1/(2π), the
ordinates of the periodogram of a circular process are unbiased estimates of the
corresponding ordinates of the spectral density function. It also appears that the
variances of these estimates do not diminish as the sample size T increases. The
same is roughly true of the ordinates of the periodogram of a linear process for
which the results of (69) are asymptotically valid. The upshot is that the raw
periodogram is not a consistent estimator of the spectral density function.

Nevertheless, as the sample size increases, the points at which the periodogram
is defined become increasingly dense in every fixed frequency interval. Therefore,
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one can generate ever-improving estimates of the underlying spectral density func-
tion by averaging an increasing number of adjacent periodogram ordinates from
within an ever-decreasing frequency interval.

Let M = Uµ(D)Ū be a circulant smoothing matrix which serves as an averag-
ing operator in respect of the periodogram, and let g(D) be the diagonal matrix of
(45) whose elements give rise to the periodogram ordinates. Then s = Mg(D)h is
a vector whose elements are the ordinates of an estimated spectral density function
based on local averages of the periodogram.

An alternative expression for the vector of spectral estimates is
s = T 1/2Uµ(D)Ge0. This indicates that the estimated spectrum may be obtained
by applying the relevant weights, contained within the diagonal matrix µ(D), to
the vector g = Ge0 of the circular autocovariances and then applying a Fourier
transform to the product.

The equivalence of the two expressions is demonstrated by confirming the fol-
lowing identities, which make use of (19)(i):

(73)

Mg(D)h = Uµ(D)Ūg(D)h
= Uµ(D)ŪUGŪh

= T 1/2Uµ(D)Ge0.

8. Testing the Homogeneity of a Time Series

The purpose of this final section is to show how the results of the foregoing sections
can be used in a simple way to construct statistical tests of hypotheses relating to
the periodogram, which are of a strictly classical nature.

Our specific object is to determine whether two adjacent segments of a time
series have been generated by the same invariant process. Under the null hypothesis
that the process is invariant, we may estimate a time-series model which can be
used in constructing a filter for the purpose of reducing the series to white noise.
Thereafter, we can test the null hypothesis that the two adjacent segments are
generated by the same white-noise process.

An alternative to filtering the data is to divide the ordinates of the periodogram
of the data by (estimates of) the corresponding spectral ordinates, in the manner of
(66). The estimates of the spectral ordinates may be based upon the parameters of
a fitted ARMA model. In that case, we should be taking the route to the spectrum
which has been pursued in the Example 2. Alternatively, the spectral ordinates may
be estimated by taking local averages of the periodogram ordinates in the manner
indicated at the end of the previous section.

We shall avoid the unnecessary encumbrance of a notation which indicates
explicitly that the vectors y1 and y2, which are from a putative white-noise process,
have been obtained by filtering the data or by weighting the periodogram ordinates.
Therefore, according to the null hypothesis, y1 ∼ N(0, σ2IN ) and y2 ∼ N(0, σ2IN )
are two adjacent segments both comprising N elements, which are generated by a
white-noise process which has a variance of σ2. Then the corresponding Fourier
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transforms can be calculated for both segments independently via a scheme which
is represented by the equation

(74)
[

ζ1

ζ2

]
=
[

U 0
0 U

] [
y1

y2

]
,

where, compared with (33), a factor of N1/2 has been incorporated in ζ1 and ζ2

in order to simplify the notation. According to the hypothesis, ζ̄ ′1ζ1/σ2 ∼ χ2(N)
and ζ̄ ′2ζ2/σ2 ∼ χ2(N) are mutually independent chi-square variates and their sum
(ζ̄ ′1ζ1 + ζ̄ ′2ζ2)/σ2 ∼ χ2(2N) is also a chi-square variate.

Now consider forming the vector

(75) ξ =
1√
2

[U U ]
[

y1

y2

]
.

We can show easily that ξ̄′ξ/σ2 ∼ χ2(N) is a chi-square variate. Moreover, by
invoking Cochran’s theorem, it can be show that, under the null hypothesis,

(76)
ξ̄′ξ

σ2
∼ χ2(N) and

ζ̄ ′1ζ1 + ζ̄ ′2ζ2 − ξ̄′ξ

σ2
∼ χ2(N)

are mutually independent chi-square variates. Their ratio is therefore an
F (N, N) variate; and this statistic provides the means of testing the hypothesis
that y1 and y2 have been generated by the same process.

The relevant version of Cochran’s theorem is as follows:

(77) Let y ∼ N(0, σ2I2N ), and let P1 + P2 = I2N be a sum of two matrices
which are symmetric and idempotent with rank(P1) = rank(P2) = N
such that Pi = P 2

i and PiPj = 0 when i 6= j. Then y′Piy ∼ χ2(N); i =
1, 2 are independent chi-square variates such that (y′P1y+y′P2y)/σ2 =
y′y/σ2 ∼ χ2(2N).

To confirm that these conditions are fulfilled, we note that U is a unitary
matrix such that ŪU = I, where Ū is the conjugate of U , and we note that

(78) P1 =
1
2

[
Ū
Ū

]
[U U ] =

1
2

[
I I
I I

]
is a symmetric idempotent matrix. We define P2 = I − P1 and we note that
P1P2 = 0. It is easy to see in reference to (74) that

(79)

1
σ2

(ζ̄ ′1ζ1 + ζ̄ ′2ζ2) =
1
σ2

(y′1ŪUy1 + y′2ŪUy2)

=
1
σ2

y′y ∼ χ2(2N).

Now we see, in view of the properties of P1 and P2, that

(80)
ξ̄′ξ

σ2
=

y′P1y

σ2
and

ζ̄ ′1ζ1 + ζ̄ ′2ζ2 − ξ̄′ξ

σ2
=

y′P2y

σ2
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are mutually independent chi-square variates of N degrees of freedom each.
The F statistic, which is formed from the ratio of the chi-square variates of

(76), provides an overall test of the hypothesis of homogeneity. It will serve to
detect cases where the power or variance differs between the two data segments.
However, the statistic will not detect changes in the spectral structure of the process
that do not affect the overall power.

Changes in the distribution of the power can be detected by making compar-
isons of the periodograms of the adjacent data segments in a number of disjoint
frequency bands. The relevant statistics may be obtained from the existing F
statistic by breaking the sum in the numerator into parts which constitute mutu-
ally independent chi-square variates.

Let S be a selection matrix of order N×N with zeros and units on the principal
diagonal and with zeros elsewhere. Let the matrix be subject to the condition that,
if it contains a unit in the jth position, then it also has a unit in the position N−j.
If, in addition, the units are contiguous within two separate blocks, then the matrix
will serve to select from the vectors ζ1, ζ2 and ξ all of the ordinates which fall in a
specific frequency band.

By applying the selection matrix to equations (74), we get

(81)
[

Sζ1

Sζ2

]
=
[

SU 0
0 SU

] [
y1

y2

]
.

By applying the selection matrix to equations (75), we get

(82) Sξ =
1√
2

[SU SU ]
[

y1

y2

]
.

Let Sζ1 = ζS1, Sζ2 = ζS2 and Sξ = ξS . Then, under the hypothesis that there are
no changes in the spectral density function within the selected range of frequencies,
we should have

(83)
ζ̄ ′S1ζS1 + ζ̄ ′S2ζS2 − ξ̄′SξS

ξ̄′ξ
∼ F (q, N), where q = rank(S).

To establish this result, it is enough to show that the numerator and the
denominator of the statistic are quadratic forms in the same spherical normal vector
which are based on mutually orthogonal symmetric idempotent matrices with ranks
that correspond to the degrees of freedom of the F distribution.

The quadratic form of the denominator, which can be expressed as y′P1y where
y ∼ N(0, σ2IN ), is based on the symmetric idempotent matrix P1 = P ′1 = P 2

1 of
(78) which has rank(P1) = N . The quadratic form of the numerator, which can be
expressed as y′PSy, is based on the matrix

(84) PS =
1
2

[
ŪSU −ŪSU
−ŪSU ŪSU

]
.

It can be seen that PS = P ′S = P 2
S and that P1PS = 0. Moreover, rank(PS) =

rank(S) = q. Thus, the conditions in question are fulfilled.
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