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Abstract

The papers of the Special Issue on Statistical Signal Extraction and Filtering are
introduced briefly and the invitation to contribute to the next issue to be devoted
to this topic is reiterated. There follows an account of the history and the current
developments in the areas of Wiener–Kolmogorov and Kalman filtering, which is
a leading topic of the present issue. Other topics will be treated in like manner in
subsequent introductions.

The decision to devote an issue of Computational Statistics and Data Analysis
to the topic of Statistical Signal Extraction gave rise to a call for papers which
included the following statement:

The need to extract signals and other components from time series is a
requirement in many empirical sciences, including Medicine, Engineering,
Economics and Climatology, to name but a few. Nowadays, a wide variety
of methods are available, including Wiener–Kolmogorov Filtering, Kalman
Filtering, Principal Components Analysis, and Wavelet Analysis. Given the
variety of the available methods of Statistical Signal Extraction and Filter-
ing, and given the diversity of the subject areas in which they are applied,
there are plentiful opportunities for cross fertilisation and technology trans-
fer.

The call for papers has resulted in numerous submissions that, in the majority
of cases, have fallen squarely into one or other of the areas mentioned above,
with only a handful that defy such neat categorisations.

The largest group of papers deals with the theory and practice of Wiener–
Kolmogorov filtering and Kalman filtering. There are seven papers in this
category. The paper of Broto and Ruiz applies the methodology of structural
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times series modelling to data that are affected by GARCH-type heteroskedas-
ticity. (GARCH is also the topic of another paper by Ruiz, Pascual and Romo.)
The paper of Maravall is a classic study in the analysis of unobserved compo-
nents via the method of canonical decompositions, and that of Mazzochi is an
application of Kalman filter methodology. The remaining papers by McElroy
and Sutcliffe, by Godolphin and Triantafyllopoulos, by Strickland, Forbes and
Martin and by Pollock all propose methodological innovations and extensions
of the basic methods of Wiener–Kolmogorov and Kalman filtering.

The paper by Fried, Bernholt and Gather concerns a class of non-linear filter-
ing methods that aim to preserve abrupt shifts of level and monotonic trends
while rejecting the sporadic and impulsive noise that may obscure the signal.
It serves to remind us that the topic of time series filtering extends far beyond
the range of the linear methods.

The next group of papers concerns principal components analysis. These pa-
pers are by Ombao and Ho, by Coakley, Fuertes and Smith and by AminG-
hafari, Cheze and Poggi. Although links can be forged between unobserved
components and principal components, none of the papers here have done so;
and this remains a topic for future issues.

The paper by AminGhafari, Cheze and Poggi forges links between principal
component analysis and the third major topic which is that of wavelets analy-
sis. This is also represented by the papers by Whitcher, by Amato, Antoniadis
and De Feis and by Stoev, Taqqu, Park, Michailidis and Marron. The latter
uses wavelets to analyse local dependence structures in the data in pursuit of
a test of long range dependence and self similarity.

The remaining papers in this collection fall outside the main clusters but well
within the ambit of the special issue on statistical signal extraction. The first
to mention is the paper by Zeng and Garcia-Frias concerning the use of hid-
den Markov models in the analysis of gene expression. The paper of Strickland
Forbes and Martin also uses Markov chain modelling. It applies the Kalman
filter and the fixed-interval smoothing algorithms to a linear Gaussian approx-
imation of a non-Gaussian state-space model; and thus it closes the circle. The
final paper, which lies outside the boundary of the tight circle, is that of Lehti-
nen on signal extraction for simulated games. This is a fascinating application,
which is doubtless a surprising one to many. The paper demonstrates the wide
scope of the subject of this issue in a way that is most welcome.

More than enough material has arisen from the call for papers to suggest that
this is a worthwhile enterprise; and we envisage a regular succession of special
issues of the journal devoted to the topic of statistical signal extraction. An
invitation to submit papers to the second issue has already been broadcast,
and it is appropriate to reiterate it here.
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The text that accompanied the original call for papers, which is reproduced
above, serves equally for the second call; and we see no merit in limiting the
scope. In successive issues, we shall attempt, via a policy of active solicitations,
to shift the emphasis from one major area to the next; but this should not be
a concern to any potential contributor who is attracted by the broad terms of
the invitation.

In line with these intentions, it seems appropriate to devote the remainder of
this introduction to a brief account of the history and the current developments
in one of the areas covered by this issue, which is that of Wiener–Kolmogorov
and Kalman filtering. This is the leading topic of the present issue. Other
topics will be treated in like manner in subsequent introductions.

Wiener–Kolmogorov Filtering and Kalman Filtering

The modern theory of statistical signal extraction has its origins in the Sec-
ond World War. It was formulated independently by Norbert Wiener (1941)
and Andrei Nikolaevich Kolmogorov (1941). They were both considering the
problem of how to target radar-assisted anti-aircraft guns on incoming enemy
aircraft. Notwithstanding their successful solution of the problem, it is doubt-
ful whether the theory achieved any practical applications at this stage. For
brief biographical accounts of Kolmogorov and Wiener see Arnold (2004) and
Jerison and Stroock (1995), respectively.

The two proponents of the theory established it in different ways. Whereas
Kolmogorov took a time-domain approach to the problem, Wiener worked pri-
marily in the frequency domain. However, the unification of the two approaches
was soon achieved, and a modern account of the basic Wiener–Kolmogorov
theory, which encompasses both approaches, has been provided by Whittle
(1983).

Another important element in the modern theory of statistical signal extrac-
tion was provided by the papers of Kalman (1960a) and Kalman and Bucy
(1961), which dealt with the filtering and forecasting, in discrete and contin-
uous time, of time-varying linear stochastic systems. This approach proposes
a state-space model of the system in question; and a distinguishing feature
of the formulation is the manner in which the observations are related to
the underlying state variables via a linear transformation, affected by additive
stochastic disturbances, in which the instruments of control can be embedded.

Almost immediately, the Kalman filter found some important applications.
It was used, for example, in the late 1960’s in the navigation systems that
enabled the Apollo spacecraft to reach the moon. An important adjunct of
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the filter in this connection was provided by the work of Kalman (1960b)
and Kalman, Ho and Narendra (1961) on the subject of the observability
and controllability of linear state-space systems. According to an assertion of
Kalman himself, which many have heard, his papers on the subjects of filtering
and control are the most cited scientific publications of all time.

The formulation of Kalman and Bucy was sufficiently general to subsume the
theory of Wiener and Kolmogorov. This had been clearly apparent from the
beginning. However, it has taken a while for these two approaches to statis-
tical signal extraction to be unified, and each continues to have its separate
adherents. Nevertheless, it is now widely recognised that they stand on a com-
mon ground. There have been numerous offerings that have demonstrated the
connection. Econometricians commonly cite the paper of Burridge and Wal-
lis (1988). The latter have shown how, in the case of a stationary ARMA
process, the Kalman filter converges asymptotically to the backward-looking
Wiener–Kolmogorov filter applied to a semi-infinite data sequence.

One has to be careful here in the use of terminology. Some econometricians in-
sist in describing the theory of Kalman filtering, in so far as it applies to the ex-
traction of signals from data generated by time-invariant statistical processes,
as Wiener–Kolmogorov theory. On this understanding, the hallmark of the
theory is minimum-mean-square-error estimation, and there is no restriction
on the nature of the sample. It may be finite, semi-infinite or doubly-infinite.

Others propose that Wiener–Kolmogorov theory comprises only the original
formulations, which were in respect of semi-infinite and doubly-infinite sam-
ples. However, it is worth noting that the generalisation of the theory to the
case of finite samples occurred early in its history, as is evident from the paper
of Zadeh and Ragazzini (1950). That there are still some major differences in
outlook is evident from a comparison of some of the papers in this issue.

In econometrics, the business of statistical signal extraction had been pursued
in two quite distinct ways. On the one hand, there are the heuristic filtering
methods that have been developed in the central statistical agencies of several
of countries and which continue to be used predominantly in the preparation
of official statistics.

These methods, which are aimed, primarily, at removing the seasonal fluc-
tuations from economic series and for estimating their trends, do not make
much reference to the Wiener–Kolmogorov theory. Instead, they rely on time-
honoured filtering recipes, such as the Henderson (1916) filters. (See Kenny
and Durbin (1982) for an analysis of the Henderson filters.) These filters
have been investigated and justified by determining their frequency response
functions. They are barely represented in this issue.

The model-based methods that are prevalent in this issue are based on Wiener–
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Kolmogorov and Kalman filter theory; but, within this framework, some fur-
ther distinctions arise. In the first place, there is a question of whether the
models of the processes that generate the data are held to be realistic repre-
sentations or whether they are regarded merely as heuristic devices that are
used to assist in the design of the filters.

Some econometricians take the view that, for the methods to be successful, the
models must be realistic and that, for this purpose, they need to be estimated
from the data. Others, who dissent from this opinion, believe that such esti-
mated models are liable, sometimes, to be inadequate. Therefore, they prefer,
on occasion if not always, to adopt an approach based on pre-specified heuris-
tic models that are chosen to ensure that the resulting filters have the desired
characteristics.

In the empirically determined model-based procedures, the unobserved compo-
nents of a time series are typically modelled by ARMA and ARIMA processes
of relatively low orders. The assumption that the components are driven by
mutually uncorrelated white-noise processes implies that the sum of their au-
tocovariance generating functions must equal the autocovariance generating
function of the aggregate process.

In the structural time series modelling approach, which is implemented in the
STAMP program of Koopman et al. (1995) that reflects the methodology of
Harvey (1989), the component processes are modelled individually and they
are combined to produce a model of the aggregate process. The CAPTAIN
MatLab Toolbox of Young et al. (2004), which can be used in estimating
unobserved components, also adopts the structural approach.

In the alternative canonical-decompositions approach, which is implemented
in the SEATS–TRAMO program of Caporello and Maravall (2004), the ag-
gregate process is modelled at the outset before being decomposed into its
component parts. The autocovariance generating functions of the component
processes are obtained from that of the aggregate processes via a partial frac-
tion decomposition.

If the spectral density function of a linear stochastic process is nowhere zero
in the available frequency range, then the process can be decomposed into
two parts, one of which is white noise. According to the canonical principle,
the substantive components of a model should be purged of their white-noise
elements, which should be attributed to a separate and independent irregular
component.

In the decompositions approach of SEATS–TRAMO, it is necessary to adopt
this principle in order to identify the individual components. The canonical
principle might also be adopted in the structural times series modelling ap-
proach, but it is unnecessary for the purpose of achieving identification and
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it is commonly disregarded. (An exposition of the canonical-decompositions
approach is given in the article of Maravall in this issue.)

There is a tendency for the trends that are estimated via an empirical model-
based approach to contain high-frequency elements of the data. The conse-
quence is that their profiles are rough and jagged when we expect them to
be smooth. This tendency will be exacerbated by the failure to represent the
high-frequency components adequately within the model. An example is pro-
vided by the model that underlies the filter of Hodrick and Prescott (1997).
This uses an integrated random walk as the model of the trend component and
a white-noise disturbance term to represent the remaining data components.

The only free parameter of the model is the ratio that is formed from the
variance of the white noise that powers the trend component and the vari-
ance of the white-noise disturbance. This ratio is known as the smoothing
parameter. When the model is fitted by maximum likelihood, it is commonly
found that the value of the estimated smoothing parameter is far too low to
deliver a smooth trend. For this reason, the smoothing parameter is commonly
determined by a rule of thumb.

Apart from ensuring that the components of the data are properly represented
in the model, there are other recourses that may be adopted. In the first
place, a resort to the canonical principle will ensure that any white noise that
resides within the estimated trend is removed and assigned to the irregular
component. The problem can also be alleviated by modifying the criterion of
estimation.

One recourse, which is employed by the CAPTAIN Toolbox, is to adopt the
criterion of minimising the sum of squares of the h-steps-ahead forecast er-
rors for fitting the model in place of the usual maximum-likelihood criterion,
which is based on the one-step-ahead forecast errors. Proietti (2004), has re-
cently shown that this is tantamount to pre-processing the data via a lowpass
filter before proceeding with a maximum-likelihood or a least-squares estima-
tion. The effect is to concentrate attention on the low-frequency end of the
spectrum.

Another recourse, which is also provided by the Toolbox, is to adopt a frequency-
domain criterion that is designed to ensure that the parametric spectrum of
the model adheres as closely as possible to the empirical periodogram or to
the parametric spectrum of a high-order AR model that has been fitted to the
data.

Part of the problem that can affect the empirical model-based procedures lies
in the nature of the low-order ARIMA processes that are used to represent
the data components. These have widely dispersed spectra that extend across
the entire frequency range. The filters that are derived from such models are
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liable to transmit a wide range of frequencies. In order to represent processes
with localised spectra, ARIMA models of much higher orders may be required,
which have impulse responses that are widely dispersed in the time domain.

However, there are difficulties in estimating high-order processes from limited
data sequences. Therefore, when we wish to extract components with localised
spectra, we are liable to resort to pre-specified filters of high orders that em-
body only one or two free parameters that govern their design. Typically, in
highpass and lowpass filters, these parameters determine the nominal cut-off
frequency of the pass band and the rate of transition between the pass band
and the stop band.

Amongst econometricians, the digital Butterworth filter, which is familiar to
electrical engineers, has been making some headway recently—see Pollock
(2000). The filter is derivable from an heuristic model on Wiener–Kolmogorov
principles. It has a nominal cut-off point, marking the mid point in the tran-
sition from the pass band to the stop band, that can be specified at will, and
the rate of the transition can be increased by increasing the order of the filter.

In many cases, it will found, from an inspection of the periodogram of the
detrended data, that the spectral structures of the various components are
separated by virtual dead spaces where the periodogram ordinates show no
significant power. In that case, it may be appropriate to use a method that can
be applied directly to the ordinates of the Fourier transform of the detrended
data. Such a method is presented in the paper of Pollock (this issue), where
it is related to the Wiener–Kolmogorov methods that operate in the time
domain.

If the data sequence were infinitely lengthy, then the Wiener–Kolmogorov
filter for extracting a particular component would be formed from the ratio of
the component’s autocovariance generating function and that of the aggregate
process. Such filters have infinite impulse response functions, and, unless they
are implemented via bidirectional rational feedback processes, they are liable
to generate doubly-infinite sequences of filter coefficients. This seems, at first,
to make it difficult to apply them to data sequences of limited duration, such
as are typical in econometric applications.

The problem of finite data sequences is properly overcome by adopting a finite-
sample version of the Wiener–Kolmogorov filter. As the paper of Pollock (this
issue) shows, this is readily accessible. Moreover, it is also provided by the
Kalman filter in combination with a fixed-interval smoothing algorithm.

These two finite-sample approaches generate the same centrosymmetric filter
matrix. Its effect is that, at the start of the process, the filter looks forwards
in time to the end of the sample. In the middle of the process, it looks sym-
metrically towards both ends of the sample; and, at the end of the process,
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it looks backward in time to the start of the sample. The sequence of filter
coefficients that is used at the end of the sample is the mirror image of the
sequence that is used at the start.

There are various ways of adapting the finite sample Wiener–Kolmogorov fil-
ters to deal with nonstationary data sequences. One way of doing so is to rely
upon the Kalman filter, of which the transitions equation can readily accom-
modate nonstationary dynamics. However, it has taken a while to settle the
matter of how best to provide the requisite start-up values in cases where the
data are modelled by nonstationary processes. A definitive solution appears
to have been reached by Ansley and Kohn (1985), but it has required some
further interpretation and exposition by others before being widely adopted.
See, for example, Koopman (1997) and Pollock (2003).

An alternative method of dealing with trended data is to reduce it to sta-
tionarity by differencing, or by some other means, before applying the signal
extraction procedures. The components that have been extracted from the
differenced data can be re-inflated, via the summation operator, which is the
inverse of the difference operator, to produce the estimates of the original
components. The process of re-inflation also requires some initial conditions;
and Pollock (this issue) shows how these may be obtained.

It is notable that much of the exposition of Ansley and Kohn (1985) is devoted
to a demonstration that the method which they propose for adapting the
Kalman filter to nonstationary data entails a transformations approach in
which the differencing operator is used to eliminate the dependence of the
likelihood function upon unknown initial conditions with a diffuse or improper
statistical distribution.

It has been claimed that the differencing approach destroys much of the low-
frequency information. In practice, however, the signal extraction processing
is applied to the high-frequency components; and the low-frequency trend
component, of which the contents would be destroyed by differencing, is found
by subtracting from the data the sum of the other components.

It has never been easy to understand how the Kalman filter fulfils the remit of
a finite-sample Wiener–Kolmogorov theory. That it does do so is evident only
from the fact that both approaches satisfy the same criteria. Indeed, it has
been remarked by one authority that “One could have ignored the Wiener–
Kolmogorov filtering literature and still one could have obtained the Kalman
filter/fixed-interval smoothing solution to the signal extraction problem.” Two
of the papers of this issue, namely those of Pollock and of McElroy and Sut-
cliffe, should help in reaching an understanding of the relationship between
the two approaches.
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