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Abstract

A wide variety of techniques have been devised for the purpose of extracting the components
of econometric data sequences. The traditional approach, which continues to prevail in the
central statistical agencies of many countries, has relied upon filters that have been derived
with refernce to the principles of actuarial graduation. Latterly, filters that are grounded
in the Wiener–Kolmogorov theory of signal extraction have become prominent in academic
research. There are several alternative ways of applying the Wiener–Kolmogorov filters to the
data.

1 Introduction: The Semantics of Filtering

In common parlance, a filter is a device for removing solids or suspended particles from liquids.
In the late 17th century, the term began to be used by the natural philosophers in a manner that
gave expression to their understanding of the nature of light. It was recognised that white light is
a compound of coloured lights of differing wavelengths. A coloured glass was seen as a device that
selectively transmits some of the light, corresponding to a range of wavelengths, while blocking the
remainder. Therefore, it was described as an optical filter.

A direct analogy with light led engineers, in the early 20th century, to talk of electronic filters.
Electronic filters are constructed from capacitors, resistors and inductors. A circuit in which a
voltage signal passes through an inductor, or in which a capacitor provides a path to earth, imposes
less attenuation on low-frequency signals than on high-frequency signals. Therefore, it constitutes a
lowpass filter. If the signal passes through a capacitor, or has a path to earth through an inductor,
then the circuit imposes less attenuation on high-frequency signals than on low-frequency signals,
and it constitutes highpass filter.

In these examples, one is imagining a stream or a current flowing continuously through the
filter. The notion of a filter seems inappropriate to statistical time-series analysis, where the data
are a sequence of discrete observations. However, over a period of half a century at least, there has
been a gradual shift in electronic technology from analogue devices, which are naturally analysed in
terms of continuous time, to digital devices, which are best described in terms of events occurring at
discrete points in time. In the process, the terminology of electronic filtering has made a transition
from the analogue to the digital domain; and electronic filtering has come to be known as signal
processing.

Given the increasing commonality between digital signal processing and statistical time-series
analysis, there are compelling reasons for why the two disciplines should share a common terminol-
ogy, and this is what has transpired. Such is the convergence of these disciplines that, nowadays,
their adherents contribute often to the same academic journals and they can be found at the same
conferences.

Nevertheless, considerable differences remain, both of emphasis and of conceptualisation. In
particular, statisticians tend to operate principally within the time domain, in which their discretely
sampled data naturally reside, whereas engineers, who are familiar with harmonic motions and
oscillating currents, feel at home in the frequency domain. The present account of linear filtering
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Figure 1: A method for finding the linear convolution of two sequences. The element x2 =
ψ0y2 +ψ1y1 +ψ2y0 of the convolution may be formed by multiplying the adjacent elements on the
two rulers and by summing their products.

and signal extraction has a statistical bias. It proceeds from the time domain to the frequency
domain. It is also orientated towards econometric analysis, since econometrics is the primary
discipline of the author.

Econometric data are supplied, in the main, by governmental agencies, such as the Central
Statistical Office of the U.K. or the Bureau of the Census of the U.S. They come mainly at intervals
of a year or a quarter, but there are also some monthly data. The fixity of these sampling rates
has meant that, in the past, econometricians have not thought much about the effect of varying
the rates at which the data are derived by sampling continuous processes. This is notwithstanding
a venerable tradition of continuous-time econometrics, which adopts the premise that all processes
should, in the first instance, be modelled in continuous time. The growth of financial econometrics
and the advent of various theoretical developments, of which wavelet analysis is the principal one,
have raised the issue of sampling rates anew, and we shall devote some attention to it.

2 Linear and Circular Convolutions

In the time-domain, a process of filtering corresponds to the convolution of two sequences. If ψ(j) =
{ψj ; j = 0 ± 1,±2, . . .} is the sequence of filter coefficients and if y(t) = {yt; t = 0,±1,±2, . . .} is
the data sequence, then the filtered sequence ψ(j) ∗ y(t) = x(t) = {xt; t = 0,±1,±2, . . .}, which is
the convolution of the two, has the generic element

xt =
∑

j

ψjyt−j =
∑

j

ψt−jyj . (1)

Adding the indices j and t − j of the factors of the generic product of the RHS, gives the value t,
which is the index of xt on the LHS.

The process of convolution is also entailed in the multiplication of two polynomials or power
series, since it is the process by which the coefficients of the product are obtained from those of its
factors. By converting the sequences into series, one gains access to the algebra of polynomials and
power series. We define the z-transforms of the sequences to be ψ(z) =

∑
j ψjz

j , y(z) =
∑

t ytz
t

and x(z) =
∑

t xtz
t. Thereafter, in place of (1), we may consider

x(z) = ψ(z)y(z). (2)

Here, z is an algebraic indeterminate, which may be specified in a variety of useful ways. In
particular, we may set z = exp{−iω} = cos(ω) − i sin(ω), where ω ∈ [0, 2π] is an angle measured
in radians. This confines z to the circumference of the unit circle in the complex plane and, in
the process, ψ(ω) = ψ(exp{−iω}), y(ω) = y(exp{−iω}) and x(ω) = x(exp{−iω}) become objects
within the frequency domain.
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Figure 2: A device for finding the circular convolution of two sequences. The upper disc is rotated
clockwise through successive angles of 30 degrees. Adjacent numbers on the two discs are multiplied
and the products are summed to obtain the coefficients of the convolution.

Within the time domain, there are some alternative conceptualisations of the process of con-
volution that may prove helpful. The convolution of ψ(j) = {ψj ; j = 0,±1,±2, . . .} and y(t) =
{yt; t = 0,±1,±2, . . .} entails the following products:

· · · ψ−2y−2 ψ−1y−2 ψ0y−2 ψ1y−2 ψ2y−2 · · ·
· · · ψ−2y−1 ψ−1y−1 ψ0y−1 ψ1y−1 ψ2y−1 · · ·
· · · ψ−2y0 ψ−1y0 ψ0y0 ψ1y0 ψ2y0 · · ·
· · · ψ−2y1 ψ−1y1 ψ0y1 ψ1y1 ψ2y1 · · ·
· · · ψ−2y2 ψ−1y2 ψ0y2 ψ1y2 ψ2y2 · · ·

(3)

The filtered sequence x(t) is formed by summing the elements in each of the successive diagonals
of the array that run in the SW–NE direction. Thus

x−4 · · ·ψ−2y−2 · · ·
x−3 · · ·ψ−2y−1 + ψ−1y−2 · · ·
x−2 · · ·ψ−2y0 + ψ−1y−1 + ψ0y−2 · · ·
x−1 · · ·ψ−2y1 + ψ−1y0 + ψ0y−1 + ψ1y−2 · · ·
x0 · · ·ψ−2y2 + ψ−1y1 + ψ0y0 + ψ1y−1 + ψ2y−2 · · ·
x1 · · ·ψ−1y2 + ψ0y1 + ψ1y0 + ψ2y−1 · · ·
x2 · · ·ψ0y2 + ψ1y1 + ψ2y0 · · ·
x3 · · ·ψ1y2 + ψ2y1 · · ·
x4 · · ·ψ2y2 · · ·

(4)

The first conceptualisation of this convolution entails what may be described as contragrade
multiplication, which is also entailed by the concept of a moving average. It helps, in describing
this, to consider two finite sequences. Imagine two rulers. One, denoted Y , bears the elements
of the data sequence {y−2, y−1, y0, y1, y2}. The other, denoted Ψ, bears the elements of the filter
sequence in reverse: {ψ2, ψ1, ψ0, ψ−1, ψ−2}. These are shown in Figure 1. The two rulers approach
each other from opposite directions: Ψ from the left and Y from the right.

When the rulers first meet, the product x−4 = ψ−2y−2 is formed and recorded. Then, the rulers
take a contragrade step which brings ψ−2 adjacent to y−1 and ψ−1 adjacent to y−2. The products
of these adjacent elements are formed and added to give x−3 = ψ−2y−1 + ψ−1y−2. A further
contragrade step is taken and the product x−2 = ψ−2y0 + ψ−1y−1 + ψ0y−2 is formed. Successive
steps are taken and the products are formed until none of the nonzero elements of Y and Ψ are
adjacent.

This is linear convolution. There is no necessity for the sequences ψ(j) and y(t) to be finite.
However, if they are infinite sequences, then a sufficient condition for the elements of their convo-
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lution product to be finite-valued is that both sequences should have elements that are bounded
in value and that the elements of the filter sequence should be absolutely summable.

There is also a process of circular convolution, which is applicable to finite sequences. If these
are {ψ0, ψ1, . . . , ψn} and {y0, y1, . . . , yn}, then the generic element of their circular convolution is

x◦
t =

∑
j

ψ◦
j y◦

t−j =
∑

j

ψ◦
t−jy

◦
j , (5)

wherein ψ◦
j = ψj mod n and y◦

t = yt mod n.
For an analogy of the process of circular convolution, one can imagine two discs placed one

above the other on a common axis, with the rim of the lower disc protruding. The device is
shown in Figure 1. On this rim, are written the elements of the sequence {y0, y1, . . . , yn−1}
at equally spaced intervals in a clockwise order. On the rim of the upper disc, are written
the elements of {ψ0, ψ1, . . . , ψn} equally spaced in an anticlockwise order. At the start of the
process of circular convolution, ψ0 and y0 are in alignment, and the pairs (ψ0, y0), (ψ1, yn−1),
. . . , (ψn−1, y1) are read from the disc and added to give x◦

0. Then, the upper disc is turned clock-
wise through an angle of 2π/n radians and the pairs (ψ0, y1), (ψ1, y0), . . . , (ψn−1, y2) are read from
the disc and added to give x◦

1. The process continues until the (n − 1)th turn when the pairs
(ψ0, yn−1), (ψ1, yn−2), . . . , (ψn−1, y0) give rise to x◦

n−1. One more turn of the disc would bring us
back to the starting position, wherafter we could begin to generate a repetition of the sequence
{x◦

0, x
◦
1, . . . , x

◦
n−1}.

2.1 Kernel Smoothing

The second conceptualisation of the convolution operation may be described as kernel multiplica-
tion. Let y(t) = {yt; t = 0,±1,±2, . . .} be a sequence of indefinite length, and let ψ(j) = {ψj ; j =
0,±1,±2, . . .} be a sequence of finite length, or at least one of which the absolute values of the
elements sum to a finite value. The latter sequence is a so-called kernel function or filter, denoted
Ψ.

When Ψ encounters y0, all of its elements are multiplied by that value. Thereafter, they are
accumulated in the registers of the derived sequence x(t) = {xt; t = 0,±1,±2, . . .}. Thus, on
considering the middle row of (3), we see that y0ψ−2 is accumulated to x−2, y0ψ−1 is accumulated
to x−1, y0ψ0 is accumulated to x0, and so on. When this process is ended, Ψ is moved to the right
were it encounters y1. Then, y1ψ−2 is accumulated to x−1, y1ψ−1 is accumulated to x0, y1ψ0 is
accumulated to x1, and so on.

If the elements of Ψ sum to unity, and if its profile resembles that of a probability mass function,
then the process that we have described can be regarded as a smoothing operation, whereby each
element of Y is dispersed over a range of neighbouring points as the filter or kernel Ψ passes along
the sequence. The condition

∑
j ψj = 1 that the kernel elements sum to unity can be expressed

in terms of the z-transform ψ(z) as ψ(1) = 0. Observe that the condition implies that the weights
associated with the sample values that are accumulated to xk will also sum to unity, for the reason
that the weights are the kernel elements.

The concept of kernel smoothing is central to the theories of density function estimation and
nonparametric regression. In these contexts, the kernel Ψ typically becomes a continuous function,
which is effective in distributing the mass of a discrete observation over an interval of the real line.

The kernel function is often a probability density function or mass function, which is symmetric
with a zero mean and a finite variance. In that case, the standard deviation become a scaling factor,
which governs the dispersion of the kernel and hence the extent to which it smoothes the data.

However, it is unnecessary to restrict the class of kernel functions in this way. The restriction
that the kernel weights should sum to unity constrains the corresponding filter to be a lowpass
filter that preserves all elements in the vicinity of zero frequency. If ψ(z) is the z-transform of a
lowpass filter, then 1 − ψ(z) is the z-transform of the complementary highpass filter. A highpass
filter, which is intended to remove the low-frequency trend from the data, should be subject to the
restriction that its coefficients should sum to zero.

According to a common terminology, which is somewhat ambiguous, the scaling factor of the
kernel is described as its bandwidth. In one perception, the band in question is the neighbourhood



D.S.G. Pollock: Signal Extraction and Filtering 5

0

0.25

0.5

0.75

1

0

−0.25

0 2 4 6 80−2−4−6−8

Figure 3: The sinc function ψ(t) = sin(πt)/πt.

of a data point. In that case, the scaling factor governs the width of the support of the kernel
function, on the understanding that it is finite.

According to an alternative interpretation, the bandwidth refers to the range of frequencies in
the spectral decomposition of the kernel. This usage accords with the popular understanding of
frequency-related phenomena, which has been fostered by the widespread availability of domestic
electronic appliances. These alternative interpretations are closely linked. In particular, a narrow
bandwidth in the time domain implies a wide bandwidth in the frequency domain and vice versa.

Continuous kernel functions can be used to reconstitute a continuous function of time from
regularly sampled observations. The Shannon–Nyquist theorem, which we shall propound later,
indicates that, if the sinusoidal elements of which a stationary time series is composed are band-
limited to the frequency interval [0, π], which is to say that there is no element that completes its
cycle in less than two sample periods, then a perfect reconstruction of the underlying function can
be obtained from its sampled values using the sinc function ψ(t) = sin(πt)/πt of Figure 3 as the
kernel smoother. In this case, it is entirely accurate to say that the sinc function has a frequency
bandwidth of π radians.

The sinc function has a value of unity at t = 0 and a value of zero on all other integer points.
Thus, instead of distributing the values of the data points over other adjacent integers, the sinc
function leaves those values intact; and it adds nothing to the other integers. However, it does
attribute values to the non-integer points that lie in the interstices, thereby producing a continu-
ous function from discrete data. Moreover, the data can be recovered precisely by sampling the
continuous function at the integer points.

3 Local Polynomial Regression

One way of estimating the trend in a sequence {yt; t = 0, 1, . . . , T − 1} is to interpolate through
the data a polynomial in the powers of the time index t. However, there can be disadvantages in
representing the trend via an analytic function. Such a function is completely determined by the
values of its derivatives at any point in its domain; and any local features of the data that are
captured by the function will also have global effects.

The characteristics of the trend in the locality of yt will be reflected more effectively in a
polynomial fitted to a limited set of adjacent data values {yt−j ; j = 0,±1, . . . ,±m}. The resulting
local polynomial, which may be denoted by γ(j) = γ0 + γ1j + · · · + γpj

p, will comprise powers of
the index j. Its central value at j = 0, which is xt = γ(0) = γ0, will provide an estimate of the
trend at time t. A sequence of such local polynomials, fitted to the points within a window that
moves through the data in step with t, will provide a sequence of trend estimates.

The polynomials may be fitted by minimising a weighted sum of squares of the deviations from
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the local data:

S(t) =
m∑

j=−m

1
λj

{
yt−j − γ(j)

}2
. (6)

Then, the estimates of the polynomial coefficients will be linear functions of these data values. In
particular, the minimisation of S(t) will determine a set of moving-average coefficients {ψj ; j =
0,±1, . . . ,±m} such that xt =

∑
ψjyt−j . These coefficients are invariant with respect to the

location of the data window; and, therefore, they serve to provide smoothed values throughout
the sample, with the exception of the first m sample points and the last m sample points, which
demand some special treatment.

To examine this method in more detail, let us define

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −m m2 . . . (−m)p

1 1 − m (1 − m)2 . . . (1 − m)p

...
...

...
...

1 0 0 . . . 0
...

...
...

...
1 m − 1 (m − 1)2 . . . (m − 1)p

1 m m2 . . . mp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p′−m

p′1−m
...

p′0
...

p′m−1

p′m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

which is the matrix of a basis for the local polynomial, together with the diagonal weighting matrix

Λ = diag{λ−m, λ1−m, . . . , λm−1, λm}. (8)

Then, the vector γ = [γ0, γ1, . . . , γp]′ of the coefficients of the polynomial γ(j) that minimises S(t)
is obtained as the solution to the following normal equations of the local polynomial regression:

P ′Λ−1Pγ = P ′Λ−1y. (9)

Here,
y = [yt−m, yt+1−m, . . . , yt, . . . , yt+m−1, yt+m]′ (10)

is the vector of the observations in the vicinity of yt that lie within the data window. The smoothed
value to replace yt is

γ0 = p′0γ = p′0(P
′Λ−1P )−1P ′Λ−1y (11)

= ψ′y,

where p′0 = [1, 0, . . . , 0] is the central row of the matrix P of (7); and it is manifest that the filter
weights in ψ = [ψ−m, . . . , ψm]′ do not vary as the filter passes through the sample. Also, it can be
seen that ψ′P = p′0(P

′Λ−1P )−1P ′Λ−1P = p′0, which is to say that

m∑
j=−m

ψj = 1, and
m∑

j=−m

ψjj
n = 0 for n = 1, . . . , p. (12)

These conditions are necessary and sufficient to ensure that
∑m

j=−m ψjγ(j) = γ0. The consequence
is that the filter will transmit, without alteration, not only the ordinates of γ(j) sampled at the
integer points but also those of any other polynomial of degree p or less.

Also observe that, by projecting the local data vector on the polynomial basis provided by P ,
we would obtain a vector

ŷ = P (P ′Λ−1P )−1P ′Λ−1y (13)

comprising a set of 2m + 1 smoothed values to replace those of y. In fact, we chose to select from
this vector only the central value, denoted by xt, which becomes the replacement for yt. With this
value in hand, the data window can be moved forwards, which is a matter of deleting the element
yt−m from one end of the vector y and appending a new data value yt+m+1 to the other end. Then,
another smoothed value can be generated to replace yt+1.
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We must also consider the circumstances that arise when the data window reaches the end of
the sample y0, . . . , yT−1 and can move no further, which is when t + m = T − 1. Then, xt = ŷt

is available as the central value of ŷ, whereas the smoothed values xt+1, . . . , xT−1, which would
otherwise depend upon extra-sample data values, are available from ŷ as the succeeding elements
ŷt+1, . . . , ŷT−1. Under this construction, the final m + 1 smoothed values are generated according
to the formulae

xt+i = ŷt+i = ψ′
iy = p′i(P

′Λ−1P )−1P ′Λ−1y, (14)

where t = T − m − 1 and i = 0, . . . , m,

and where p′i is the ith row below the central row p′0 of the matrix P .
Thus, there is a filter, with coefficients in the vector ψ = ψ0, that is applicable to points

in the middle of the sample, and there is a set of auxiliary filters, with coefficients in vectors
ψi; i = 1, . . . , m, that are applicable at the ends of the sample. The auxiliary filters at the upper
end of the sample all comprise the same set of 2m + 1 points, which lie within the data window
when its progress through the sample is halted.

In an alternative method, the data window continues to move through the sample after the point
t = T − m − 1 has been reached. From then onwards, its length contracts, through a diminishing
number of points ahead of t, until t = T − 1. Then, the window, which comprises the m+1 points
yT−m−2, . . . , yT−1, no longer looks forwards in time.

Let t > T − m − 1 be the current index. Then, the points falling within the data window are
contained in the vector y1 = [yt−m, . . . , yt . . . , yT−1]′. The corresponding rows of the matrix P are
in P1 = [p−m, . . . , p0, . . . , pk]′. The remaining rows in P2 = [pk+1, . . . , pm]′ are to be disregarded.
The smoothed value to replace yt is provided by

xt = p′0(P
′
1Λ

−1
1 P1)−1P ′

1Λ
−1
1 y1 = ψ′

qy1, (15)

where q is the number of points that have been lost from the upper half of the data window. Then,
ψ0 = ψ continues to denote the vector of the coefficients of a filter that can be applied to points
in the middle of the sample, whereas ψq; q = 1, . . . , m denote the coefficient vectors of a sequence
of filters of diminishing length that can be applied to the points at the end of the sample.

An alternative way of enabling the filter to reach the end of the sample is to represent the
requisite extra-sample values by their predictions. Thereafter, one can apply the symmetric moving
average to a data sequence comprising both sample values and predictions. One recourse is to
generate the predictions via extrapolations of the local polynomial fitted to the sample values that
lie within the current data window when t > T − m − 1. These predictions are provided by the
vector

ŷ2 = P2(P ′
1Λ

−1
1 P1)−1P ′

1Λ
−1
1 y1. (16)

Define M1 = P ′
1Λ

−1
1 P1 and M2 = P ′

2Λ
−1
2 P2 such that M1 + M2 = P ′Λ−1P . Also let ŷ′ = [y′

1, ŷ
′
2].

Then, the smoothed value that incorporates the predictions is provided by

xt = p′0(P
′Λ−1P )−1P ′Λ−1ŷ (17)

= p′0(M1 + M2)−1(I + M2M
−1
1 )P ′

1Λ
−1
1 y1.

Now observe that

I + M2M
−1
1 = (M1 + M2)M−1

1 implies (M1 + M2)−1(I + M2M
−1
1 ) = M−1

1 .

Therefore, (17) delivers xt = p′0M
−1
1 P ′

1Λ
−1
1 y1, which is none other than the value that is indicated

by (15).
This result is due to Wallis (1981). It suggests that, in principle, a procedure based on a time-

invariant filter that overcomes the end-of-sample problem by using predictions based on sample
values can be replaced by an equivalent procedure that applies a time-varying filter to the sample
points alone.

The technique of filtering via local polynomial regression becomes fully specified only when the
regression weights within Λ are determined. The matter is dealt with in the following example. An
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account of local polynomial regression in a wider context than the present one has been provided
by Proietti and Luati (2006). Other sources are Fan and Gijbels (2002) and Simonoff (1996).

Example. The requirement of Henderson (1916) was for a symmetric filter that would transmit
a cubic polynomial time trend without distortion. It was also required that the filtered sequence
should be as smooth as possible.

Consider the normal equations of (9) in the case where the polynomial degree is p = 3.
The generic element in the rth row and kth column of the matrix P ′Λ−1P is

∑m
j=−m wjj

r+k

= sr+k where, for notational convenience, we are using wj = λ−1
j . The filter will be symmetric if

and only if the regression weights are symmetric such that wj = w−j and, under these conditions,
it follows that sr+k = 0 if r + k is odd. Therefore, the normal equations take the form of⎡

⎢⎢⎣
s0 0 s2 0
0 s2 0 s4

s2 0 s4 0
0 s4 0 s6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

γ0

γ1

γ2

γ3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∑
wjyt−j∑
jwjyt−j∑
j2wjyt−j∑
j3wjyt−j

⎤
⎥⎥⎦ . (18)

Only the first and the third of these equations are involved in the determination of γ0 via[
γ0

γ2

]
=

[
s0 s2

s2 s4

]−1 [ ∑
wjyt−j∑

j2wjyt−j

]
=

[
a b
c d

] [ ∑
wjyt−j∑

j2wjyt−j

]
. (19)

Thus

γ0 =
m∑

j=−m

ψjyt−j =
m∑

j=−m

(a + bj2)wjyt−j , (20)

where
as0 + bs2 = 1 and as2 + bs4 = 0. (21)

It is now a matter of determining the filter coefficients ψj = (a + bj2)wj in accordance with the
smoothness criterion.

The criterion adopted by Henderson was that the variance of the third differences of the filtered
sequence should be at a minimum. This requires that the process generating the sequence should
be specified sufficiently for the variance to be defined. An appropriate model is one in which the
data are generated by a cubic polynomial with added white noise: y(t) = β(t) + ε(t).

The (forward) difference operator Δ has the effect that Δy(t) = y(t + 1) − y(t). Also, the
third difference of a cubic polynomial is some constant c. Therefore, Δ3y(t) = c + Δ3ε(t); and, if
V (εt) = σ2, it follow that

V {Δ3y(t)} =
∑

j

{Δ3ψ(j)}2σ2, (22)

where ψ(j) = {ψ; j = 0,±1,±2, . . .} denotes the indefinite extension of the sequence of filter
coefficients, formed by supplementing them with the set of zero-valued elements {ψm+j = 0; j =
±1,±2, . . .}. (The notation Δ3ψ(j) recognises the fact that Δ operates upon infinite sequences.
The usual notation of econometrics suggests that it is applicable to isolated elements of a sequence,
but this is misleading.)

The resulting criterion is

Minimise
∑

j

{Δ3ψ(j)}2 subject to
∑

j

ψj = 1,
∑

j

j2ψj = 0. (23)

The two side conditions are from (12). The remaining conditions of (12), which are
∑

j jψj =∑
j j3ψj = 0 are satisfied automatically in consequence of the symmetry about ψ0 of the sequence

ψ(j). The constrained minimisation, which can be achieved using Lagragean multipliers, indicates
that

Δ6ψ(j − 3) = a + bj2, for j = 0,±1, . . . ,±m. (24)

This implies that the filter coefficients are the ordinates of a polynomial in j of degree 8, namely
ψ(j) = δ(j)(a + bj2), of which the 6th difference is the quadratic function a + bj2. For condition
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of (24) to be satisfied, it is necessary that ψ(j) should be specified for the additional values of
j = ±(m+1),±(m+2),±(m+3). Here, the ordinates are all zeros. It follows that the polynomial,
which must have zeros at these six points, must take the form of

ψ(j) = {(m + 1)2 − j2}{(m + 2)2 − j2}{(m + 3)2 − j2}(a + bj2). (25)

There are only two remaining parameters to be determined, which are a and b. They are determined
via the conditions of (21).

Kenny and Durbin (1982) have found that

ψj ∝ {(m + 1)2 − j2}{(m + 2)2 − j2}{(m + 3)2 − j2}(3(m + 2)2 − 16 − 11j2), (26)

where the constant of proportionality is chosen to ensure that the coefficients sum to unity.
The Henderson filters require to be supplemented by asymmetric filters designed to cope with

the end-of-sample problem. It might seem appropriate to use the techniques that have been
described in the text prior to this section. They would entail the extrapolation of a local cubic
model of the trend. However, experience has shown that it is more appropriate to depend upon a
linear extrapolation.

A linear extrapolation is the basis of the so-called Musgrave (1964a, b) filters that have long
been used in central statistical agencies in conjunction with the Henderson filters. Doherty (2001)
has given an account of the origin of these filters and of the theory that lies behind them. Gray
and Thomson (2002) have provided an exhaustive treatment of the theory of end-of-sample filters.

The Henderson filters have played a dominant role in the methods of trend estimation and
seasonal adjustment that have been deployed in common by numerous central statistical agencies.
Recently, there have been indications that they may be ceding their place to other filtering methods,
such as those that are described in section 10 of this paper, which use ARIMA models to describe
the components of the data. (See, for example, Monsell et al. (2003).) In particular, the TRAMO–
SEATS program of Caporello and Maravall (2004) has attracted the widespread attention amongst
the statistical agencies. It has been implemented in conjunction with the X-12-ARIMA program
of the U.S. Bureau of the Census in the Demetra program of Statistical Office of the European
Commission—see Eurostat (2002).

4 The Concepts of the Frequency Domain

According to the basic result of Fourier analysis, it is always possible to approximate an arbitrary
function, defined over a finite interval of the real line and having a finite number of discontinuities
therein, by a weighted sum of sine and cosine functions of harmonically increasing frequencies.

Similar results apply in the case of sequences, which may be regarded as functions mapping
from the set of integers onto the real line. For a sample of T = 2n observations y0, y1, . . . , yT−1, it
is possible to devise an expression of the form

yt =
n∑

j=0

ρj cos(ωjt − θj) (27)

=
n∑

j=0

{
αj cos(ωjt) + βj sin(ωjt)

}
,

wherein ωj = 2πj/T is a multiple of the fundamental frequency ω1 = 2π/T . Here, in the second
expression, there are αj = ρj cos(θj) and βj = ρj sin(θj). Squaring and adding these gives ρ2

j =
α2

j + β2
j . The equality of (27) follows in view of the trigonometrical identity

cos(A − B) = cos(A) cos(B) + sin(A) sin(B). (28)

Thus, the elements of a finite sequence can be expressed exactly in terms of a finite number of sines
and cosines. A continuous function that interpolates the elements of the sequence can be obtained
by replacing the integer-valued time index t by an argument that varies continuously.
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The sequence y(t) = {yt; t = 0,±1,±2, . . .}, expressed in the manner of (27), is periodic with
a period T equal to the length of the sample. If we confine our attention to a segment of length
T , then the periodicity will not be evident. However, we shall also have occasion to consider the
periodic extension of the sample, obtained be replicating sample elements over all preceding and
succeeding intervals of T points, which is denoted by y(t).

We may observe that, within (27), there are sin(ω0t) = sin(0) = 0 and sin(ωnt) =
sin(πt) = 0. Therefore, disregarding these zero-valued functions, there are as many
trigonometrical basis functions in the sum as there are observations in the data sequence
{y0, y1, . . . , yT−1}. Thus, the so-called Fourier coefficients

{α0, α1, β1, . . . , αn−1, βn−1, αn},

which are obtained by projecting the data sequence onto the trigonometrical basis, provide a
complete summary of the sampled information.

Since the trigonometrical functions are mutually orthogonal, the Fourier coefficients can be
obtained via a set of T simple inner-product formulae, which are in the form of ordinary uni-
variate least-squares regressions, with the values of the sine and cosine functions at the points t =
0, 1, . . . , T − 1 as the regressors. Let cj = [c0,j , . . . , cT−1,j ]′ and sj =
[s0,j , . . . , sT−1,j ]′ represent vectors of T values of the generic functions cos(ωjt) and sin(ωjt) re-
spectively, and let y = [y0, . . . , yT−1]′ be the vector of the sample data and ι = [1, . . . , 1]′ a vector
of units. Then, the ‘regression’ formulae for the Fourier coefficients are

α0 = (ι′ι)−1ι′y =
1
T

∑
t

yt = ȳ, (29)

αj = (c′jcj)−1c′jy =
2
T

∑
t

yt cos ωit, (30)

βj = (s′jsj)−1s′jy =
2
T

∑
t

yt sinωjt, (31)

αn = (c′ncn)−1c′jy =
1
T

∑
t

(−1)tyt. (32)

However, in calculating the coefficients, it is more efficient to use the family of specialised algorithms
known as fast Fourier transforms, which deliver the spectral ordinates from which the Fourier
coefficients are obtained directly.

Equation (27) can be written in a more concise manner using the Euler equations:

cos(ωjt) =
1
2
(eiωjt + e−iωjt) and sin(ωjt) =

−i
2

(eiωjt − e−iωjt). (33)

Then,

yt =
n∑

j=0

(αj − iβj

2

)
eiωjt +

n∑
j=0

(αj + iβj

2

)
e−iωjt (34)

=
n∑

j=0

ζje
iωjt +

n∑
j=0

ζ∗j e−iωjt =
n∑

j=−n

ζje
iωjt,

where ζj = (αj − iβj)/2, which has ζ∗j = ζ−j = (αj +iβj)/2 as its complex conjugate. Also ζ0 = α0

and ζn = αn.
The exponential exp(iωj) = exp(i2πj/T ) is T -periodic in the index j. Therefore,

exp(iω−j) = exp(iωT−j) and, by taking ζ∗j = ζ−j = ζT−j , we may write

yt =
T−1∑
j=0

ζje
iωjt, (35)



D.S.G. Pollock: Signal Extraction and Filtering 11

11.25

11.5

11.75

12

12.25

12.5

12.75

0 25 50 75 100 125

Figure 4: The quarterly sequence of the logarithms of the GDP in the U.K. for the years 1970 to
2005, inclusive, together with a quadratic trend interpolated by least squares regression.
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Figure 5: The residual sequence from fitting a quadratic trend to the income data of Figure 4. The
interpolated line represents the business cycle

wherein the frequency index j = 0, 1, . . . , T − 1 has the same range as the temporal index t. The
sequence ζ0, ζ1, . . . , ζT−1 constitutes the spectral ordinates of the data. The inverse of (35) is the
transform that maps from the data to the spectral ordinates:

ζj =
1
T

T−1∑
t=0

yte
−iωjt. (36)

The expression ζj = (αj − iβj)/2 is recovered by using the identity exp{−iωjt} = cos(ωjt)
− i sin(ωjt) together with the equations (30) and (31) for αj and βj . Equations (35) and (36)
together summarise the discrete Fourier transform.

4.1 The Periodogram

The power of a sequence is synonymous with the mean-square deviation which, in statistical terms,
is its variance. The power of the sequence x(t) = ρj cos(ωj) is ρ2

j/2. This result can be obtained
in view of the identity cos2(ωjt) = {1 + cos(2ωjt)}/2, for the average of cos(2ωjt) over an integral
number of cycle is zero. The assemblage of values ρ2

1/2, . . . , ρ2
n/2 constitutes the power spectrum

of y(t), which becomes the periodogram when scaled by a factor T . Their sum equals the variance
of the sequence:

1
T

T−1∑
t=0

(yt − ȳ)2 =
1
2

n−1∑
j=1

ρ2
j + α2

n. (37)

The periodogram is effective in revealing the spectral structure of the data and in guiding the
business of extracting its components.
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Figure 6: The periodogram of the residuals obtained by fitting a quadratic trend through the
logarithmic sequence of U.K. income.

Example. Figure 4 displays a sequence of the logarithms of the quarterly series of U.K. Gross
Domestic Product (GDP) over the period from 1970 to 2005. Interpolated through this sequence
is a quadratic trend, which represents the growth path of the economy.

The deviations from this growth path are a combination of the low-frequency business cycle with
the high-frequency fluctuations that are due to the seasonal nature of economic activity. These
deviations are represented in Figure 5, which also shows an interpolated continuous function that
is designed to represent the business cycle.

The periodogram of the deviations is shown in Figure 6. This gives a clear indication of the
separability of the business cycle and the seasonal fluctuations. The spectral structure extending
from zero frequency up to π/8 belongs to the business cycle. The prominent spikes located at
the frequency π/2 and at the limiting Nyquist frequency of π are the property of the seasonal
fluctuations. Elsewhere in the periodogram, there are wide dead spaces, which are punctuated by
the spectral traces of minor elements of noise.

The slowly varying continuous function interpolated through the deviations of Figure 5 has been
created by combining a set of sine and cosine functions of increasing frequencies in the manner of
equation (27), but with the summation extending no further than the limiting frequency of the
business cycle, which is π/8.

4.2 Filtering and the Frequency Domain

Given that a data sequence can be represented in terms of trigonometrical functions, it is appropri-
ate to consider the effect of applying a linear filter to such elements. Mapping a (doubly-infinite)
cosine sequence y(t) = cos(ωt) through a filter defined by the coefficients {ψj} produces the output

x(t) =
∑

j

ψj cos(ω[t − j]) (38)

=
∑

j

ψj cos(ωj) cos(ωt) +
∑

j

ψj sin(ωj) sin(ωt)

= α cos(ωt) + β sin(ωt) = ρ cos(ωt − θ),

where α =
∑

j ψj cos(ωj), β =
∑

j ψj sin(ωj), ρ =
√

(α2 + β2) and θ = tan−1(β/α).
These results follow in view of the trigonometrical identity of (28).

The effect of the filter is to alter the amplitude of the cosine via the gain factor ρ and to induce
a delay that corresponds to the phase angle θ. It is apparent that, if the filter is symmetric about
the coefficient ψ0, with ψ−j = ψj , then β =

∑
j ψj sin(ωj) = 0 and, therefore, θ = 0. That is to

say, a symmetric filter that looks equally forward and backwards in time has no phase effect.
The z-transform of the sequence of filter coefficients is the polynomial

ψ(z) =
∑

j

ψjz
j , (39)
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Figure 7: The gain functions of the Henderson filters of 9 coefficients (broken line) and 23 coeffi-
cients (continuous line).
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Figure 8: The gain functions of the Butterworth lowpass filters with n = 4 (broken line) and
n = 11 (continuous line), both with a nominal cut-off frequency of 3π/8 radians.

wherein z stands for a complex number. Setting z = exp{−iω} = cos(ω) − i sin(ω) constrains this
number to lie on the unit circle in the complex plane. The resulting function

ψ(exp{−iω}) =
∑

j

ψj cos(ωj) − i
∑

j

ψj sin(ωj) (40)

= α(ω) − iβ(ω)

is the frequency response function, which is, in general, a periodic complex-valued function of ω
with a period of 2π. In the case of a symmetric filter, it becomes a real-valued and even function,
which is symmetric about ω = 0. When the frequency response function is defined over the interval
[−π, π), or equally over the interval [0, 2π), it conveys all of the information concerning the gain
and the phase effects of the filter. For a more concise notation, we may write ψ(ω) in place of
ψ(exp{−iω}).

An alternative expression for the frequency response function derives from the polar represen-
tation of complex numbers. We denote the squared modulus of the function ψ(ω) = α(ω) − iβ(ω)
by |ψ(ω)|2 = α2(ω) + β2(ω) and its argument by θ(ω) = tan−1{β(ω)/α(ω)}. Then, there is

ψ(ω) = |ψ(ω)|e−iθ(ω) (41)
= |ψ(ω)|[cos{θ(ω)} − i sin{θ(ω)}].

The function |ψ(ω)| describes the gain of the filter,

Example. Figure 7 represents the gain of the symmetric Henderson filters of m = 9 and m = 23
coefficients. The gain is unity at ω = 0, which means that the filters preserve the trend component.
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There is a gradual attenuation of the gain until it reaches zero, which is close to ω = π/2 in the
case of m = 9 and slightly below ω = π/4 when m = 23. Thereafter, the gain fluctuates as the
frequency increases. These fluctuations may be regarded as a design fault of the filter; and other
designs may be sought that suppress the high-frequency components more firmly.

A filter design that has long been popular in electrical engineering, at least in its analogue
form, is the Butterworth filter—see Pollock (2000). The digital form of the lowpass filter can be
expressed in terms of the following rational function of z:

ψ(z) =
(1 + z)n(1 + z−1)n

(1 + z)n(1 + z−1)n + λ(1 − z)n(1 − z−1)n
. (42)

The factors (1 + z) and (1 + z−1) in the numerator ensure that the gain is zero when z = −1,
which is the case when ω = π within z = exp{−iω}. On the other hand, when z = 1, which is
when ω = 0, the factors (1 − z) and (1 − z−1) in the denominator are zeros; and the gain of the
filter is unity. The mid point ωc of the transition from unit gain to zero gain is governed by the
so-called smoothing parameter λ = {1/ tan(ωc/2)}2n; and the integer parameter n, described as
the filter order, determines the rate of the transition between the two values.

Figure 8 shows that the Butterworth filters discriminate clearly between the pass band, where,
ideally, the gain is unity, and the stop band, where the gain should be zero. In this respect,
they are superior to the Henderson filters. However, since a Butterworth filter corresponds to
a rational function of z, in contrast to the simple polynomial function of a Henderson filter, its
implementation, which we shall describe in a later section, is less straightforward.

An implementation of the Butterworth filter is available on the compact disc that accompanies
the book of Pollock (1999).

4.3 Aliasing and the Shannon–Nyquist Sampling Theorem

In equation (27), the frequencies of the trigonometric functions range from ω1 = 2π/T to ωn = π.
The frequency of π radians per sampling interval is the so-called Nyquist frequency. Although
the process generating the data may contain components of frequencies higher than the Nyquist
frequency, these will not be detected when it is sampled regularly at unit intervals of time. In fact,
the effects on the process of components with frequencies in excess of the Nyquist value will be
confounded with those whose frequencies fall below it.

To demonstrate this, consider the case where the process contains a component that is a pure
cosine wave of unit amplitude and zero phase, whose frequency ω lies in the interval π < ω < 2π.
Let ω∗ = 2π − ω. Then,

cos(ωt) = cos
{
(2π − ω∗)t

}
(43)

= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)
= cos(ω∗t);

which indicates that ω and ω∗ are observationally indistinguishable. Here, ω∗ < π is described as
the alias of ω > π.

We have demonstrated that, if the rate of sampling is too low, then the resulting sample
misrepresents the underlying process. We also need to show that, if the sampling rate is sufficient,
then a continuous function can be represented without loss of information by a discrete sample.
Thus, according to the Shannon–Nyquist sampling theorem, any square integrable continuous
function x(t) that has a Fourier transform ξ(ω) that is band-limited in the frequency domain, with
ξ(ω) = 0 for ω > π, has the series expansion

x(t) =
∞∑

k=−∞
xk

sin{π(t − k)}
π(t − k)

=
∞∑

k=−∞
xkψ(t − k), (44)

where xk = x(k) is the value of the function x(t) at the point t = k. It follow that the continuous
function x(t) can be reconstituted from its sampled values {xt; t ∈ I}. Observe that ψ(t − k) is
just a displaced version of the sinc function illustrated in Figure 3.
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In proving this, we use the result that, if x(t) is a continuous square-integrable function, then
it is amenable to a Fourier integral transform, which gives

x(t) =
1
2π

∫ ∞

−∞
ξ(ω)eiωtdω, where ξ(ω) =

∫ ∞

−∞
x(t)e−iωtdt. (45)

But ξ(ω) is a continuous band-limited function defined on the interval (−π, π] that may also be
regarded as a periodic function of a period of 2π. Therefore, ξ(ω) is amenable to a classical Fourier
analysis; and it may be expanded as

ξ(ω) =
∞∑

k=−∞
cke−ikω, where ck =

1
2π

∫ π

−π

ξ(ω)eikωdω. (46)

By comparing (45) with (46), we see that the coefficients ck are simply the ordinates of the function
x(t) sampled at the integer points; and we may write them as

ck = xk = x(k). (47)

Next, we must show how the continuous function x(t) may be reconstituted from its sampled
values. Using (47) in (46) gives

ξ(ω) =
∞∑

k=−∞
xke−ikω. (48)

Putting this in (45), and taking the integral over [−π, π] in consequence of the band-limited nature
of the function x(t), gives

x(t) =
1
2π

∫ π

−π

{ ∞∑
k=−∞

xke−ikω

}
eiωtdω =

1
2π

∞∑
k=−∞

xk

∫ π

−π

eiω(t−k)dω. (49)

The integral on the RHS is evaluated as∫ π

−π

eiω(t−k)dω = 2
sin{π(t − k)}

t − k
. (50)

Putting this into the RHS of (49) gives the result of (44).
The Shannon–Nyquist theorem concerns the representation of a square integrable function in

terms a sequence of sinc functions weighted by coefficients that constitute a square summable
sequence. However, we shall also be concerned with the representation of a continuous stationary
stochastic process defined over the real line and band-limited in frequency to the interval [−π, π].
Such a function is not integrable over the entire real line.

Nevertheless, the Shannon–Nyquist theory can generalised to accommodate this difficulty; and
the doubly-infinite set of sinc functions {sin(π[t − k])/(t − k); k = 0 ± 1,±2, . . .} provides a basis
for all such continuous functions, which is, in fact, an orthogonal basis.

In practice, we deal only with finite data sequences; and, for the purposes of Fourier analysis,
the data can be wrapped around a circle of a circumference T , equal to the number of data points.
This is tantamount to regarding the data sequence as one cycle of a periodic sequence.

The periodic kernel function that would be used for interpolating a continuous periodic function
through these data points is the Dirichlet kernel. This can be derived from the sinc function, which
has an infinite support, by wrapping it around the circle and by adding the overlying layers. The
process of interpolation based on the Dirichlet kernel corresponds exactly with the process of
Fourier synthesis which is based on the spectral ordinates of the data.

The sampling theorem has been attributed to several authors, including Whittaker (1915) who
published the interpolation formula. The origins of the sampling theorem have been described by
Luke (1999), and Higgins (1985) has described the development of the interpolation formula.
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4.4 The Processes Underlying the Data

It is appropriate to consider, in the light of the phenomenon of aliasing and of the –Nyquist sam-
pling theorem, the nature of the processes underlying the discretely sampled data. A stationary
data sequence is commonly modelled as a ARMA process, which is the result of applying a rational
transfer function or filter to a white-noise sequence of independently and identically distributed
random variables. However, the provenance of the white-noise sequence itself requires some expla-
nation.

A common explanation is that the white noise originates in the sampling of a continuous-time
Wiener process. The latter is the product of the cumulation of a stream of infinitesimal impulses,
which are the stationary and independent increments of the process.

An impulse in continuous time has a uniform power spectrum that is distributed over the entire
frequency range, with infinitesimal power in any finite interval. The sampling of a Wiener process
at regular intervals entails a process of aliasing whereby the cumulated increments gives rise to a
uniform spectrum of finite power over the interval [−π, π]. The advantage of this conceptualisation
is that it places the origin of the white-noise sequence is an identifiable continuous-time process.

An alternative approach is to imagine that the discrete-time white noise is derived by sampling
a continuous-time process that is inherently limited in frequency to the interval [0, π]. Figure 3
depicts a continuous sinc function of which the Fourier transform is a rectangle on the frequency
interval [−π, π]. The sinc function can also be construed as a wave packet centred on time t = 0. A
continuous stochastic function that is band-limited by the Nyquist frequency of π will be generated
by the superposition of such functions arriving at regular or irregular intervals of time and having
amplitudes that are randomly distributed.

(The wave packet is a concept from quantum mechanics—see, for example Dirac (1958) and
Schiff (1981)—that has become familiar to statisticians via wavelet analysis—see, for example,
Daubechies (2004) and Percival and Walden (2000).)

A continuous-time counterpart of a discrete-time white-noise process, from which the latter may
be obtained by sampling, can be constituted from a stream of sinc function wave packets arriving
at unit time intervals and having amplitudes that are independently and identically distributed
with a zero mean and a common variance. This is indeed an artificial process, but it is viable in
theory and it has the advantage of making no reference to the phenomenon of aliasing.

A further advantage of this concept of white noise is that it permits us to define a band-limited
white noise that has an upper frequency bound that is less than the Nyquist frequency of π or a
lower frequency bound that is greater than zero, or one that has both of these features. A sinc
function wave packet that is limited, in positive frequencies, to the band [α, β] ∈ [0, π], which
would be the basis of white noise confined to that band, has the functional form of

ψ(t) =
1
πt

{sin(βt) − sin(αt)} (51)

=
2
πt

cos{(α + β)t/2} sin{(β − α)t/2}

=
2
πt

cos(γt) sin(δt),

where γ = (α + β)/2 is the centre of the band and δ = (β − α)/2 is half its width. The equality
follows from the identity sin(A + B) − sin(A − B) = 2 cos A sinB.

It has been shown by Pollock and Lo Cascio (2006) that, when the interval [0, π] is partitioned
by a sequence of p frequency bands of equal width, an orthogonal basis can be obtained for each
band by displacing its wavelets successively by p elements at a time. The implication is that, to
obtain full information on a process that is limited to such a band, we need only sample it at the
rate of one observation in p sample periods.

In the case of the business cycle function of Figure 5, which is band-limited to the frequency
interval [0, π/8], only one in eight of the points sampled from this function at unit time intervals
needs to be retained in order to convey all of the relevant information. The periodogram of the
resulting subsampled sequence, which has the frequency range of [0, π], will have a profile identical
to that of the spectral structure that occupies the interval [0, π/8] in Figure 6.
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A conventional ARMA model depicts a stationary process that has a spectral density function
that is nonzero everywhere in the interval [0, π], except, possibly, over a set of measure zero. Such
models are inappropriate to the business cycle data of Figure 5, which have a periodogram that
is effectively zero-valued over large intervals of the frequency range. However, there should be no
difficulty in fitting an ARMA model to data obtained by subsampling the business-cycle sequence
that underlies the smooth trajectory of Figure 5 at the rate of one in eight.

5 The Classical Wiener–Kolmogorov Theory

The purpose of a Wiener–Kolmogorov filter is to extract an estimate of a signal sequence ξ(t) from
an observable data sequence

y(t) = ξ(t) + η(t), (52)

which is afflicted by the noise η(t). The theory was formulated independently by Norbert Wiener
(1941) and Andrei Nikolaevich Kolmogorov (1941) during the Second World War. They were
both considering the problem of how to target radar-assisted anti-aircraft guns on incoming enemy
aircraft.

According to the classical assumptions, which we shall later amend, the signal and the noise are
generated by zero-mean stationary stochastic processes that are mutually independent. It follows
that the autocovariance generating function of the data is the sum of the autocovariance generating
functions of its two components. Thus

γyy(z) = γξξ(z) + γηη(z) and γξξ(z) = γyξ(z). (53)

These functions are amenable to the so-called Cramér–Wold factorisation, and they may be written
as

γyy(z) = φ(z−1)φ(z), γξξ(z) = θ(z−1)θ(z), γηη(z) = θη(z−1)θη(z). (54)

Such factorisations were considered by Wold (1954), who cited unpublished work of H. Cramér.
An effective algorithm for achieving the factorisation was proposed by Tunnicliffe–Wilson (Wilson,
1969) and the code for implementing it has been provided by Pollock (1999), amongst others. For
a further discussion, see Godolphin (1976).

The estimate of the signal element ξt is a linear combination

xt =
q∑

j=−p

ψt,jyt−j (55)

of the available data points within the information vector

y = [yt−q, yt+1−q, . . . , yt, . . . , yt+p−1, yt+p]′.

The vector may contain all of the available data, or it may represent a narrow window that is
moving over the data. If the contents of the data window are fixed and if the window does not
move forward with each successive estimate of the signal, then the coefficients ψt,j of the filter are
liable to vary with both t and j.

The principle of minimum-mean-square-error estimation indicates that the estimation errors
must be statistically uncorrelated with the elements of the information set. Thus

0 = E
{
yt−j(ξt − xt)

}
(56)

= E(yt−jξt) −
q∑

k=−p

ψt,kE(yt−jyt−k)

= γyξ
j −

q∑
k=−p

ψt,kγyy
j−k.
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Equation (56) can be rendered also in a matrix format. By running from j = q to j = −p, we
get the following system:⎡

⎢⎢⎢⎢⎣
γξξ

q

γξξ
q−1
...

γξξ
p

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

γyy
0 γyy

1 · · · γyy
p+q

γyy
1 γyy

0 · · · γyy
p+q−1

...
...

. . .
...

γyy
p+q γyy

p+q−1 · · · γyy
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ψt,q

ψt,q−1

...
ψt,−p

⎤
⎥⎥⎥⎥⎦ . (57)

Here, on the LHS, we have set γyξ
j = γξξ

j in accordance with (53).
Let T = p + q + 1 be the number of elements in the information set, and define the dispersion

matrices Ωξ, Ωη and Ωy = Ωξ + Ωη of order T of the vectors ξ, η and y = ξ + η, which contain
the elements of the signal, the noise and the data that fall within the span of the information set.
Then, equation (57) can be written in summary notation as Ωξeq = Ωyψ′

t•, where eq is a vector
of order T containing a single unit preceded by q zeros and followed by p zeros. The coefficient
vector ψt• = [ψt,q, ψt,q−1, . . . , ψt,−p] is given by

ψt• = e′qΩξΩ−1
y = e′qΩξ(Ωξ + Ωη)−1. (58)

and the estimate of ξt is xt = ψt•y. (There are p data elements ahead of this prediction for
time t and q behind, which accounts for eq.) Given y = [y0, y1 . . . , yT−1]′, which contains all of
the available data, the estimate of the complete vector ξ = [ξ0, ξ1 . . . , ξT−1]′ of the corresponding
signal elements would be

x = ΩξΩ−1
y y = Ωξ(Ωξ + Ωη)−1y. (59)

This is the finite-sample version of the Wiener–Kolmogorov filter, which will be discussed more
fully in section 7.

Observe that equation (59) represents a time-varying filter. The tth row of the matrix ΩξΩ−1
y

provides the filter coefficients that serve to generate the value xt by a combination of the elements
of the data vector y. It also worth noting that this filter requires no extrapolations of the data to
enable it to reach the ends of the sample.

The classical Wiener–Kolmogorov theory was aimed at developing linear time-invariant filters
that would be appropriate to semi-infinite and doubly infinite data sequences; and many of the
subsequent developments have taken the classical results as their starting point.

To derive the classical formulae, consider suppressing the time subscript of ψt,k within equation
(56). On multiplying throughout by zj , the equation can be rendered as

γyξ
j zj = zj(ψ−pγ

yy
j+p + ψ1−pγ

yy
j−1+p + · · · + ψqγ

yy
j−q) (60)

= (ψ−pz
−p)(γyy

j+pz
j+p) + (ψ1−pz

1−p)(γyy
j−1−pz

j−1−p) +

· · · + (ψqz
q)(γyy

j−qz
j−q);

and, in the case where −p ≤ j, k ≤ q, the full set of so-called normal equations can be expressed as

γξξ(z)(−p,q) =
[
γyy(z)ψ(z)

]
(−p,q)

, (61)

where we have set γyξ(z) = γξξ(z), according to (53), and where the subscript (−p, q) indicates
that only the terms associated with z−p, z1−p, . . . , zq have been taken from γξξ(z) and γyy(z)ψ(z).

Equation (61) can accommodate a wide variety of assumptions concerning the extent of the
information set. These include the case of a causal FIR (finite impulse response) filter (with
j ∈ [0, n]), a symmetric two-sided FIR filter (with j ∈ [−n, n]), a causal IIR (infinite impulse
response) filter (with j ∈ [0,∞]), or a bidirectional IIR filter (with no bounds on j).

In the case of a causal IIR filter, the normal equations take the form of[
γξξ(z)

]
+

=
[
φ(z−1)φ(z)ψ(z)

]
+

, (62)

where the subscripted + is to indicate that only the part of the series which contains nonnegative
powers of z is to be taken. (This is the notation of Whittle (1983).) The solution is

ψ(z) =
1

φ(z)

[
γξξ(z)
φ(z−1)

]
+

. (63)
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The classical Wiener–Kolmogorov theory also considers the case of a doubly infinite information
set. When there are no restrictions on the exponent of z, the normal equations of (61) become
γξξ(z) = γyy(z)ψ(z). Then, there is

ψ(z) =
γξξ(z)
γyy(z)

=
θ(z−1)θ(z)
φ(z−1)φ(z)

, (64)

which is the basis for a symmetric IIR filter. An example is provided by the Butterworth filter of
(42).

Notwithstanding the fact that equation (57) provides an appropriate environment in which to
derive filters for finite data sequences, it has been customary to derive such filters in reference to
equation (64), which relates to data sequences that are doubly infinite. A filter that presupposes
an infinite data set is unrealisable in practice; and there are three common ways of deriving a
practical filter from equation (64).

The first way, which is the simplest, depends upon generating the Laurent expansion of the
rational function to create the series ψ(z) = {ψ0 +ψ1(z−1 + z)+ · · ·}. From the central coefficients
of the expansion, an FIR filter is formed, which can be applied to the data. However, to obtain a
good approximation to the theoretical filter of (64), a large number of coefficients may be needed.
Hillmer and Tiao (1982) have used such a method.

The second method of implementing the filter depends upon the Cramér–Wold factorisations
of γξξ(z) and γyy(z). From the resulting factors, two filters can be formed, one working in direct
time and the other in reverse time. The filtering operations may be represented by

φ(z)q(z) = θ(z)y(z), φ(z−1)x(z) = θ(z−1)q(z). (65)

The first filter, which runs forwards in time, generates the intermediate output q(t), and the second
filter, which runs backwards in time, generates the final output x(t). This is the bidirectional
method, which was been the leitmotif of the method proposed by Pollock (2000), which amounts
to a procedure for solving equation (59).

In the third method, a factorisation is employed that has the form of

γξξ(z)
γyy(z)

=
ρ(z)
φ(z)

+
ρ(z−1)
φ(z−1)

. (66)

Two parallel sequences f(t) and b(t) are generated via

ρ(z)f(z) = θ(z)y(z), ρ(z−1)b(z) = θ(z−1)y(z), (67)

and the results are added to create x(t) = f(t) + b(t). This is the contragrade method of Burman
(1980), who attributed it to G. Tunnicliffe–Wilson. It has been employed in the TRAM0–SEATS
program of Gómez and Maravall (1996) and of Caporello and Maravall (2004).

In the econometric analysis of time series, it is common to model a nonstationary process via
an autoregressive operator with roots of unit value, which are on the boundary of instability.
Imagine that the data sequence y(t) = ξ(t) + η(t) contains a stationary noise component η(t) and
a nonstationary trend component ξ(t) that can be reduced to stationarity by p-fold differencing.
Let ∇(z) = 1 − z be the z-transform of the difference operator. Then, multiplying y(z) by ∇p(z)
will give

∇p(z)y(z) = ∇p(z)ξ(z) + ∇p(z)η(z) (68)
= δ(z) + κ(z) = g(z).

The estimates of the differenced components δ(t) and κ(t) may be denoted by d(t) and k(t) re-
spectively. They may be extracted from the differenced data g(t) in the various ways that have
already been described for stationary data, using filters based on

ψδ(z) =
γδδ(z)
γgg(z)

=
γξξ(z)
γyy(z)

and ψκ(z) =
γκκ(z)
γgg(z)

=
γηη(z)
γyy(z)

, (69)
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which are complementary in the sense that ψδ(z) + ψκ(z) = 1. Thereafter, the sought-after
estimates of ξ(t) and η(t), denoted by x(t) and h(t), respectively, can be obtained by cumulating
their differenced versions.

Let Σ(z) = ∇−1(z) denote the cumulation operator, which is the inverse of the difference
operator. Then, h(z) = Σp(z)k(z) is the z-transform of the sequence h(t), obtained by cumulating
k(t). The latter is given by the k(z) = ψκ(z)g(z). When h(t) is available, the estimate of ξ(t) may
be obtained by subtraction:

x(t) = y(t) − h(t). (70)

If ψκ(z) contains the factor (1− z)n of a degree n ≥ p—which will often prove to be the case—
then applying the reduced filter ψ∗

κ(z) = (1 − z)−pψκ(z) = Σp(z)ψκ(z) to g(z) will produce h(z)
directly. Thus, one can avoid the need to cumulate the filtered sequence, which means that there
will be no need for starting values. Observe also that ψ∗

κ(z)g(z) = ψκ(z)y(z), so we might apply
the original filter to the undifferenced data. However, this would require us to supply nonzero
starting values to the filter.

In the next section, we shall consider in more detail the means of converting to a matrix format
a set of equations that have been expressed in terms of the z-transform; and, thereafter, we shall
be considering the estimation of the time-varying filter coefficients in more detail.

6 Matrix Formulations

The classical theory of statistical signal extraction presupposes lengthy data sequences, which
are assumed, in theory, to be doubly infinite or semi-infinite, and it is also assumed that the
processes generating these data are statistically stationary. In many practical cases, and in most
econometric applications, the available data are, to the contrary, both strongly trended and of a
limited duration.

In order to adapt the theory to these circumstances, it is helpful to employ a formulation that is
in terms of matrices and vectors. The theory of local polynomial regression, which has been touched
on in the section 3, and which entails FIR filters, is naturally expressed in matrices. The filtering
theory that has been developed by electrical engineers, and which typically makes reference to the
frequency domain, has been expressed in terms of the z-transforms of the data sequences and of
the sequences of filter coefficients, which thereby become polynomial operators. These notational
and conceptual differences have created a schism in the theory of statistical signal extraction that
needs to be overcome.

A fruitful approach to unifying the theory is to seek a matrix representation of the argument
z of the z-transforms. The latter is commonly interpreted as an arbitrary point in the complex
plane, when it is not constrained to lie on the unit circle. Within the time domain, the argument
assumes the role of a temporal lag operator or delay operator. In fact, in electrical engineering, the
delay operator is commonly represented by z−1; but it serves our present purposes better to depart
from this convention by using z instead. There are two alternative matrix representations of the
argument that preserve the underlying algebra of polynomials and rational functions to differing
degrees.

6.1 Toeplitz Matrices

In the first of these matrix representations, which is appropriate to a time-domain interpretation
of linear filtering, the argument z is replaced by

LT = [e1, e2, . . . , eT−1, 0], (71)

which is obtained from the identity matrix IT = [e0, e1, . . . , eT−1] by deleting the leading column
and appending a column of zeros to the end of the array. This is the finite-sample version of the
lag operator L that is commonly employed by econometricians. When it is applied to the sequence
x(t) = {xt; t = 0,±1,±2, . . .}, the effect of the lag operator is that Lx(t) = x(t − 1). The inverse
element z−1, which stands for the foreward-shift operator, can be replaced by the matrix

FT = [0, e1, e2, . . . , eT−2] = L′
T . (72)
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We note that, whereas zz−1 = z−1z = 1, which is an identity operator, there is LT FT 
=
FT LT 
= IT . Here, the discrepancy lies in the fact that LT FT differs from IT in having a zero as its
leading, top-left, element whereas FT LT differs from IT in having a zero for its final, bottom-right,
element.

A related discrepancy is that, whereas z can be raised to any power, the operators LT and FT

are nilpotent of degree T , which is to say that LT+q
T = 0 and FT+q

T = 0 for all q ≥ 0.
Given a Laurent polynomial of the form α(z) =

∑q
j=−p αjz

j , we can replace the powers of z

and z−1 by powers of LT and FT , respectively, to obtain the banded Toeplitz matrix A = [αi−j ],
in which the generic element in the ith row and the jth column is αij = αi−j . More particularly,
if α(z) =

∑q
j=0 αjz

j is a polynomial in positive powers of z, then replacing z by LT gives rise to
a lower-triangular Toeplitz matrix A = α(LT ), whereas replacing z−1 in α(z−1) =

∑q
j=0 αjz

−j

by FT leads to the corresponding upper-triangular matrix. A lower-triangular Toeplitz matrix
A = α(LT ) is completely characterised by its leading column, which is α = Ae0 whereas the
upper-triangular matrix A′ = α(FT ) is completely characterised by is leading row α′ = e′0A

′.
It is important to note that lower-triangular (LT) Toeplitz matrices commute in multiplication

as do the upper triangular matrices. This is attributable to their origins in polynomials. Thus

If A = α(LT ) and B = β(LT ) are LT Toeplitz matrices, (73)
then AB = BA is also an LT Toeplitz matrix.

It also follows that
ABe0 = Aβ = BAe0 = Bα. (74)

It is of some significance that this commutativity in multiplication does not extend to Toeplitz
matrices in general. If fact, if A = [αi−j ] and B = [βi−j ] are Toeplitz matrices, then AB = (BA)#

and BA = (AB)#, where Q# denotes the counter transpose of Q, which is its reflection about the
secondary SW–NE diagonal.

Example. Consider a sequence y(t) = {yt; t = 0,±1,±2, . . .} generated by a moving-average
process of order q. Then,

yt =
q∑

j=0

μjεt−j with μ0 = 1, (75)

where εt is from a white-noise sequence of independently and identically distributed random vari-
ables of a zero mean and a finite variance σ2

ε . If μ(z) =
∑q

j=0 μjz
j is the z-transform of the

moving-average coefficients, then γ(z) = σ2
εμ(z−1)μ(z) is the autocovariance generating function

of the process.
Now consider a vector y = [y0, y1, . . . , yT−1]′ of T observations sampled from the process. This

can be written as
y = M∗ε∗ + Mε, (76)

where ε = [ε0, ε1, . . . , εT−1]′contains disturbances from within the sample period and ε∗ = [ε−q, . . . , ε−2, ε−1]′

is a vector of presample elements.
The matrix M = μ(LT ), which is of a lower-triangular Toeplitz form, is completely characterised

by its leading vector [μ0, μ1, . . . , μq, 0, . . . 0]′. The matrix M∗ = [M ′
∗∗, 0]′ contains the parameters

associated with the presample elements.
An example is provided by the following display that relates to the case where the moving-

average order is q = 3 and the size of the sample is T = 6:

M∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ3 μ2 μ1

0 μ3 μ2

0 0 μ3

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, M =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ0 0 0 0 0 0
μ1 μ0 0 0 0 0
μ2 μ1 μ0 0 0 0
μ3 μ2 μ1 μ0 0 0
0 μ3 μ2 μ1 μ0 0
0 0 μ3 μ2 μ1 μ0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (77)
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The autocovariance matrix of the sample is given by

Ω = γ0IT +
q∑

j=1

γj(L
j
T + F j

T ) (78)

= σ2
ε(M∗M

′
∗ + MM ′).

The first expression on the RHS is obtained directly from the autocovariance generating function
by replacing the powers of z and z−1 by the corresponding powers of LT and FT and by replacing
z0 = 1 by IT . The second expression comes from (76), when the latter is used within E(yy′) = Ω .

It is notable that, whereas γ(z) = σ2
εμ(z)μ(z−1) = σ2

εμ(z−1)μ(z), we find that Ω 
= σ2
εMM ′ 
=

σ2
εM ′M , where M and Ω are the direct matrix analogues of μ(z) and γ(z). The difficulty, which

resides in the leading submatrix of MM ′ and the trailing submatrix of M ′M is an end-of-sample
problem due to the extra-sample elements.

For a discussion of Toeplitz matrices in relation to the maximum-likelihood estimator of a
Gaussian autoregressive-moving average process, see Godolphin and Unwin (1983).

6.2 Circulant Matrices

In the second of the matrix representations, which is appropriate to a frequency-domain interpre-
tation of filtering, the argument z is replaced by the full-rank circulant matrix

KT = [e1, e2, . . . , eT−1, e0], (79)

which is obtained from the identity matrix IT = [e0, e1, . . . , eT−1] by displacing the leading column
to the end of the array. This is an orthonormal matrix of which the transpose is the inverse, such
that K ′

T KT = KT K ′
T = IT . The powers of the matrix form a T -periodic sequence such that

KT+q
T = Kq

T for all q. The periodicity of these powers is analogous to the periodicity of the powers
of the argument z = exp{−i2π/T}, which is to be found in the Fourier transform of a sequence of
order T .

The matrices K0
T = IT , KT , . . . , KT−1

T form a basis for the set of all circulant matrices of order
T—a circulant matrix X = [xij ] of order T being defined as a matrix in which the value of the
generic element xij is determined by the index {(i− j) mod T}. This implies that each column of
X is equal to the previous column rotated downwards by one element.

It follows that there exists a one-to-one correspondence between the set of all polynomials of
degree less than T and the set of all circulant matrices of order T . Therefore, if α(z) is a polynomial
of degree less that T , then there exits a corresponding circulant matrix

A = α(KT ) = α0IT + α1KT + · · · + αT−1K
T−1
T . (80)

A convergent sequence of an indefinite length can also be mapped into a circulant matrix.
Thus, if {γi} is an absolutely summable sequence obeying the condition that

∑ |γi| < ∞, then
the z-transform of the sequence, which is defined by γ(z) =

∑
γjz

j , is an analytic function on
the unit circle. In that case, replacing z by KT gives rise to a circulant matrix Γ = γ(KT ) with
finite-valued elements. In consequence of the periodicity of the powers of KT , it follows that

Γ =
{ ∞∑

j=0

γjT

}
IT +

{ ∞∑
j=0

γ(jT+1)

}
KT + · · · +

{ ∞∑
j=0

γ(jT+T−1)

}
KT−1

T (81)

= ϕ0IT + ϕ1KT + · · · + ϕT−1K
T−1
T .

Given that {γi} is a convergent sequence, it follows that the sequence of the matrix coefficients
{ϕ0, ϕ1, . . . , ϕT−1} converges to {γ0, γ1, . . . , γT−1} as T increases. Notice that the matrix ϕ(K) =
ϕ0IT + ϕ1KT + · · · + ϕT−1K

T−1
T , which is derived from a polynomial ϕ(z) of degree T − 1, is a

synonym for the matrix γ(KT ), which is derived from the z-transform of an infinite convergent
sequence.
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The polynomial representation is enough to establish that circulant matrices commute in mul-
tiplication and that their product is also a polynomial in KT . That is to say

If X = x(KT ) and Y = y(KT ) are circulant matrices, (82)
then XY = Y X is also a circulant matrix.

The matrix operator KT has a spectral factorisation that is particularly useful in analysing
the properties of the discrete Fourier transform. To demonstrate this factorisation, we must first
define the so-called Fourier matrix. This is a symmetric matrix

UT = T−1/2[W jt
T ; t, j = 0, . . . , T − 1], (83)

of which the generic element in the jth row and tth column is

W jt
T = exp(−i2πtj/T ) = cos(ωjt) − i sin(ωjt), (84)

where ωj = 2πj/T.

The matrix UT is a unitary, which is to say that it fulfils the condition

ŪT UT = UT ŪT = IT , (85)

where ŪT = T−1/2[W−jt
T ; t, j = 0, . . . , T − 1] denotes the conjugate matrix.

The operator can be factorised as

KT = ŪT DT UT = UT D̄T ŪT , (86)

where
DT = diag{1, W, W 2, . . . , WT−1} (87)

is a diagonal matrix whose elements are the T roots of unity, which are found on the circumference
of the unit circle in the complex plane. Observe also that DT is T -periodic, such that Dq+T

T = Dq
T ,

and that Kq
T = ŪT Dq

T UT = UT D̄q
T ŪT for any integer q. Since the powers of KT form the basis for

the set of circulant matrices, it follows that such matrices are amenable to a spectral factorisation
based on (86).

Example. Consider, in particular, the circulant autocovariance matrix that is obtained by replac-
ing the argument z in the autocovariance generating function γ(z) by the matrix KT . Imagine that
the autocovariances form a doubly infinite sequence, as is the case for an autoregressive process or
an autoregressive moving-average process:

Ω◦ = γ(KT ) = γ0IT +
∞∑

τ=1

γτ (Kτ
T + K−τ

T ) (88)

= ϕ0IT +
T−1∑
τ=1

ϕτ (Kτ
T + K−τ

T ).

Here, ϕτ ; τ = 0, . . . , T − 1 are the “wrapped” coefficients that are obtained from the original
coefficients of the autocovariance generating function in the manner indicated by (81). The spectral
factorisation gives

Ω◦ = γ(KT ) = Ūγ(D)U. (89)

The jth element of the diagonal matrix γ(D) is

γ(exp{iωj}) = γ0 + 2
∞∑

τ=1

γτ cos(ωjτ). (90)

This represents the cosine Fourier transform of the sequence of the ordinary autocovariances; and
it corresponds to an ordinate (scaled by 2π) sampled at the point ωj from the spectral density
function of the linear (i.e. non-circular) stationary stochastic process.
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7 Wiener–Kolmogorov Filtering of Short Stationary Sequences

In the classical theory, it is assumed that there is a doubly-infinite sequence of observations,
denoted, in this chapter, by y(t) = {yt; t = 0,±1,±2, . . .}. Here, we shall assume that the observa-
tions run from t = 0 to t = T − 1. These are gathered in the vector y = [y0, y1, . . . , yT−1]′, which
is decomposed as

y = ξ + η, (91)

where ξ is the signal component and η is the noise component. It may be assumed that the latter
are from independent zero-mean Gaussian processes that are completely characterised by their first
and second moments.

The autocovariance or dispersion matrices, which have a Toeplitz structure, may be obtained
by replacing the argument z within the relevant autocovariance generating functions by the matrix
LT of (71). The resulting first and second order moments are denoted by

E(ξ) = 0, D(ξ) = Ωξ, (92)

E(η) = 0, D(η) = Ωη,

and C(ξ, η) = 0.

A consequence of the independence of ξ and η is that D(y) = Ω = Ωξ + Ωη.
Under the Gaussian assumption, the joint density function of ξ and η is

N(ξ, η) = (2π)−T |Ωξ|−1/2|Ωη|−1/2 exp
{
− 1

2
(ξ′Ω−1

ξ ξ + η′Ω−1
η η)

}
, (93)

The problem of estimating ξ and η can be construed as a matter of maximising the likelihood
function N(ξ, η) subject to the condition that ξ + η = y. This entails minimising a chi-square
criterion function:

S = (y − ξ)′Ω−1
η (y − ξ) + ξ′Ω−1

ξ ξ (94)

= η′Ω−1
η η + (y − η)′Ω−1

ξ (y − η).

The minimising values of ξ and η are, respectively,

x = (Ω−1
ξ + Ω−1

η )−1Ω−1
η y, (95)

h = (Ω−1
ξ + Ω−1

η )−1Ω−1
ξ y (96)

and it is manifest that x + h = y, which is to say that the two estimates obey the same adding-up
condition as the true components.

The identities

(Ω−1
ξ + Ω−1

η )−1Ω−1
η = Ωξ(Ωξ + Ωη)−1, (97)

(Ω−1
ξ + Ω−1

η )−1Ω−1
ξ = Ωη(Ωξ + Ωη)−1, (98)

which are easily proven by premultiplying and postmultiplying the equations by Ω−1
ξ + Ω−1

η and
Ωξ + Ωη, respectively, can be used to rewrite the estimates as

x = Ωξ(Ωξ + Ωη)−1y = Zξy, (99)

h = Ωη(Ωξ + Ωη)−1y = Zηy. (100)

The first of these is the formula of (59). It can also be seen, in reference to (92), that

x = E(ξ|y) = E(ξ) + C(ξ, y)D−1(y){y − E(y)}, (101)

h = E(η|y) = E(η) + C(η, y)D−1(y){y − E(y)}, (102)



D.S.G. Pollock: Signal Extraction and Filtering 25

which is to say the estimates are the conditional expectations of the unobserved components—
which means that they are also the minimum-mean-square-error estimates.

The corresponding error-dispersion matrices, from which confidence intervals for the estimated
components may be derived, are

D(ξ|y) = D(ξ) − C(ξ, y)D−1(y)C(y, ξ) (103)
= Ωξ − Ωξ(Ωξ + Ωη)−1Ωξ,

D(η|y) = D(η) − C(η, y)D−1(y)C(y, η) (104)
= Ωη − Ωη(Ωξ + Ωη)−1Ωη.

These formulae contain the dispersion matrices D{E(ξ|y)} = C(ξ, y)D−1(y)C(y, ξ) and D{E(η|y)} =
C(η, y)D−1(y)C(y, η), which give the variability of the estimated components relative to their zero-
valued unconditional expectations. The results follow from the ordinary algebra of conditional
expectations, of which an account has been given by Pollock (1999).

Since y = x + h, only one of the estimates needs be calculated. The other may be obtained by
subtracting the calculated estimate from y. Also, the matrix inversion lemma indicates that

(Ω−1
ξ + Ω−1

η )−1 = Ωη − Ωη(Ωη + Ωξ)−1Ωη (105)

= Ωξ − Ωξ(Ωη + Ωξ)−1Ωξ.

Therefore, (103) and (104) represent the same quantity, which is to be expected in view of the
adding up.

The identities of (105), which describe the matrix inversion lemma, can be derived from those
of (97) and (98). Adding the LHS of (97) to the LHS of (98) gives an identity matrix. Therefore,
adding the LHS of (97) to the RHS of (98) also gives the identity matrix:

(Ω−1
ξ + Ω−1

η )−1Ω−1
η + Ωη(Ωξ + Ωη)−1 = IT

Postmultiplying this by Ωη and rearranging gives the first of the identities of (105). The other
follows by an argument of symmetry.

The filter matrix Zξ = Ωξ(Ωξ+Ωη)−1 of (99), which has appeared already under (59), may be re-
garded as the finite-sample version of the filter formula ψξ(z) =
γξξ(z)/γyy(z), of (64). Notice, however, that it is not sufficient merely to replace the argument z
within the latter equation by LT . The reason is that the matrices Ωξ = γξξ(LT ), Ωη = γηη(LT )
and Ω = γyy(LT ) and their inverses fail to commute in multiplication. An order asserts itself
amongst the factors of the filter matrices that is immaterial in the case of their infinite-sample
analogues.

To investigate the mapping from y to x = E(ξ|y) or, equally, the mapping from y to h = E(η|y),
we must take account of the various symmetries manifested by the Toeplitz matrices Ωη and Ωξ.
The generic Toeplitz matrix Ω is symmetric about the principal (northwest–southeast) diagonal,
which is ordinary symmetry. It is symmetric about the secondary
(northeast–southwest) diagonal, which is persymmetry. It is invariant with respect to rotations of
180◦ around the central point at the intersection of its two diagonals, which is centrosymmetry.

Let H = [eT−1, . . . , e1, e0] be the counter-identity matrix, which has units on the secondary
diagonal and zeros elsewhere, and let Ω# be the counter transpose, which is the reflection of Ω
about the secondary diagonal. Then, the symmetries of Ω may be recorded as follows:

(i) Symmetry:
(ii) Persymmetry:
(iii) Centrosymmetry:

Ω = Ω′,
Ω = Ω#, equivalently HΩH = Ω′,
Ω = (Ω#)′ = Ωr, equivalently HΩH = Ω.

(106)

The matrix of x = Zy, which is the estimating equation of the signal ξ, is determined by the
equation Ωξ = ZΩ, wherein both Ωξ and Ω = Ωξ + Ωη are Toeplitz matrices. Therefore, since
HΩξH = Ωξ, HΩH = Ω and HH = I, it follows that

Ωξ = HΩξH = {HZH}{HΩH} = {HZH}Ω = ZΩ. (107)
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In view of the nonsingularity of the factors, we conclude from this that HZH = Z, which is to say
that Z = Ωξ(Ωξ + Ωη)−1 is a centrosymmetric matrix, albeit that it is not a Toeplitz matrix.

Let yr = Hy and xr = Hx be y and x in reverse. Then, the centrosymmetric property of
Z ensures that both x = Zy and xr = Zyr. This feature is in accordance with the fact that
the direction of time can be reversed without affecting the statistical properties of a stationary
process. The use of centrosymmetric matrices in filtering time series has been discussed by Dagum
and Luati (2004).

The filter weights that are provided by the rows of the matrices Z vary as the filter progresses
through the sample. As the sample size increases, the weights in the central row of Z, when it has
an odd number of rows, will tend to the set of constant coefficients that would be derived under the
assumption of a doubly-infinite data sequence. These coefficients are symmetric about a central
value. The weights of the final row of Z correspond to the coefficients of a one-sided causal filter
that looks backwards in time, whereas those in the first row correspond to the same filter looking
forwards in time.

A simple procedure for calculating the estimates x and h begins by solving the equation

(Ωξ + Ωη)b = y (108)

for the value of b. Thereafter, one can generate

x = Ωξb and h = Ωηb. (109)

If Ωξ and Ωη correspond to the dispersion matrices of moving-average processes, then the
solution to equation (108) may be found via a Cholesky factorisation that sets Ωξ + Ωη = GG′,
where G is a lower-triangular matrix with a limited number of nonzero bands. This is the matrix
analogue of a Cramér–Wold factorisation. The system GG′b = y may be cast in the form of Gp = y
and solved for p. Then, G′b = p can be solved for b.

8 Filtering Nonstationary Sequences

The problems of filtering a trended data sequence may be overcome by reducing it to stationarity
by differencing. The differenced sequence can be filtered and, if necessary, it can be reinflated
thereafter to obtain an estimate of a trended data component. If one is seeking to estimate a
stationary component of a nonstationary sequence, then the reinflation can be avoided.

It is possible to approach the problem of estimating a trended component by filtering the data
directly, without differencing it, provided that sufficient attention is paid to the provision of the
necessary initial conditions. This is the preferred approach of some econometricians which leads
them to adopt the Kalman filter, which is expounded in section 11. A strong advocacy of the
Kalman filter in association with structural time-series models has been made by Durbin and
Koopman (2001, §3.5).

The matrix that takes the p-th difference of a vector of order T is given by

∇p
T = (I − LT )p. (110)

We may partition the matrix so that ∇p
T = [Q∗, Q]′, where Q′

∗ has p rows. The inverse matrix is
partitioned conformably to give ∇−p

T = [S∗, S]. We may observe that

[S∗ S ]
[

Q′
∗

Q′

]
= S∗Q

′
∗ + SQ′ = IT , (111)

and that [
Q′

∗
Q′

]
[S∗ S ] =

[
Q′

∗S∗ Q′
∗S

Q′S∗ Q′S

]
=

[
Ip 0
0 IT−p

]
. (112)

When the differencing operator is applied to a vector x, the first p elements of the product,
which are in d∗, are not true differences and they are liable to be discarded:

∇p
T x =

[
Q′

∗
Q′

]
y =

[
d∗
d

]
. (113)
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However, if the elements of d∗ are available, then the vector x can be recovered from d = Q′x via
the equation

x = S∗d∗ + Sd. (114)

The columns of the matrix S∗ provide a basis for the set of polynomials of degree p − 1 defined
over the integer values t = 0, 1, . . . , T −1. Therefore, f = S∗d∗ is a vector of polynomial ordinates,
whilst d∗ can be regarded as a vector of p polynomial parameters.

The treatment of trended data must accommodate stochastic processes with drift. Therefore,
it will be assumed that, within y = ξ + η, the trend component ξ = φ + ζ is the sum of a vector
φ, containing ordinates sampled from a polynomial in t of degree p at most, and a vector ζ from
a stochastic process with p unit roots that is driven by a zero-mean process.

If Q′ is the p-th difference operator, then Q′φ = μι, with ι = [1, 1, . . . , 1]′, will contain a sequence
of constants, which will be zeros if the degree of the drift is less than p, which is the degree of
differencing. Also, Q′ζ will be a vector sampled from a mean-zero stationary process. Therefore,
δ = Q′ξ is from a stationary process with a constant mean. Thus, there is

Q′y = Q′ξ + Q′η (115)
= δ + κ = g,

where

E(δ) = μι, D(δ) = Ωδ, (116)
E(κ) = 0, D(κ) = Ωκ = Q′ΩηQ,

and C(δ, κ) = 0.

Let the estimates of ξ, η, δ = Q′ξ and κ = Q′η be denoted by x, h, d and k respectively. Then,
with E(g) = E(δ) = μι, there is

E(δ|g) = E(δ) + Ωδ(Ωδ + Ωκ)−1{g − E(g)} (117)
= μι + Ωδ(Ωδ + Q′ΩηQ)−1{g − μι} = d,

E(κ|g) = E(κ) + Ωκ(Ωδ + Ωκ)−1{g − E(g)} (118)
= Q′ΩηQ(Ωδ + Q′ΩηQ)−1{g − μι} = k;

and these vectors obey an adding-up condition:

Q′y = d + k = g. (119)

In (117), the lowpass filter matrix Zδ = Ωδ(Ωδ + Q′ΩηQ)−1 will virtually conserve the vector
μι, which is an element of zero frequency. In (118), the complementary highpass filter matrix
Zκ = Q′ΩηQ(Ωδ + Q′ΩηQ)−1 will virtually nullify the vector. Its failure to do so completely is
attributable the fact that the filter matrix is of full rank. As the matrix converges on its asymptotic
form, the nullification will become complete. It follows that, even when the degree of the drift is
p, one can set

d = Ωδ(Ωδ + Ωκ)−1g = Ωδ(Ωδ + Q′ΩηQ)−1Q′y, (120)

k = Ωκ(Ωδ + Ωκ)−1g = Q′ΩηQ(Ωδ + Q′ΩηQ)−1Q′y. (121)

Our object is to recover from d an estimate x of the trend vector ξ via equation (114). The
criterion for finding the intial condition or starting value d∗ is

Minimise (y − x)′Ω−1
η (y − x) = (y − S∗d∗ − Sd)′Ω−1

η (y − S∗d∗ − Sd). (122)

This requires that the estimated trend x should adhere as closely as possible to the data. The
minimising value is

d∗ = (S′
∗Ω

−1
η S∗)−1S′

∗Ω
−1
η (y − Sd). (123)

Using this, and defining
P∗ = S∗(S′

∗Ω
−1
η S∗)−1S′

∗Ω
−1
η , (124)
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we get, from (114), the following value:

x = P∗y + (IT − P∗)Sd. (125)

The disadvantage in using this formula directly is that the inverse matrix Ω−1
η , which is of

order T , is liable to have nonzero elements in every location. The appropriate recourse is to use
the identity

IT − P∗ = IT − S∗(S′
∗Ω

−1
η S∗)−1S′

∗Ω
−1
η (126)

= ΩηQ(Q′ΩηQ)−1Q′

to provide an alternative expression for the projection matrix IT −P∗ that incorporates the narrow-
band matrix Ωη instead of its inverse. The equality follows from the fact that, if Rank[R, S∗] = T
and if S′

∗Ω
−1
η R = 0, then

IT − S∗(S′
∗Ω

−1
η S∗)−1S′

∗Ω
−1
η = R(R′Ω−1

η R)−1R′Ω−1
η . (127)

Setting R = ΩηQ gives the result. Given that x = y − h, it follows that we can write

x = y − (IT − P∗)Sk (128)
= y − ΩηQ(Q′ΩηQ)−1k,

where the second equality depends upon Q′S = IT . On substituting k from (121) into the equation
of (128), we get

x = y − ΩηQ(Ωδ + Q′ΩηQ)−1Q′y. (129)

Equation (129) can also be derived via a straightforward generalisation of the chi-square cri-
terion of (94). If we regard the elements of δ∗ as fixed values, then the dispersion matrix of
ξ = S∗δ∗ + Sδ is the singular matrix D(ξ) = Ωξ = SΩδS

′. On setting η = y − ξ in (94) and
replacing the inverse of Ω−1

ξ by the generalised inverse Ω+
ξ = QΩ−1

δ Q′, we get the function

S = (y − ξ)′Ω−1
η (y − ξ) + ξ′QΩ−1

δ Q′ξ, (130)

of which the minimising value is

x = (QΩ−1
δ Q′ + Ω−1

η )−1Ω−1
η y. (131)

The matrix inversion lemma gives

(QΩ−1
δ Q′ + Ω−1

η )−1 = Ωη − ΩηQ(Q′ΩηQ + Ωδ)−1Q′Ωη; (132)

and putting this into (131) gives the expression under (129). The matrix of (132) also constitutes
the error dispersion matrix D(η|y) = D(ξ|y) which, in view of their adding-up property, is common
to the estimates of the two components.

At this point, we may observe that it is possible to estimate two independent nonstationary
components ξ and η from their combined data sequence y = ξ + η. Define matrices ∇ξ and ∇η

such that

∇ξξ =

[
Q′

ξ∗
Q′

ξ

]
ξ =

[
δ∗
δ

]
and ∇ηη =

[
Q′

η∗
Q′

η

]
η =

[
κ∗
κ

]
, (133)

and assume that Rank[Qξ, Qη] = T . The operators Q′
ξ and Q′

ξ reduce the respective components
to independent stationary mean-zero sequences δ and κ, with E(δ) = 0, D(δ) = Ωδ and E(κ) = 0,
D(κ) = Ωκ.

Then, an appropriate criterion for finding the estimates of the original components is to minimise
the function

S = (y − ξ)′QηΩ−1
κ Q′

η(y − ξ) + ξ′QξΩ−1
δ Q′

ξξ (134)

= η′QηΩ−1
κ Q′

ηη + (y − η)′QξΩ−1
δ Q′

ξ(y − η)
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in respect of ξ and η. This gives rise to the following equations:

x = (QξΩ−1
δ Q′

ξ + QηΩ−1
κ Q′

η)−1QηΩ−1
κ Q′

ηy, (135)

h = (QξΩ−1
δ Q′

ξ + QηΩ−1
κ Q′

η)−1QξΩ−1
δ Q′

ξy.

Since neither QξΩ−1
δ Q′

ξ nor QηΩ−1
κ Q′

η is invertible, the matrix inversion lemma is no longer
applicable and, therefore, computationally efficient forms that exploit the ease of inverting narrow-
band Toeplitz matrices are not directly available. Nevertheless, McElroy (2006) has demonstrated
a practical implementation of the above formulae.

It is uncommon of find a model that lacks a stationary noise component. However, it is quite
common to find a nonstationary component that comprises two nonstationary subcomponents that
require to be separated. In that case, the noise component may be lumped together with one of
the nonstationary components to enable the estimating equations of (135) to be exploited. Then,
the noise can be separated from the component with which it has been combined. Alternatively,
the composite nonstationary component can be separated from the stationary noise, wherafter it
can be decomposed into its constituent components in a manner that requires starting values to
be estimated explicitly.

Example. A typical model of an econometric time series, described by the equation

y = ξ + η (136)
= (τ + σ) + η,

comprises a trend/cycle component τ and a seasonal component σ that are described by ARIMA
models with real and complex unit roots respectively. The remaining component η is irregular
white noise. The models of these components may have been obtained, for example, by applying
the principle of canonical decompositions, which is to be described in section 10, to an aggregate
model of the data sequence.

To reduce the data to stationarity, an operator is used that is the product of a detrending
operator ∇τ = (I − LT )p and a deseasonalising operator ∇σ = (I − Lq

T )(I − LT )−1 = I + LT +
· · ·+Lq−1

T , where q is the number of seasons (or months). (The matrix ∇σ, which corresponds to a
seasonal summation operator, is used instead of the seasonal differencing operator I −Lq

T because
it can be assumed, without loss of generality, that the seasonal deviations from the trend have zero
mean.)

Let the product of the two operators be denoted by ∇τ∇σ = ∇ξ = [Q∗, Q]′, where Q′
∗ contains

the first p+q−1 rows of the matrix, and let the inverse operator ∇−1
ξ = Σ = [S∗, S] be partitioned

conformably such that S∗ contains the first p+q−1 columns. The factors Στ = ∇−1
τ and Σσ = ∇−1

σ

of Σ are further partitioned as Στ = [Sτ∗, Sτ ] and Σσ = [Sσ∗, Sσ].
Let the components of the transformed data be denoted by Q′ξ = δ, Q′τ = δτ and Q′σ = δσ.

Then, there is

Q′y = Q′ξ + Q′η (137)
= Q′(τ + σ) + κ = (δτ + δσ) + κ.

Also, let the estimates of τ and σ be denoted by r and s and those of δτ and δσ by dτ and dr.
Then, in parallel with equation (137), there is

Q′y = Q′x + Q′h (138)
= Q′(r + s) + k = (dτ + dσ) + k.

The estimates dτ , dσ and k may be obtained from the transformed data g = Q′y by a process of
linear filtering. Then, it is required to form r, s and h from these elements.

First, consider

x = (r + s) = S∗d∗ + Sd (139)
= S∗d∗ + S(dτ + dσ).
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Here, d∗ is computed according the formula of (123). Given x, an estimate h = y − x of the
irregular component can be formed. Next, there is an equation

S∗d∗ =
[

Sτ∗ Sσ∗
] [

dτ∗
dσ∗

]
. (140)

This may be solved uniquely for dτ∗ and dσ∗; and, for this purpose, only the first p + q − 1 rows
of the system are required. Thereafter, the estimates of τ and σ are given by

r = Sτ∗dτ∗ + Sdτ and s = Sσ∗dσ∗ + Sdσ. (141)

What has been recounted in this example is, essentially, the method proposed by Bell (1984).

9 Filtering in the Frequency Domain

The method of Wiener–Kolmogorov filtering can also be implemented using the circulant dispersion
matrices that are given by

Ω◦
ξ = Ūγξ(D)U, Ω◦

η = Ūγη(D)U and (142)

Ω◦ = Ω◦
ξ + Ω◦

η = Ū{γξ(D) + γη(D)}U,

wherein the diagonal matrices γξ(D) and γη(D) contain the ordinates of the spectral density
functions of the component processes. By replacing the dispersion matrices within (99) and (100)
by their circulant counterparts, we derive the following formulae:

x = Ūγξ(D){γξ(D) + γη(D)}−1Uy = Pξy, (143)
h = Ūγη(D){γξ(D) + γη(D)}−1Uy = Pηy. (144)

Similar replacements within the formulae (103) and (104) provide the expressions for the error
dispersion matrices that are appropriate to the circular filters.

The filtering formulae may be implemented in the following way. First, a Fourier transform
is applied to the data vector y to give Uy, which resides in the frequency domain. Then, the
elements of the transformed vector are multiplied by those of the diagonal weighting matrices
Jξ = γξ(D){γξ(D) + γη(D)}−1 and Jη = γη(D){γξ(D) + γη(D)}−1. Finally, the products are
carried back into the time domain by the inverse Fourier transform, which is represented by the
matrix Ū . (An efficient implementation of a mixed-radix fast Fourier transform, which is designed
to cope with samples of arbitrary sizes, has been provided by Pollock (1999). The usual algorithms
demand a sample size of T = 2q, where q is some integer.)

The frequency-domain realisations of the Wiener–Kolmogorov filters have sufficient flexibility
to accommodate cases where the component processes ξ(t) and η(t) have band-limited spectra that
are zero-valued beyond certain bounds. If the bands do not overlap, then it is possible to achieve
a perfect decomposition of y(t) into its components.

Let Ω◦
ξ = ŪΛξU , Ω◦

η = ŪΛηU and Ω◦ = Ū(Λξ + Λη)U , where Λξ and Λη contain the ordinates
of the spectral density functions of ξ(t) and η(t), sampled at the Fourier frequencies. Then, if these
spectra are disjoint, there will be ΛξΛη = 0, and the dispersion matrices of the two processes will
be singular. The matrix Ω◦

y = Ω◦
ξ + Ω◦

η will also be singular, unless the domains of the spectral
density functions of the component processes partition the frequency range. Putting these details
into (143) gives

x = ŪΛξ{Λξ + Λη}+Uy = ŪPξUy, (145)

where {Λξ + Λη}+ denotes a generalised inverse. The corresponding error dispersion matrix is

Ω◦
ξ − Ω◦

ξ(Ω
◦
ξ + Ω◦

η)+Ω◦
ξ = ŪΛξU − ŪΛξ(Λξ + Λη)+ΛξU. (146)

But, if ΛξΛη = 0, then Λξ(Λξ +Λη)+Λξ = Λξ; and so the error dispersion is manifestly zero, which
implies that x = ξ, and the signal is recovered perfectly.

In applying the Fourier method of signal extraction to non-stationary sequences, it is necessary
to reduce the data to stationarity. The reduction can be achieved by the differencing operation
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represented by equation (115). The components δ and κ of the differenced data may be estimated
via the equations

d = ŪΛδ(Λδ + Λκ)+Ug = Pδg, (147)

k = ŪΛκ(Λδ + Λκ)+Ug = Pκg. (148)

For a vector μι of repeated elements, there will be Pδμι = μι and Pκμι = 0.
Whereas these estimates of δ, κ may be extracted from g = Q′y by the Fourier methods,

the corresponding estimates x, h of ξ, η will be found by cumulating d and k in the manner of
equation (114). The procedure, which originates in the time-domain approach, requires explicit
initial conditions, denoted by d∗ and k∗.

It may also be appropriate, in this context, to replace the criteria of (122), which generates the
values of d∗, by simplified criterion wherein Ωη is replaced by the identity matrix IT . A similar
criterion can be used for finding a value for k∗ within the equation h = S∗k∗ + Sk. Then,

d∗ = (S′
∗S∗)−1S′

∗(y − Sd), and k∗ = (S′
∗S∗)−1S′

∗Sk. (149)

The available formulae for the summation of sequences provide convenient expressions for the
values of the elements of S′

∗S∗. (See, for example, Banerjee et. al. (1993, p. 20).)
An alternative recourse, which is available in the case of a highpass or bandpass filter that nul-

lifies the low-frequency components of the data, entails removing the implicit differencing operator
from the filter. (In an appendix of their paper, Baxter and King (1999) demonstrate the presence,
within a symmetric bandpass filter, of two unit roots, i.e. of a twofold differencing operator.)

Consider a filter defined in respect of a doubly-infinite sequence, and let φ(z) be the transfer
function of the filter, i.e. the z-transform of the filter coefficients. Imagine that φ(z) contains the
factor (1− z)p, and let ψ(z) = (1− z)−pφ(z). Then, ψ(z) defines a filter of which the finite-sample
version can be realised by the replacement of z by KT .

Since KT = ŪDU , the filter matrix can be factorised as ψ(KT ) = Ψ = Ūψ(KT )U . On defining
Jψ = ψ(KT ), which is a diagonal weighting matrix, the estimate of the highpass or bandpass
component is given by the equation

h = ŪJψUg. (150)

10 Structural Time Series Models

In economics, it is traditional to decompose time series into a variety of components, some or all
of which may be present in a particular instance.

One is liable to assume that the relative proportions of the components of an aggregate index
are maintained, approximately, in spite of the variations in their levels. Therefore, the basic model
of an economic index is a multiplicative one; and, if Y (t) is the sequence of values of an economic
index, then it can be expressed as

Y (t) = L(t) × C(t) × S(t) × H(t), (151)

where

L(t) is the global trend,
C(t) is a secular cycle,
S(t) is the seasonal variation and
H(t) is an irregular component.

Many of the more prominent macroeconomic indicators are amenable to a decomposition of this
sort. One can imagine, for example, a quarterly index of Gross Domestic Product which appears
to be following an exponential growth trend L(t).

The trend might be obscured, to some extent, by a superimposed cycle C(t) with a period of
roughly four and a half years, which happens to correspond, more or less, to the average lifetime
of the legislative assembly. The reasons for this curious coincidence need not concern us here.
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The ghost of an annual cycle S(t) might also be apparent in the index; and this could be a
reflection of the fact that some economic activities, such as building construction, are affected
significantly by the weather and by the duration of sunlight.

When the foregoing components—the trend, the secular cycle and the seasonal cycle—have
been extracted from the index, the residue should correspond to an irregular component H(t) for
which no unique explanation can be offered.

The logarithms y(t) = lnY (t) of the aggregate index are amenable to an additive decomposition.
Thus, equation (151) gives rise to

y(t) = {λ(t) + γ(t)} + σ(t) + η(t) (152)
= τ(t) + σ(t) + η(t),

where λ(t) = lnL(y), γ(t) = lnC(t), σ(t) = lnS(t) and η(t) = lnH(t). Since the trend and the
cycles are not easily separable, there is a case for combining them in a component T (t) = L(t)×C(t),
of which the logarithm is lnT (t) = τ(t).

In the structural time-series model, the additive components are modelled by independent
ARMA or ARIMA process. Thus

y(z) = τ(z) + σ(z) + η(z) (153)

=
θτ (z)
φτ (z)

ζτ (z) +
θσ(z)
φσ(z)

ζσ(z) + η(z),

where ζτ (z), ζσ(z) and η(z) are the z-transforms of statistically independent white-noise processes.
Within the autoregressive polynomial φτ (z) of the trend component will be found the unit-root
factor (1−z)p, whereas the autoregressive polynomial φσ(z) of the seasonal component will contain
the factor (1 + z + · · · + zs−1)D, wherein s stands for the number of periods in a seasonal cycle.

The sum of a set of ARIMA processes is itself and ARIMA process. Therefore, y(t) can be
expressed as a univariate ARIMA process which is described as the reduced form of the time-series
model:

y(z) =
θ(z)
φ(z)

ε(z) =
θ(z)

φσ(z)φτ (z)
ε(z). (154)

Here, ε(z) stands for the z-transform of a synthetic white-noise process.
There are two alternative approaches to the business of estimating the structural model and of

extracting its components. The first approach, which is described as the canonical approach, is to
estimate the parameters of the reduced-form ARIMA model. From these parameters, the Wiener–
Kolmogorov filters that are appropriate for extracting the components can be constructed.

On the assumption that the degree of the moving-average polynomial θ(z) is at least equal
to that of the autoregressive polynomial φ(z), there is a partial-fraction decomposition of the
autocovariance generating function of the model into three components, which correspond to the
trend effect, the seasonal effect and an irregular influence. Thus

θ(z)θ(z−1)
φσ(z)φτ (z)φτ (z−1)φσ(z−1)

=
Qτ (z)

φτ (z)φτ (z−1)
+

Qσ(z)
φσ(z)φσ(z−1)

+ R(z). (155)

Here, the first two components on the RHS represent proper rational fractions, whereas the irregular
component R(z) is an ordinary polynomial. If the degree of the moving-average polynomial in the
reduced form is less than that of the autoregressive polynomial, then the irregular component is
missing from the decomposition in the first instance.

To obtain the spectral density function f(ω) of y(t) and of its components, we set z = e−iω in
(155). (This function is more properly described as a pseudo-spectrum in view of the singularities
occasioned by the unit roots in the denominators of the first two components.) The spectral
decomposition can be written as

f(ω) = fτ (ω) + fσ(ω) + fR(ω). (156)

Let ντ = min{fτ (ω)} and νσ = min{fσ(ω)}. These are the elements of white noise embedded
in fτ (ω) and fσ(ω). The principle of canonical decomposition is that the white-noise elements
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should be reassigned to the residual component. (The principle of canonical decompositions has
been expounded, for example, by Hillmer and Tiao (1982), Maravall and Pierce (1987), and, more
recently, Kaiser and Maravall (2001).) On defining

γτ (z)γτ (z−1) = Qτ (z) − ντφτ (z)φτ (z−1), (157)
γσ(z)γσ(z−1) = Qσ(z) − νσφσ(z)φσ(z−1),

and ρ(z)ρ(z−1) = R(z) + ντ + νσ,

the canonical decomposition of the generating function can be represented by

θ(z)θ(z−1)
φ(z)φ(z−1)

=
γτ (z)γτ (z−1)
φτ (z)φτ (z−1)

+
γσ(z)γσ(z−1)
φσ(z)φσ(z−1)

+ ρ(z)ρ(z−1). (158)

There are now two improper rational functions on the RHS, which have equal degrees in their
numerators and denominators.

According to Wiener–Kolmogorov theory, the optimal signal-extraction filter for the trend com-
ponent is

βτ (z) =
γτ (z)γτ (z−1)
φτ (z)φτ (z−1)

× φσ(z)φτ (z)φτ (z−1)φσ(z−1)
θ(z)θ(z−1)

(159)

=
γτ (z)γτ (z−1)φσ(z)φσ(z−1)

θ(z)θ(z−1)
.

This has the form of the ratio of the autocovariance generating function of the trend component
to the autocovariance generating function of the process y(t).

Observe that, in the process of forming this filter, the factor φτ (z)φτ (z−1) is cancelled out.
With the consequent removal of the unit-root factor (1− z)p(1− z−1)p from the denominator, the
basis of a stable filter is created which, with the provision of appropriate starting values, can be
applied to nonstationary data. This filter would also serve to extract a differenced version of the
component τ(t) from the differenced data. The filter that serves to extract the seasonal component
is of a similar construction.

These formulations presuppose a doubly-infinite data sequence; and they must be translated
into a form that can be implemented with finite sequences. The various ways of achieving this
have been described in section 5; and, in the TRAMO–SEATS program of Gómez and Maravall
(1996) and of Caporello and Maravall (2004), the contragrade method of Burman (1980) has been
adopted, which entails a unique treatment of the start-up problem.

The alternative method of estimating the parameters of the structural model and of extracting
the unobserved components makes use of the fact that a univariate autoregressive moving-average
model can be expressed as a first-order multivariate Markov model, which constitutes a state-space
representation of the model. This allows the structural parameters to be estimated directly, as
opposed to being inferred indirectly from the parameters of the reduced-form model.

The state-space approach to the structural time-series model was pioneered by Harrison and
Stevens (1971, 1976). An extensive account of the approach has been provided by Harvey (1989).
Other important references are the books of West and Harrison (1997) and Kitagawa and Gersch
(1996). Proietti (2002) has also provided a brief but thorough account. A brief introductory
survey has been provided by West (1997), and an interesting biomedical application has been
demonstrated by West et al. (1999).

The methods may be illustrated by considering the so-called basic structural model, which has
been popularised by Harvey (1989). The model, which lacks a non-seasonal cyclical component,
can be subsumed under the second of the equations of (152).

The trend or levels component τ(t) of this model is described by a stochastic process that
generates a trajectory that is approximately linear within a limited locality. Thus

τ(t) = τ(t − 1) + β(t − 1) + υ(t) or, equivalently, (160)

∇(z)τ(z) = zβ(z) + υ(z),
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where ∇(z) = 1 − z is the difference operator. That is to say, the change in the level of the trend
is compounded from the slope parameter β(t − 1), generated in the previous period, and a small
white-noise disturbance υ(t). The slope parameter follows a random walk. Thus

β(t) = β(t − 1) + ζ(t) or, equivalently, ∇(z)β(z) = ζ(z), (161)

where ζ(t) denotes a white-noise process that is independent of the disturbance process υ(t). By
applying the difference operator to equation (160) and substituting from (161), we find that

∇2(z)τ(z) = ∇(z)zβ(z) + ∇(z)υ(z) (162)
= zζ(z) + ∇(z)υ(z).

The two terms of the RHS can be combined to form a first-order moving-average process, where-
upon the process generating τ(t) can be described by an integrated moving-average IMA(2, 1)
model. Thus

∇2(z)τ(z) = zζ(z) + ∇(z)υ(z) (163)
= (1 − μz)ε(z).

A limiting case arises when the variance of the white-noise process ζ(t) in equation (161) tends
to zero. Then, the slope parameter tends to a constant β, and the process by which the trend is
generated, which has been identified as an IMA(2,1) process, becomes a random walk with drift.

Another limiting case arises when the variance of υ(t) in equation (160) tends to zero. Then,
the overall process generating the trend becomes a second-order random walk, and the resulting
trends are liable to be described as smooth trends. When the variances of ζ(t) and υ(t) are both
zero, then the process τ(t) degenerates to a simple linear time trend.

The seasonal component of the structural time-series model is described by the equation

σ(t) + σ(t − 1) + · · · + σ(t − s + 1) = ω(t) (164)

or, equivalently,

S(z)σ(z) = ω(z),

where S(z) = 1 + z + z2 + · · · + zs−1 is the seasonal summation operator, s is the number of
observation per annum and ω(t) is a white-noise process.

The equation implies that the sum of s consecutive values of this component will be a random
variable distributed about a mean of zero. To understand this construction, we should note that,
if the seasonal pattern were perfectly regular and invariant, then the sum of the consecutive values
would be identically zero. Since the sum is a random variable with a zero mean, some variability
can occur in the seasonal pattern.

By substituting equations (162) and (164) into equation (152), we seen that the structural
model can be represented by the equation

∇2(z)S(z)y(z) = S(z)zζ(z) + ∇(z)S(z)υ(z) + ∇2(z)ω(z) + ∇2(z)Sη(z),

or, equivalently, (165)

∇(z)∇s(z)y(z) = S(z)zζ(z) + ∇s(z)υ(z) + ∇2(z)ω(z) + ∇(z)∇s(z)η(z),

where ζ(t), υ(t), ω(t) and η(t) are mutually independent white-noise processes. Here, the alterna-
tive expression comes from using the identity

∇(z)S(z) = (1 − z)(1 + z + · · · + zs−1) = (1 − zs) = ∇s(z).

We should observe that the RHS or equation (165) corresponds to a moving average of degree
s + 1, which is typically subject to a number of restriction on its parameters. The restrictions
arise from the fact there are only four parameters in the model of (165), which are the white-
noise variances V {ζ(t)}, V {υ(t)}, V {ω(t)} and V {η(t)}, whereas there are s + 1 moving-average
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Figure 9: The plot of 132 monthly observations on the U.S. money supply, beginning in January
1960. A quadratic function has been interpolated through the data.

parameters and a variance parameter in the unrestricted reduced-form of the seasonal ARIMA
model.

The basic structural model can be represented is a state-space form which comprises a transi-
tion equation, which constitutes a first-order vector autoregressive process, and an accompanying
measurement equation. For notational convenience, let s = 4, which corresponds to the case of
quarterly observations. Then, the transition equation, which gathers together equations (160),
(161) and (164), is⎡

⎢⎢⎢⎢⎣
τ(t)
β(t)
σ(t)

σ(t − 1)
σ(t − 2)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

τ(t − 1)
β(t − 1)
σ(t − 1)
σ(t − 2)
σ(t − 3)

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

υ(t)
ζ(t)
ω(t)
0
0

⎤
⎥⎥⎥⎥⎦ . (166)

The observation equation, which corresponds to (152), is

y(t) =
[

1 0 1 0 0
]
⎡
⎢⎢⎢⎢⎣

τ(t)
β(t)
σ(t)

σ(t − 1)
σ(t − 2)

⎤
⎥⎥⎥⎥⎦ + η(t). (167)

The state-space model is amenable to the Kalman filter and the associated smoothing algorithms,
which can be used in estimating the parameters of the model and in extracting estimates of the
unobserved components τ(t), σ(t).

There are various ways of handling, within the context of the Kalman filter, the start-up problem
that is associated with filtering of nonstationary data sequences. These will be touched upon at
the end of the next section.

Example. Figure 9 shows the logarithms of a monthly sequence of 132 observations of the U.S.
money supply, through which a quadratic function has been interpolated. This provides a simple
way of characterising the growth over the period in question.

However, it is doubtful whether such an analytic function can provide an adequate represen-
tation of a trend that is subject to irregular variations; and we prefer to estimate the trend more
flexibly by applying a linear filter to the data. In order to devise an effective filter, it is helpful to
know the extent of the frequency band in which the spectral effects of the trend are located.

It is difficult to discern the spectral structure of the data in the periodogram of the trended
sequence y. This is dominated by the effects of the disjunctions in the periodic extension of the data
that occur where the end of one replication of the data sequence joins the beginning of the next.
In fact, the periodic extension of a segment of a linear trend will generate a sawtooth function,
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Figure 10: The periodogram of the residuals of the logarithmic money-supply data.
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Figure 11: logarithms of 132 monthly observations on the U.S. money supply, beginning in January
1960. A trend, estimated by the Fourier method, has been interpolated through the data.

of which the periodogram will have the form of a rectangular hyperbola, within which any finer
spectral detail will be concealed.

On the other hand, if a d-fold differencing operation is used to reduce the data to stationarity to
produce g = Qy, then one may find that the low-frequency spectral ordinates have been diminished
to such an extent that the structure of the trend has become invisible. The problem will to be
exacerbated when the data contain a strong seasonal component, which may be amplified by the
differencing operation to become the dominant feature of the periodogram.

An effective way of discerning the spectral structure of the data is to examine the periodograms
of the residuals obtained by fitting polynomials of various degrees to the data. The residual
sequence from fitting a polynomial of degree d, can expressed as

r = Q(Q′Q)−1Q′y, (168)

where Q′ is the aforementioned differencing operator. This sequence contains the same information
as the differenced sequence g = Q′y, but its periodogram renders the spectral structure visible over
the entire frequency range.

Figure 10 which shows the periodogram of the residuals from the quadratic detrending of Figure
9. There is a significant spectral mass within the frequency range [0, π/6), of which the upper bound
is the fundamental frequency of the seasonal fluctuations. This mass properly belongs to the trend
and, if the trend had been adequately estimated, it would not be present in the periodogram of
the residuals.

To construct a better estimate of the trend, an ideal lowpass filter, with a sharp cut-off frequency
a little short of π/6, has been applied to the twice differenced data and the filtered sequence has
been reinflated with initial conditions that are supplied by equation (123). The result is the trend
that is shown in Figure 11. The pass band of the ideal lowpass filter has been superimposed upon



D.S.G. Pollock: Signal Extraction and Filtering 37

0

0.25

0.5

0.75

1

0 π/4 π/2 3π/4 π

Figure 12: The gain function of the trend-extraction filter obtained from the STAMP program
(solid line) together with that of the canonical trend-extraction filter (broken line) obtained from
the TRAMO–SEATS program.

the periodogram of Figure 10 as a shaded area.
Figure 12 shows the gains of the trend estimation filters that have been obtained by applying

two of the model-based procedures to the data. The outer envelope is the gain of a trend extraction
filter obtained in the process of using the STAMP program to estimate the components of the data.
The inner envelope represents the gain of the analogous filter from the TRAMO–SEATS program.
The indentations in the gain functions of both filters at the frequencies πj/6; j = 1, . . . , 6 have the
effect of nullifying the seasonal elements and of preventing them from entering the trend.

The two model-based filters differ greatly from the ideal filter. Disregarding the indentations,
one can see how the gain of the filters is reduced only gradually as the frequency value increases.
The trend component extracted by the STAMP filter would contain a substantial proportion of
the non-seasonal high-frequency components that are present in the original data.

In practice, however, the trends that are estimated by the ideal filter and by the two model-
based filters are virtually indistinguishable in the case of the money supply data. The reason
for this is that, after the elimination of the seasonal components, whether it be by nullifying all
elements of frequencies in excess of π/6 or only by eliminating the elements in the vicinities of
the seasonal frequencies of πj/6; j = 1, . . . , 6, there is virtually nothing remaining in the data
but the trend. Therefore, in this case, the potential of the two model-based filters to transmit
high-frequency components can do no harm.

In other cases, it has been observed that the STAMP filter produces a trend estimate that has
a profile which is noticeably rougher than the one produced by the TRAMO–SEATS program—
see Pollock (2002), for example—and this is a testimony to fact that the latter program, which
observes the so-called canonical principle, suppresses the high-frequency noise more emphatically.

11 The Kalman Filter and the Smoothing Algorithm

One of the reasons for setting a structural time-series model in a state-space form is to make
it amenable to the application the Kalman filter, which may be used both for estimating the
parameters of the model and for extracting the unobserved components. To obtain estimates that
take full advantage of all of the sampled data, a smoothing algorithm must also be deployed. These
algorithms are described in the present section.

The state-space model, which underlies the Kalman filter, consists of two equations

yt = Hξt + ηt, Observation Equation (169)

ξt = Φξt−1 + νt, Transition Equation (170)

where yt is the observation on the system and ξt is the state vector. The observation error ηt and
the state disturbance νt are mutually uncorrelated random vectors of zero mean with dispersion
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matrices
D(ηt) = Ω and D(νt) = Ψ. (171)

It is assumed that the matrices H, Φ, Ω and Ψ are known and that an initial estimate x0 is
available for the state vector ξ0 at time t = 0 together with a dispersion matrix D(ξ0) = P0. This
set of initial information is denoted by I0. (In a more general formulation, the parameter matrices
would be allowed to vary with time, but here they are constant.) The information available at
time t is It = {yt, . . . , y1, I0} = {yt, It−1}.

The Kalman-filter equations determine the state-vector estimates xt|t−1 = E(ξt|It−1) and xt =
E(ξt|It) and their associated dispersion matrices Pt|t−1 and Pt from the values xt−1, Pt−1 of the
previous period. From xt|t−1, the prediction ŷt|t−1 = Hxt|t−1 is formed which has a dispersion
matrix Ft. A summary of these equations is as follows:

xt|t−1 = Φxt−1, State Prediction (172)
Pt|t−1 = ΦPt−1Φ′ + Ψ, Prediction Dispersion (173)

et = yt − Hxt|t−1, Prediction Error (174)
Ft = HPt|t−1H

′ + Ω, Error Dispersion (175)

Kt = Pt|t−1H
′F−1

t , Kalman Gain (176)
xt = xt|t−1 + Ktet, State Estimate (177)
Pt = (I − KtH)Pt|t−1. Estimate Dispersion (178)

The equations of the Kalman filter may be derived using the ordinary algebra of conditional
expectations which indicates that, if x, y are jointly distributed variables which bear the linear
relationship E(y|x) = α + B{x − E(x)}, then

E(y|x) = E(y) + C(y, x)D−1(x)
{
x − E(x)

}
, (179)

D(y|x) = D(y) − C(y, x)D−1(x)C(x, y), (180)
E

{
E(y|x)

}
= E(y), (181)

D
{
E(y|x)

}
= C(y, x)D−1(x)C(x, y), (182)

D(y) = D(y|x) + D
{
E(y|x)

}
, (183)

C
{
y − E(y|x), x

}
= 0. (184)

Of the equations listed under (172)—(178), those under (174) and (176) are merely definitions.
To demonstrate equation (172), we use (181) to show that

E(ξt|It−1) = E
{
E(ξt|ξt−1)|It−1

}
(185)

= E
{
Φξt−1|It−1

}
= Φxt−1.

We use (183) to demonstrate equation (173):

D(ξt|It−1) = D(ξt|ξt−1) + D
{
E(ξt|ξt−1)|It−1

}
(186)

= Ψ + D
{
Φξt−1|It−1

}
= Ψ + ΦPt−1Φ′.

To obtain equation (175), we substitute (169) into (174) to give et = H(ξt −xt|t−1)+ ηt. Then,
in view of the statistical independence of the terms on the RHS, we have

D(et) = D
{
H(ξt − xt|t−1)

}
+ D(ηt) (187)

= HPt|t−1H
′ + Ω = D(yt|It−1).

To demonstrate the updating equation (177), we begin by noting that

C(ξt, yt|It−1) = E
{
(ξt − xt|t−1)y′

t

}
(188)

= E
{
(ξt − xt|t−1)(Hξt + ηt)′

}
= Pt|t−1H

′.
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It follows from (179) that

E(ξt|It) = E(ξt|It−1) + C(ξt, yt|It−1)D−1(yt|It−1)
{
yt − E(yt|It−1)

}
(189)

= xt|t−1 + Pt|t−1H
′
tF

−1
t et.

The dispersion matrix under (178) for the updated estimate is obtained via equation (180):

D(ξt|It) = D(ξt|It−1) − C(ξt, yt|It−1)D−1(yt|It−1)C(yt, ξt|It−1) (190)
= Pt|t−1 − Pt|t−1H

′
tF

−1
t HtPt|t−1.

The set of information It = {yt, . . . , y1, It}, on which the Kalman filter estimates are based, can
be represented, equivalently, by replacing the sequence {yt, . . . , y1} of observations by the sequence
{et, . . . , e1} of the prediction errors, which are mutually uncorrelated.

The equivalence can be demonstrated by showing that, given the initial information of I0,
there is a one-to-one correspondence between the two sequences, which depends only on the known
parameters of equations (169), (170) and (171). The result is intuitively intelligible, for, at each in-
stant t, the prediction error et contains only the additional information of yt that is not predictable
from the information in the set It−1; which is to say that It = {et, It−1}.

The prediction errors provide a useful formulation of the likelihood function from which the
parameters that are assumed to be know to the Kalman filter can be estimated from the data.
Under the assumption that the disturbances are normally distributed, the likelihood function is
given by

lnL = −kT

2
ln 2π − 1

2

T∑
t=1

ln |Ft| −
1
2

T∑
t=1

e′tF
−1
t et. (191)

This form was proposed originally by Schweppe (1965). It tractability, which is a partial compen-
sation for the complexity of the Kalman filter, has contributed significantly to the popularity of
the state-space formulation of the structural time-series models.

There are various ways in which the value of the initial condition in I0 = {ξ0, P0} may be
obtained. If the processes are stationary, then the eigenvalues of the transition matrix Φ must lie
within unit circle, which implies that lim(n → ∞)Φn = 0. Then, there is E(ξ0) = x0 = 0 and
D(ξ0) = P0 = ΦP0Φ′ + Ψ; and the latter equation may be solved by analytic or iterative means
for the value of P0.

In the nonstationary case, the initial conditions require to be determined in the light of the
data. To allow the information of the data rapidly to assert itself, one may set P0 = λI, where
λ is given a large value. This will associate a large dispersion to the initial state estimate x0 to
signify a lack of confidence in its value, which will allow the estimate to be enhanced rapidly by
the information of the data points. Using the terminology of Bayesian estimation, this recourse
may be described as the method of the diffuse prior.

Data-dependent methods for initialising the Kalman filter of a more sophisticated nature, which
make amends for, or which circumvent, the arbitrary choices of x0 and P0, have been proposed
by Ansley and Kohn (1982) and by de Jong (1991), amongst others. These methods have been
surveyed by Pollock (2003). Another account of the method of Ansley and Kohn, which is more
accessible than the original one, has also been provided by Durbin and Koopman (2001).

The method of the diffuse prior bequeaths some pseudo information to the Kalman filter, in
the form of arbitrary initial conditions, which remains in the system indefinitely, albeit that its
significance is reduced as the sample information is accumulated. The technique of Ansley and
Kohn is designed to remove the pseudo information at the earliest opportunity, which is when
there is enough sample information to support the estimation of the state vector.

In their exposition of the technique, Ansley and Kohn described a transformation of the likeli-
hood function that would eliminate its dependence on the initial conditions. This transformation
was a purely theoretical device without any practical implementation. However, it is notable that
the method of handling the start-up problem that has been expounded in section 8, which em-
ploys a differencing operation to reduce the data sequence to stationarity, has exactly the effect of
eliminating the dependence upon initial conditions.
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11.1 The Smoothing Algorithms

The Kalman filter generates an estimate xt = E(ξt|It) of the current state of the system using
information from the past and the present. To derive a more efficient estimate, we should take
account of information that arises subsequently up to the end of the sample. Such an estimate,
which may be denoted by xt|T = E(ξt|IT ), is described as a fixed-interval estimate; and the various
algorithms that provide the estimate are described as a fixed-interval smoothers.

It is laborious to derive the smoothing algorithms, of which there exist a fair variety. The matter
is treated at length in the survey article of Merkus, Pollock and de Vos (1993) and in the monograph
of Weinert (2001). Econometricians and others have derived a collection of algorithms which are, in
some respects, more efficient in computation than the classical fixed-interval smoothing algorithm
that is due to Rauch (1963), of which a derivation can be found in Anderson and Moore (1979),
amongst other sources. A variant of the classical algorithm has been employed by Young et al.
(2004) in the CAPTAIN MatLab toolbox, which provides facilities for estimating structural time-
series models.

The classical algorithm may be derived via a sleight of hand. Consider enhancing the estimate
xt = E(ξt|It) in the light of the information afforded by an exact knowledge of the subsequent
state vector ξt+1. The information would be conveyed by

ht+1 = ξt+1 − E(ξt+1|It), (192)

which would enable us to find

E(ξt|It, ht+1) = E(ξt|It) + C(ξt, ht+1|It)D−1(ht+1|It)ht+1. (193)

Here there are

C(ξt, ht+1|It) = E{ξt(ξt − xt)′Φ′ + ξtν
′
t

∣∣It} = PtΦ′ and (194)

D(ht+1|It) = Pt+1|t.

It follows that
E(ξt|It, ht+1) = E(ξt|It) + PtΦ′P−1

t+1|t

{
ξt+1 − E(ξt+1|It)

}
. (195)

Of course, the value of ξt+1 in the RHS of this equation is not observable. However, if we take the
expectation of the equation conditional upon the available information of the set IT , then ξt+1 is
replaced by E(ξt+1|IT ) and we get a formula that can be rendered as

xt|T = xt + PtΦ′P−1
t+1|t{xt+1|T − xt+1|t}. (196)

The dispersion of the estimate is given by

Pt|T = Pt − PtΦ′P−1
t+1|t{Pt+1|t − Pt+1|T }P−1

t+1|tΦPt. (197)

This derivation was published by Ansley and Kohn (1982). It highlights the notion that the
information that is used in enhancing the estimate of ξt is contained entirely within the smoothed
estimate of ξt+1.

The smoothing algorithm runs backwards through the sequence of estimates generated by the
Kalman filter, using a first-order feedback in respect of the smoothed estimates. The estimate
xt = E(ξt|It) is enhanced in the light of the “prediction error”xt+1|T −xt+1|t, which is the difference
between the smoothed and the unsmoothed estimates of the state vector ξt+1.

In circumstances where the factor PtΦ′P−1
t+1|t can be represented by a constant matrix, the

classical algorithm is efficient and easy to implement. This would be the case if there were a
constant transition matrix Φ and if the filter gain Kt had converged to a constant. In all other
circumstances, where it is required recompute the factor at each iteration of the index t, the
algorithm is liable to cost time and to invite numerical inaccuracies. The problem, which lies with
the inversion of Pt+1|t, can be avoided at the expense of generating a supplementary sequence to
accompany the smoothing process.



D.S.G. Pollock: Signal Extraction and Filtering 41

11.2 Equivalent and Alternative Procedures

The derivations of the Kalman filter and the fixed-interval smoothing algorithm are both pred-
icated upon the minimum-mean-square-error estimation criterion. Therefore, when the filter is
joined with the smoothing algorithm, the resulting estimates of the data components should sat-
isfy this criterion. However, its fulfilment will also depend upon an appropriate choice of the initial
conditions for the filter. For this, one may use the method of Ansley and Kohn (1985).

The same criterion of minimum-mean-square-error estimation underlies the derivation of the
finite-sample Wiener–Kolmogorov filter that has been presented in sections 7 and 8. Therefore,
when they are applied to a common model, the Wiener–Kolmogorov filter and the combined
Kalman filter and smoother are expected to deliver the same estimates.

The handling of the initial-value problem does appear to be simpler in the Wiener–Kolmogorov
method than in the method of Ansley and Kohn. However, the finite-sample Wiener–Kolmogorov
method of section 8 is an instance of the transformation approach that Ansley and Kohn have
shown to be equivalent to their method.

It should be noted that the minimum-mean-square-error estimates can also be obtained using a
time-invariant version of the Wiener–Kolmogorov filter, provided that the finite data sequence can
be extended by estimates of the presample and post-sample elements. However, this requires that
the filter should relate to a well-specified ARMA or ARIMA model that is capable of generating
the requisite forecasts and backcasts. If this is the case, then a cogent procedure for generating
the extra-sample elements is the one that has been been described by Burman (1980) and which
is incorporated in the TRAMO–SEATS program.

The upshot is that several routes lead to the same ends, any of which may be taken. Never-
theless, there have been some heated debates amongst econometrics who are the proponents of
alternative approaches. However, the only significant issue is the practical relevance of the alter-
native models that are intended to represent the processes that underlie the data or to provide
heuristic devices for generating the relevant filters.

An agnostic stance has been adopted in this chapter; and no firm pronouncements have been
made concerning the nature of economic realities. Nevertheless, it has been proposed that the
concept of a band-limited process, which had been largely overlooked in the past, is particularly
relevant to this area of econometric analysis.

This concept encourages consideration of the Fourier methods of filtering of section 9, which are
capable of separating components of the data that lie in closely adjacent frequency bands, as is the
case in Figure 10, where the fundamental seasonal component abuts the low-frequency structure
of the trend-cycle component. Such methods have been explored in greater detail in a paper of
Pollock (2008); and they have been implemented in a program that is available from a website at
the address

http://www.le.ac.uk/users/dsgp1/
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