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The income cycles that have been experienced by six OECD countries over the past 24 years are

analysed. The amplitude of the cycles relative to the level of aggregate income varies amongst the

countries, as does the degree of the damping that affects the cycles. The study aims to reveal both of
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degree of damping and the length of the cycles. In order to estimate the parameters of the cycles, the

data have been subjected to the processes of detrending, anti-alias filtering and subsampling.
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1 Introduction

This paper compares the economic cycles that have beset a group of six
OECD countries, which have experienced similar socio-economic conditions
over the past quarter century. The shocks and the disturbances that have
impinged on their economies have had differing intensities; and the effects
have been mitigated by a wide variety of fiscal and monetary policies. The
aim is to determine the extent to which the consequences of such differences
are perceptible in the aggregate indices of economic activity.

For the purposes of this assessment, we shall employ a stylised model of
the economic cycle, for which we shall attempt to estimate the parameters
from the data of each country. These parameters will provide the basis for
our comparisons. We shall employ some simple methods of estimation, but
we shall need to process the data in novel ways in order to isolate the features
that are of interest.

Within the framework of our analysis, there can be two explanations for
the strength of an economic cycle. The first explanation lies in the power
of the disturbances that are the driving force of the cycle. The second ex-
planation lies in the ability of the economy to dissipate the energy of these
disturbances. This would be reflected in the rate of convergence to the steady
state of an economy that was somehow relieved of disturbances, but it can
also be estimated from the behaviour of an economy experiencing distur-
bances, on the assumption that they constitute white noise.

The frictional effects of the tax system that are described as fiscal drag
will serve to dissipate the energy of the disturbances. An overreactive regime
of economic regulation, acting like a stiff spring in a mechanical system,
might have the opposite effect of maintaining this energy within the economic
system. For example, it was the contention of Dow (1964), in a monograph
that was highly influential at the time, that, in the early post-war years, such
a regime had increased the frequency and the severity of the fluctuations in
the British economy.

The countries that we shall examine have experienced high levels of eco-
nomic growth throughout the period in question. The economic recessions
that have occurred have been characterised more often by diminutions in the
rates of growth than by absolute reductions in the levels of output. In other
words, the economic cycles have been carried on the backs of rising trends.
The problem of separating the trends from the cycles is a difficult one that
has generated much debate, and we feel bound to offer our own opinions.

Some of the distinctions that have arisen in the course of this debate,
such as the distinction between deterministic and stochastic trends, may have
been drawn too firmly. (For discussions of these issues, see King et al. 1991,
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Nelson and Plosser 1982, Pagan 1997 and Perron 1988, 1989.) In practice,
the data cannot be relied upon to distinguish unequivocally between such
stylised models as the polynomial trend and the unit-root stochastic trend,
when both are buried in noise. (The means of discriminating between the
two models have been discussed recently by Andreou and Spanos 2003 and
by Marriott, Naylor and Tremayne 2003.)

It may also be true that our own epigram concerning the determinants
of the economic cycle, which is based on a mechanical analogy that was
adopted by the pioneering econometrician Frisch (1933, 1965), is drawn too
simply and that the underlying realities are far more complex than we shall
be proposing for the sake of argument. Nevertheless, our model does take us
into realms that have not been explored fully by economists.

2 A Schematic Model of the Economic Cycle

2.1 The structural time-series model

In proposing simple macroeconomic models, we are liable to assume that
the relative proportions of the economic aggregates are maintained, approxi-
mately, despite variations in the levels. Examples are provided by the ratios
of consumption and investment to gross national product (GNP), of which
the underlying constancy is frequently postulated. It is reasonable to assume
that, making allowance for their stochastic nature, the relative amplitude of
the economic fluctuations is also maintained throughout the period spanned
by the data.

A schematic model of a macroeconomic index might, therefore, set

Y (t) = Ξ(t)B(t) with B(t) = 1 +
∑
j

σj cos(ωjt + θj), (1)

where Y (t) stands for an aggregate economic index, such as GNP, and where
Ξ(t) is its underlying trend. Modulating this trend is the factor B(t), which
comprises a sum of sinusoids. The jth sinusoid has an amplitude of σj, a
phase angle of θj radians and a period of τj = 2π/ωj, where ωj is an angular
velocity, or frequency, measured in radians per period.

For statistical purposes, we might amend this model by replacing B(t) by
the factor 1 + β(t), where β(t) is generated by a linear stochastic process of
an autoregressive (AR) or autoregressive moving-average (ARMA) variety.
Over a finite period, the output of such a process can also be expressed as a
sum of sinusoids, the parameters of which are assumed to have been drawn
from statistical distributions.
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However, there are some problems with this formulation. First, as we
have defined it, there is no limit on the range of the stochastic process β(t),
whereas it is necessary, at least, that its negative deviations should be limited
in order to prevent Y (t) from becoming negative. Secondly, it is likely that
we should wish to include an additional stochastic factor that is unrelated to
the cycles.

The first difficulty is answered by setting

B(t) = eβ(t) =

(
1 + β(t) +

{β(t)}2

2!
+ · · ·

)
, (2)

where β(t) follows a linear stochastic process of variance σ2. Then, Ξ(t)B(t)
can be multiplied by the additional stochastic factor E(t), bounded in the
same manner as B(t), and the amended model becomes

Y (t) = Ξ(t)B(t)E(t) or y(t) = ξ(t) + β(t) + ε(t), (3)

where y(t) = ln Y (t), ξ(t) = ln Ξ(t), β(t) = ln B(t) and ε(t) = ln E(t) are
the logarithms of the factors. The equation in logarithms corresponds to a
so-called structural time series model or unobserved components model of
the sort that has been treated extensively by Harvey (1989).

It transpires that the economic cycle can be represented, within the loga-
rithmic data, by a second-order autoregressive AR(2) process. The equation
of an AR(2) process can be compared with a second-order differential equa-
tion, which is associated with numerous physical processes that provide good
analogies for the cycle. Accessible accounts of linear differential equations
and of their application to physical systems have been provided by Gabel
and Roberts (1987), Mayne (1984) and Thompson (1983).

2.2 Differential and Difference Equations

The simplest physical systems that are capable of generating cycles are com-
monly represented by second-order differential equations of the form

d2y(t)

dt2
+ c

dy(t)

dt
+ hy(t) = f(t), (4)

where f(t) is the forcing function that drives the system. With an arbitrary
forcing function, it may be difficult to discern whether or not the system itself
is contributing to the apparent cyclicality of the output. If it were possible
to do so, we might settle the matter by turning off the forcing function,
by setting f(t) = 0 for t ≥ 0, in order to observe the trajectory of the
undisturbed system.
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There are two possibilities. First, the system might tend to its state of
rest by following a combination of declining exponential trajectories:

y(t) = σ1e
γ1t + σ2e

γ2t. (5)

The second possibility involves overshooting the position of rest in a sequence
of damped sinusoidal fluctuations of declining amplitude. In that case, the
trajectory would be described by the equation

y(t) = σeγt cos(ωt − θ). (6)

Here, ω is the angular velocity or the frequency of the homogenous unforced
system, whereas γ < 0 indicates its exponential rate of convergence to the
steady state. These are the system’s parameters. The remaining parameters
are determined by the initial conditions. They are σ, which determines the
amplitude at time t = 0, and θ, which indicates the phase of the sinusoid at
that time.

The question of which of these two modes of behaviour will prevail can
be determined by finding the roots of the characteristic polynomial. For
cyclical behaviour to arise, the roots must be complex-valued and of the
form κ, κ∗ = γ ± iω. Then the equation becomes

0 = s2 + cs + h = (s − κ)(s − κ∗) (7)

= s2 − 2γ + (γ2 + ω2),

from which

(i) c = −2γ, (ii) h = γ2 + ω2, (iii) ω = h − c2/4. (8)

For the system to devolve towards its position of rest, the roots must lie in
the left half of the complex plane. However, an immediate desideratum of
damped complex behaviour is the relative values of the parameters c and h.
A sinusoidal trajectory of the sort depicted by equation (6) will arise if and
only if c2 < 4h.

The parameter c, which is associated with the first derivative dy(t)/dt, i.e.
the velocity, determines the resistance to the motion of the system, which
increases in direct proportion to the velocity. It may be described as the
friction parameter. The parameter h governs the forces that drive the system
towards its position of rest; and these forces increase in direct proportion
to the system’s distance from that position. We shall call h the stiffness
parameter, which is an allusion to its role in a model of a mechanical system.

In a model of a national economy, the parameter c would correspond to
the resistance that arises from the inertia of the economic agents, their resis-
tance to change and the cost of the making whatever adjustments are called
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for by changing economic circumstances. For example, if large compensatory
payments are associated with the shedding of labour from commercial enter-
prises, then this will be reflected in a heightened value of c.

The parameter h corresponds to the strength of the forces that drive
the economy towards its equilibrium position. It is liable, in part, to reflect
the costs of being out of equilibrium. For example, an enterprise that is
overproducing relative to the level of demand will incur costs that should
induce it to reduce its output.

The parameter h will also reflect the alacrity with which the government
attempts to regulate the economy via fiscal and monetary policies in order to
bring it back on course. Overactive regulatory policies are liable to lead to
over corrections, which may induce cyclical behaviour in the level of economic
activity.

Information on the behaviour of the system can be gathered by a process
of regular sampling at equally-spaced points in time, indexed by t ∈ I =
{0,±1,±2, . . .}. The Nyquist–Shannon sampling theorem indicates that, if
the sampling is at a rate sufficient to generate two observations in the time
that it takes for the unforced system to complete a cycle, then its continuous
trajectory can be inferred from the sampled data. If, on the contrary, the
cycle is completed in less than the time spanned by two sampling intervals,
then a problem of aliasing will arise whereby the cycle will be mistaken for
one of a lesser frequency.

To demonstrate this outcome, consider the case where the process y(t)
contains a component that is a pure cosine wave of unit amplitude and zero
phase, whose frequency ω lies in the interval π < ω < 2π. Let ω∗ = 2π − ω.
Then,

cos(ωt) = cos {(2π − ω∗)t} (9)

= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)

= cos(ω∗t);

which indicates that ω and ω∗ are observationally indistinguishable. Here,
ω∗ < π, which will be mistaken for the true frequency, is described as the
alias of ω > π.

Provided that ω < π, there will be a straightforward correspondence
between the homogeneous differential equation, obtained by setting f(t) = 0
in (1) and a discrete-time difference equation in the form of

0 = y(t) + α1y(t − 1) + α2y(t − 2) (10)

= y(t) − 2ρ cos(ω)y(t − 1) + ρ2y(t − 2),
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On the assumption that (6) describes the solution of the differential equation,
which is to say that the system is generating complex dynamics, the solution
of the difference equation is given by

y(t) = σρt cos(ωt − θ). (11)

The solutions must agree at the points in discrete time at which the difference
equation is defined. The comparison of (6) and (11) indicates that they agree
when

eγt = ρt, which is when γ = ln ρ. (12)

It should be observed that the value of ρ depends on the rate of sampling.
This circumstance has been concealed by the fact that, for simplicity, the
samping interval has been taken as the unit of time for both the differential
and the difference equation.

2.3 Aliasing, Interference and Inference

The ease and the accuracy with which the parameters of the differential or the
difference equation can be estimated depends upon the nature of the forcing
function that drives the system. This function is unobservable, and we are
bound to make the assumption that it is a species of white-noise process.

The exogenous disturbances that cross the boundary of the system that
represents the national economy might not follow a white-noise process. Nev-
ertheless, we can postulate that they have their origin in a primum mobile
that is white noise. We can also postulate that the transfer function that
links this primum mobile to the boundary-crossing disturbances is linear and
time invariant. In that case, it can be regarded as a property of the economy,
which will be subsumed in the autoregressive process with which we intend
to characterise the leading index of the economy.

For the successful analysis of the system, it is necessary that its inherent
frequency ω should not exceed the so-called Nyquist frequency of π radians
per period of observation, which corresponds to the highest frequency that
is detectable in regularly sampled data. However, the analysis would remain
viable even if the frequencies within the forcing function were to exceed this
level. In that case, the data generated by a 2nd-order stochastic differential
equation should be represented in discrete time by an ARMA(2, 1) model,
in which the moving-average parameter is a function of the autoregressive
parameters.

This result has been established in two separate but related contexts.
Telser (1967) has shown that, if the discrete data generated by an AR(p)
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Figure 1: The sinc function ψ(t) = sin(πt)/πt.

process are subsampled, or ‘skip sampled’ in his terminology, then it is ap-
propriate to describe them by an ARMA(p, p − 1) model. Here, we may
imagine that the original AR(p) process stands for a valid discrete-time rep-
resentation of a stochastic differential equation in which the forcing function
is a white-noise process bounded by the Nyquist frequency associated with
the original sampling rate, and that the period corresponding to the inherent
frequency of the system is no less than the time covered by two intervals of
the skip sampling.

The result has also emerged from the analysis of stochastic differential
equations powered by a stream of infinitesimal impulses that constitute the
increments of a Wiener process. Thus, by following the arguments of Bartlett
(1946), Phadke and Wu (1974) have demonstrated that a stochastic differ-
ential equation of order p, powered in this manner, can be represented in
discrete time by an ARMA(p, p − 1) process. Pandit and Wu (1975) have
considered, in the same manner, the discrete representation of a second-order
differential equation.

An ordinary discrete-time white-noise process that drives an autoregres-
sive process is assumed to have a uniform spectral density function extending
over the interval [0, π]. If the forcing function of a continuous-time band-
limited white-noise process is likewise supported on the Nyquist interval
[0, π], then there is a one-to-one correspondence between the parameters
of a pth-order differential equation and those of an AR(p) equation. Also,
the continuous-time trajectory of the data process can be recovered directly
from the sampled ordinates. This can be achieved by using the sinc function
kernel as the means of interpolating values between the sampled ordinates.
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The generic sinc function is defined by

ψ(t − k) =
sin{π(t − k)}

π(t − k)
=

1

2π

∫ π

−π
eiω(t−k)dω, (13)

where k ∈ I = {0,±1,±2, . . .}, and it is illustrated in Figure 1 for the
case where k = 0. The figure also shows the sampled ordinates of the func-
tion, which constitutes an impulse sequence. The sinc function is just the
Fourier transform of a frequency-domain rectangle on the interval [−π, π].
The continuous function interpolated through the ordinates of the sequence
y(t) = {yt, t = 0,±1,±2, . . .} is given by

y(t) =
∑
k

ykψ(t − k); t ∈ R, (14)

where R denotes the real line.
The function ψ(t) with t ∈ I is nothing but the unit impulse sequence.

Therefore, the set of all sequences {ψ(t − k); t, k ∈ I}, obtained by integer
displacements k of ψ(t), constitutes the ordinary orthogonal Cartesian basis
in the time domain for the set of all real-valued discrete-time sequences.

When t ∈ R is a real-valued index of continuous time, the set of displaced
sinc functions {ψ(t − k); t ∈ R, k ∈ I} constitute a basis for the set of con-
tinuous functions of which the frequency content is bounded by the Nyquist
value of π radians per unit time interval. In common with their discretely
sampled counterparts, the sequence of continuous sinc functions at integer
displacements constitutes an orthogonal basis.

The sinc function ψ(t − k) has a value of unity at t = k and a value of
zero on all other integer points. Thus, instead of distributing the value of
the data point yk over other adjacent integers, the sinc function interpolator
leaves their values intact. However, it does attribute values to the non-integer
points that lie in the interstices, thereby producing a continuous function
from discrete data.

Whereas the sample data can be recovered precisely by sampling the
continuous function at the integer time points, some equivalent information,
described by the same discrete-time process, would be obtained by sampling
the continuous function at the points {τ = t + θ; t = 0,±1,±2, . . .} where
θ ∈ (0, 1) denotes an arbitrary phase shift.

It is also the case that

y(t) =
∫

y(k)ψ(t − k)dk, (15)

and, for this reason, the sinc function can be described as a reproducing
kernel. The concept was defined by Aronszajn (1950) and it has been em-
ployed in a statistical context by Wahba (1999), Pearce and Wand (2006)
and Dagum and Bianconcini (2008), amongst others.
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Various untoward circumstances arise when there is a mismatch between
the frequency content of the discrete-time process and that of the sinc func-
tion. Consider a discrete-time process that is band-limited to a subinterval
[0, α] of [0, π]. A continuous function constituted from the ordinates of the
process according to the formula of (14) would comprise frequencies from
the entire Nyquist range; and, in that respect, it would misrepresent the
discrete-time process.

The sinc function that is appropriate to the band-limited process is

ψα(t) =
sin{α(t)}

πt
=

1

2π

∫ α

−α
eiωtdω (16)

However, the continuous function q(t) =
∑

k ykψα(t − k) with t ∈ R would
no longer interpolate the ordinates of the sample sequence y(t) = {yt; t =
0,±1,±2 . . .}, since the displaced functions ψα(t− k) take nonzero values at
the integer time points. The phenomenon can be described as the mutual
interference of the sinc functions. Moreover, it will be observed that the se-
quence of functions {ψα(t − k); t, k ∈ I}, obtained by integer displacements
k of ψα(t), no longer constitutes the orthogonal basis. To generate an or-
thonormal basis, the functions must be separated from each other by the
wider time intervals of π/α > 1.

In order to represent a band-limited process successfully by an estimated
difference or differential equation, it is necessary to transform the process so
that it is supported on the entire Nyquist frequency interval. In general, this
will require the synthesis of a corresponding continuous-time band-limited
process, which must then be resampled at the appropriate rate, with obser-
vations at time intervals of q = π/α. In some favourable circumstances, this
time interval has an integer value. In that case, the original band-limited
data can be resampled simply by taking one in every q of the original obser-
vations.

Such is the circumstance that affects the quarterly data of the six OECD
countries. It has been found that, after the elimination of the seasonal fluc-
tuations, virtually nothing remains in the data apart from the low-frequency
trend–cycle component that is confined to the frequency interval [0, π/8].
This spectral structure, which is the object of our investigation, can be ex-
panded to cover the frequency interval [0, π] by taking one in eight observa-
tions from data that have been purged of seasonal fluctuations and of minor
elements of noise.
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3 The Trend Component

3.1 Polynomial detrending

We shall now explore two of the alternative methods that are available for
extracting the trend from the data. What remains will contain the economic
cycle as well some other motions, such as the seasonal fluctuations, that will
need to be removed and discarded.

In seeking to define the trend, we need not regard it as a wholly objec-
tive entity. Its definition can be adapted to the analytic purposes of the
study as well as to the circumstances of the economy over the period in ques-
tion. In our case, a quadratic trend within the logarithmic data provides a
firm benchmark against which the cyclical activities of the economy can be
measured. Whereas a linear trend in the logarithms would signify constant
exponential growth, a quadratic trend can accommodate a rate of growth
that is changing over time. We shall also investigate the effects of using
the more flexible filtering method of Hodrick and Prescott (1980, 1997) for
generating the trend. The method is also attributable to Leser (1961).

We begin by considering the matrix versions of the difference operator
and its inverse, which is the cumulation operator. These will be useful in
portraying both the method of polynomial regression and the method of
Hodrick and Prescott. Indeed, our purpose is to depict the linear trend as a
limiting case of the Hodrick–Prescott trend.

Consider, therefore, the identity matrix of order T defined by

IT = [e0, e1, . . . , eT−1], (17)

where ej represents a column vector that contains a single unit preceded by
j zeros and followed by T − j − 1 zeros. Then, the finite-sample lag operator
is the matrix

LT = [e1, . . . , eT−1, 0], (18)

which has units on the first subdiagonal and zeros elsewhere. This is obtained
from the identity matrix by deleting the leading column and by appending a
column of zeros to the end of the array.

The matrix that takes the d-th difference of a vector of order T is given
by

∇d
T = (I − LT )d. (19)

The matrix may be partitioned such that ∇d
T = [Q∗, Q]′, where Q′

∗ has d
rows. The inverse matrix is partitioned conformably to give ∇−d

T = [S∗, S].
We may observe that[

S∗ S
] [

Q′
∗

Q′

]
= S∗Q

′
∗ + SQ′ = IT , (20)
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and that [
Q′

∗
Q′

] [
S∗ S

]
=

[
Q′

∗S∗ Q′
∗S

Q′S∗ Q′S

]
=

[
Id 0
0 IT−d

]
. (21)

The matrix ∇−d
T = [S∗, S] is a lower-triangular Toeplitz matrix, which is

characterised completely by its leading column. The elements of that column
are the ordinates of a polynomial of degree d−1, of which the argument is the
row index t = 0, 1, . . . , T − 1. Moreover, the leading d columns of the matrix
∇−d

T , which constitute the submatrix S∗, provide a basis for all polynomials
of degree d − 1 that are defined on the integer points t = 0, 1, . . . , T − 1.

The ordinates of a polynomial of degree d − 1 defined over the integers
t = 0, 1, . . . , T − 1 are given by

p = S∗r∗, where r∗ = Q′
∗p. (22)

Since the polynomial is fully determined by the elements of the starting-value
vector r∗, fitting it to the data in the vector y = [y0, . . . , yT−1]

′ according to
the least-squares criterion is a matter of minimising

(y − p)′(y − p) = (y − S∗r∗)
′(y − S∗r∗) (23)

with respect to r∗. The resulting values are

r∗ = (S ′
∗S∗)

−1S ′
∗y and p = S∗(S

′
∗S∗)

−1S ′
∗y. (24)

For an alternative expression, we may use the identity

S∗(S
′
∗S∗)

−1S ′
∗ = I − Q(Q′Q)−1Q′, (25)

which follows from the fact that Q and S∗ are complementary matrices such
that Q′S∗ = 0 and Rank[Q, S∗] = T .

Using (25) in (24) gives the following expression for the vector of polyno-
mial ordinates:

p = y − Q(Q′Q)−1Q′y. (26)

3.2 The spectral structure of the data

Figure 2 shows the quarterly sequence of the logarithms of aggregate income
in the U.K. for the period 1964 to 2003, through which a quadratic trend has
been interpolated by a weighted least-squares regression. The weights, which
are increasing towards the beginning and the end of the sample, have the
effect of ensuring that, in these vicinities at least, the trend adheres closely
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to the data. This is so as to avoid any disjunctions in the periodic extension
of the residual sequence at the points where the end of one replication of the
sample joins the beginning of the next. The quadratic trend is virtually a
linear trend. Figure 3 shows the periodogram of the residuals, which are the
deviations of the sequence from this trend.

The spectral signature of the low-frequency cycles that surround the trend
is clearly represented in the periodogram. It occupies a range of frequencies
extending from zero to π/8 radians. Centred on the frequencies of π/2 and
π are the spikes that are the spectral signature of the seasonal variations
that affect the income sequence. The remainder of the periodogram may be
described as dead space punctuated by small elements of noise.

The periodogram of the original trended data is of little use in discerning
the low-frequency structure. The latter is concealed within the slew of spec-
tral power that is attributable to the disjunctions that occur in the periodic
extension of the data.

It is also the case that none of the low-frequency spectral structure will
be evident in the periodograms of either the first or the second differences
of the data. The gain factor of the second-differencing operator at π/10, for
example, is 0.00958, which means that the low-frequency ordinates of the
periodogram are so severely attenuated by the differencing operation as to
become invisible.

It is evident from equation (26) that the residuals from fitting a polyno-
mial of degree d− 1, which are found in the vector y− p, contain exactly the
same information as the differences of order d within the vector Q′y. Nev-
ertheless, they serve to reveal the spectral structure over the entire range of
frequencies. It should be emphasised that the use of polynomial residuals as
a means of revealing the spectral structure does not imply any decision to
model the trend via a polynomial function.

3.3 The Hodrick–Prescott filter

The second method of trend extraction entails the notion of a stochastic
trend. This represents the cumulative effects of stochastic elements that
impart an upward drift to the economy. The usual statistical model of such
a trend is a second-order, or integrated, random walk, which may be subject
to drift. A common device for extracting such trends is the Hodrick–Prescott
(1980, 1997) filter.

The Hodrick–Prescott (H–P) filter may be derived in reference to an
equation

y(t) = ξ(t) + η(t), (27)
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Figure 2: The quarterly sequence of the logarithms of income in the U.K.
for the years 1964 to 2003, together with a quadratic trend interpolated by
a weighted least-squares regression.
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Figure 3: The periodogram of the residuals obtained by fitting a quadratic
trend through the logarithmic sequence of U.K. income. A band, with a
lower bound of π/16 radians and an upper bound of π/3 radians, is masking
the periodogram.
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Figure 4: The effect of applying the Hodrick–Prescott filter to a random
walk. The smoothing parameter is λ = 100 and the variance of the white-
noise process driving the random walk is σ2

ε = 0.25
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in which the doubly-infinite data sequence y(t) is expressed as the sum of a
trend component ξ(t), which follows a second-order random walk, and a resid-
ual component η(t), which is white noise. (We shall use the corresponding
roman letters x(t) and h(t) to denote the estimates of ξ(t) and η(t), respec-
tively.) The random walk is described by the equation (1 − L)2ξ(t) = ζ(t),
where ζ(t) is a white-noise process that is independent of η(t), and where L
is the lag operator, such that Ly(t) = y(t − 1). Therefore, the differenced
data sequence

(1 − L)2y(t) = (1 − L)2ξ(t) + (1 − L)2η(t) (28)

= ζ(t) + κ(t)

constitutes a stationary process; and the autocovariance generating functions
of the differenced components are

γζ(z) = σ2
ζ and γκ(z) = σ2

η(1 − z)2(1 − z−1)2. (29)

According to the Wiener–Kolmogorov principle, the detrending highpass
filter is derived by setting z = L in the following ratio of autocovariance
generating functions:

ψ(z) =
γκ(z)

γκ(z) + γζ(z)
=

σ2
η(1 − z)2(1 − z−1)2

σ2
η(1 − z)2(1 − z−1)2 + σ2

ζ

. (30)

The residual component is estimated by h(t) = ψ(L)y(t). The complemen-
tary lowpass filter, which estimates the trend, is derived by setting z = L
within the function 1 − ψ(z).

Setting z = e−iω in ψ(z) gives the frequency response of the filter which,
in this instance, is a real-valued function on account of the symmetry of the
filter in respect of z and z−1. The squared modulus of the frequency response
function, which, in this case, is just the square, constitutes its squared gain.
This is plotted in Figure 4, for a particular value of λ = σ2

η/σ
2
ζ , as the curve

that is labelled B. Also plotted on the diagram is the pseudo spectrum of a
first-order random walk labelled A.

The curve labelled C in the diagram, is the spectral density function of a
detrended sequence derived from the random walk by applying a filter with
a smoothing parameter of λ = 100. In place of this single curve, one can
imagine a family of curves generated by varying the value of λ. In that case,
one would discern that the functions associated with lower values of λ have
peaks of lesser height located at higher frequency values. The inference is
that the lower the value of the smoothing parameter λ the shorter are the
durations of the cycles in the detrended series and the less is their amplitude.
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3.4 The finite-sample filter

In practice, the data are available as a finite sequence, which constitutes
a vector y = ξ + η, where ξ is the trend and η is the noise. Therefore,
filters must be derived that operate on finite sequences. Let Q′, defined by
(18)–(21), denote the matrix version of the second-difference operator. Then

Q′y = Q′ξ + Q′η (31)

= ζ + Q′η,

where

E(ζ) = 0, D(ζ) = σ2
ζIT−2, (32)

E(η) = 0, D(η) = σ2
ηIT ,

and C(ζ, Q′η) = 0.

The independence of ξ and η implies that D(Q′y) = σ2
ηQ

′Q + σ2
ζI.

On the assumption that the components have a normal distribution, there
is the following joint density function:

N(ζ, η) = (2π)1−T σ2−T
ζ σ−T

η exp{−1

2
(σ−2

ζ ξ′QQ′ξ + σ−2
η η′η)}. (33)

The maximum-likelihood estimate x of the trend component ξ is found
by minimising the following criterion function, which is derived from the
quadratic exponent of the density function by setting η = y − ξ:

S(ξ) = σ−2
ζ ξ′QQ′ξ + σ−2

η (y − ξ)′(y − ξ). (34)

The minimising value of ξ is

x = σ−2
η (σ−2

ζ QQ′ + σ−2
η I)−1y. (35)

According to the matrix inversion lemma, there is

(σ−2
ζ QQ′ + σ−2

η I)−1 = σ2
η

{
I − Q(Q′Q + [σ2

ζ/σ
2
η]I)−1Q′

}
. (36)

Using this in (35) and writing σ2
ζ/σ

2
η = λ−1, we get

x = y − Q(Q′Q + λ−1I)−1Q′y. (37)

This is the appropriate finite-sample version of the lowpass H–P trend esti-
mation filter.
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We should make two observations in respect of this equation. First, if y
were to follow a linear trend, then the equation would deliver x = y since, in
that case, Q′y = 0. Secondly, as λ → ∞, the equation will tend to that of the
least-squares estimator of a linear trend, which is represented by (26). We
note that λ, which is conventionally described as the smoothing parameter,
is also a noise/signal variance ratio. When the noise is strong relative to
the signal, the Hodrick–Prescott filter is also liable to deliver a trend that is
approximately linear within wide neighbourhoods.

We should note that the filter is also appropriate to the case where there
is drift in the signal process. To see this, let y = ξ + φ + η, where φ is a
quadratic function. An analysis of equation (37) shows that φ will be fully
incorporated in x, which is the estimate of the trend component. Whereas
it will remain intact within x, it will be virtually nullified by the high pass
operator Q(Q′Q + λ−1I)−1Q′.

The H–P filter has been used as a lowpass smoothing filter in numerous
macroeconomic investigations (see, for example, Hartley et al. 1998), where it
has been customary to set the smoothing parameter to certain conventional
values. Thus, for example, the econometric computer package Eviews 4.0
(2000) imposes the following default values:

λ =

⎧⎪⎪⎨
⎪⎪⎩

100 for annual data,

1, 600 for quarterly data,

14, 400 for monthly data.

(38)

An alternative to specifying the smoothing parameter λ is to specify a
frequency value ωc such that ψ(ωc) = 0.5. This frequency corresponds to
the midpoint in the transition of the gain of the lowpass H–P filter from the
value unity, which is attained when ω = 0, to the value of zero, which is
attained when ω = π. The closer is ωc to 0, the higher is the value of λ. One
might be tempted to describe ωc as the nominal cut-off point of the filter,
but, in view of the gradual transition of the gain of the H–P filter from unity
to zero, this could be regarded as a misnomer.

The correspondence between ωc and λ is as follows:

(i) λ = 1/4{1 − cos(ωc)}2, (ii) ωc = cos−1(1 − 1/
√

4λ). (39)

Instead of specifying ωc directly, it may be easier to specify the duration
of the cycles of this frequency. For a duration of τ years, the frequency is
ωc = 2π/(τs), where s is the number of observations per year.

It has become customary to define the business cycle, in the manner of
Burns and Mitchell (1946), as a composite of sinusoidal motions of durations
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not exceeding 8 years and not less than one-and-a-half years. (For exam-
ples, see Baxter and King 1999 and Christiano and Fitzgerald 2003.) The
corresponding frequency band has been superimposed upon the periodogram
of Figure 3. When the nominal value of the limiting duration is set at 8
years, the frequency response of the lowpass H–P filter, which is designed to
capture the trend, has considerable leakage across the boundary, with the ef-
fect that large proportions of some of the business-cycle components of lesser
durations are removed from the residue. Therefore, in order to achieve a
good representation of the business cycle, the smoothing parameter of the
H–P filter should greatly exceed the value that corresponds to a duration of
8 years.

4 The Issue of Spurious Cycles

4.1 The gain of the Hodrick–Prescott filter

The H–P filter has been subject to an oft-repeated aspersion that it is liable
to induce spurious cycles in the detrended data. The argument has been
made, for example, by Cogley and Nason (1995) and it has been supported
by Harvey and Jaeger (1993), amongst others. Contrary opinions have been
offered by Pollock (1997, 2000) by Pedersen (2001) and by Valle e Azevedo,
(2002). There is a semantic issue at the root of these differences of opinion,
but there is also evidence of a widespread misunderstanding.

The highpass H–P filter ψ(L) has a frequency response function for which
the gain never exceeds unity. (An example of the squared gain of the filter
is given by the curve labelled B in Figure 4.) This means that its effect is
either to preserve or to attenuate the sinusoidal elements of which a data
sequence is composed. The filter never amplifies any sinusoidal elements and
it never introduces any. If a sinusoid is present in the processed data, then
it must also be present to no lesser extent in the original data. Therefore,
such cyclical components cannot be induced or accentuated by the filter.

The proposal of Cogley and Nason that the H–P filter can generate busi-
ness cycle dynamics is based upon an analysis of the frequency response of
a filter that results from conflating the highpass H–P filter with the unit-
root summation operator belonging to the model of a random walk. The
random walk y(t) is modelled by the equation (1 − L)y(t) = ε(t), where
ε(t) = {εt; t = 0,±1,±2, . . .} stands for a white-noise process. The filtered
sequence is

h(t) = y(t) − x(t) = {ψ(L)/(1 − L)}ε(t). (40)

Cogley and Nason attribute to the H–P filter the gain of the filter ψ(L)/(1−
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L), instead of the gain of ψ(L), which is the true gain of the H–P filter.
An example of the squared gain of the filter ψ(L)/(1 − L) is given by

the curve labelled C in Figure 4. This curve also represents the spectrum
of the filtered sequence h(t). It certainly manifests a strong spectral peak
which indicates the presence of cyclical motions within h(t). However, such
motions are attenuated versions of those that are present in the data process
y(t); and they are not induced by the filter.

Notwithstanding the nature of its Fourier decomposition, which comprises
sinusoidal motions at all frequencies, there is some justification for the as-
sertion that a true random walk contains no genuine cycles. The process is
the product of an accumulation of statistically independent increments; and
it has no inherent central tendency.

On the other hand, genuine cyclical motions are commonly regarded as
the products of centralising forces that increase in proportion to the distance
of an object from the point to which it is tethered. It is on this basis that
the cycles that are generated by filtering a random walk might be regarded
as illusory artefacts.

Economic trends are often modelled as random-walk processes. Never-
theless, such models need not be interpreted in a literal manner. Whereas a
random walk evolves in an unbridled manner, economic trends are subject to
evident constraints. They are driven by the buoyant forces of entrepreneurial
endeavour and consumer aspirations, and they are constrained by the more-
or-less pliable limits of productive capacity and resource availability. In a
thriving economy, they alternately press against the constraints and rebound
from them in a manner that is undeniably cyclical.

The econometric practice of modelling aggregate economic activity as a
cumulation of stochastic increments is in marked contrast to the emphasis
that has been given to centripetal mechanisms, such as the error-correction
mechanism that is at the heart of co-integration analysis.

4.2 Finite and infinite random walks

There may be doubts about the applicability to economic circumstances of
an analysis, such as the one that underlies Figure 4, that postulates a random
walk defined over a doubly infinite sequence of integers. Such a process is
unbounded in mean, and it does not have a finite variance. It is expected, at
any point in time, to be infinitely remote from the origin. By contrast, the
random walks that are postulated in applied econometrics are defined over
a finite interval, and they have starting values at a finite distance from the
origin.

A measure of the difficulties in interpreting an infinite random walk is

19

QASS, Vol. 2 (3), 2008, 1-34

© qass.org.uk



provided by the limiting case of the infinite-sample Hodrick–Prescott filter,
where λ → ∞. (When λ → ∞, the finite-sample lowpass filter delivers a
linear trend.) In the limit, the infinite-sample highpass filter has a frequency
response function with a unit gain everywhere except at zero frequency, where
the gain is zero. Therefore, it is virtually an allpass filter; which suggests that
the character of an infinite random walk should be unaffected by a process
of linear detrending.

This is in contrast to what we expect from the linear detrending of a finite
random-walk sequence. Fitting a straight line by least-squares regression to a
finite segment of a random walk will result in a residual sequence of mean zero
that will inevitably show a reversion to the mean. From a global perspective,
which views the sample as whole, this central tendency will not be affected
by a growing sample duration. There will be the same number of crossings
of the trend line on average, regardless of the length of the sample; and the
number of crossings will be few.

On the other hand, if we look myopically at the sampled sequence, then
the effect of increasing the sample size will be to reduce the rate of mean
reversion, as measured from one point to the next. Therefore, eventually,
the residue of a linearly detrending of a random walk will become a random
walk itself. Thus, we are able to reconcile the behaviour of the limiting case
of the infinite-sample H–P filter with the behaviour of the finite-sample filter.

We may consider the random walk to be the product of a regular process
of sampling applied to a continuous Wiener process. The Wiener process is
self-similar in the sense that short segments, viewed in detail, have the same
appearance as longer segments, viewed more distantly. Therefore, allowing
for a change of scale, the effect of increasing the size of the sample by allowing
a growing number of points to accumulate with the passage of time is no
different from the effect of increasing their number by increasing the rate at
which a finite segment of the process is sampled. Indeed, it may be easier to
see these things in the small—such as when a Wiener process is defined on a
unit interval—than in the large.

The effect of fitting a linear trend by least-squares regression to a finite
segment of a random walk has been analysed by Chan, Hayya and Ord
(1971). They have found a formula for the autocovariances of the residuals.
They have also provided a formula for the expected value of the estimated
autocovariances of the residuals. This has been corrected by Nelson and
Kang (1981), who have extended the analysis. The latter have revealed that
the spectral density function, derived from the expected values of the sample
autocovariances, has a peak at a frequency that corresponds to a cycle of a
duration that is 0.83 times the number of sample periods.

Nelson and Kang have emphasised the risk of finding spurious dynamics in
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the residuals from the inappropriate detrending of a random walk. A myopic
analysis that looks only at the values of the parameters of an estimated
autoregressive model is clearly at risk of drawing false conclusions. However,
an analysis that measures the rate of mean reversion relative to the length
of the sample can avoid the risk.

The frequencies of the fluctuations around their interpolated linear trends
of the sequences that we shall analyse are greater than the frequency that is
characteristic of a random walk. Therefore, the sequences appear to manifest
a genuine cyclicality. Figure 5 provides such evidence.

5 The Empirical Results

In the empirical analysis of this section, we shall detrend the logarithmic
data by interpolating a quadratic function, and we shall also use the H–
P filter. A quadratic function is used instead of a linear function in order
to accommodate cases where there is some indication of a gradual increase
or decrease, over the sample period, in the rate of the underlying growth
of GDP; but we have found that, in most cases, the quadratic function is
virtually a linear function. We shall pursue the method of estimating the
trend via the H–P filter, mainly for comparative purposes; and we shall be
interested to see the effect of varying the smoothing parameter.

It is a notable circumstance when the data are amenable to a linear or a
quadratic detrending in several countries over the same protracted period, as
is the case for each of the six OECD countries throughout our sample period.
Figure 5 shows the evidence of this. In different eras and over longer periods,
we would expect to resort, instead, to a flexible method of trend estimation
that employs the H–P filter and that accommodates structural breaks via
local variations in the smoothing parameter.

Some of the data sequences in Figure 5 contain seasonal fluctuations,
whereas others have been deseasonalised. These differences are of no account
in the analysis of business cycles, which comprise components that are of
much lower frequencies than the seasonal fluctuations. The later will be
removed automatically in the process of anti-alias filtering, which has the
effect of deseasonalising the data.

5.1 The method of estimation

The results from fitting an AR(2) to the data of each of the six OECD
countries, for the period 1980Q1–2003Q4, are displayed in Table 1. These
estimates are the outcome of a multistep procedure.

21

QASS, Vol. 2 (3), 2008, 1-34

© qass.org.uk



12.2

12.4

12.6

12.8

0 20 40 60 80

(a) FRANCE

11.8

12

12.2

12.4

0 20 40 60 80

(b) ITALY

12

12.25

12.5

12.75

13

0 20 40 60 80

(c) NORWAY

11

11.2

11.4

11.6

11.8

12

0 20 40 60 80

(d) SPAIN

11.6

11.8

12

12.2

12.4

12.6

0 20 40 60 80

(e) U.K.

8.25

8.5

8.75

9

9.25

0 20 40 60 80

(f) U.S.A.

Figure 5: The logarithms of the aggregate incomes of six OECD countries
for the period 1980Q1–2003Q4 with interpolated quadratic trends.
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For a start, a quadratic trend—which serves as a benchmark against
which the cyclical activity of the national economies can be measured—has
been fitted to the logarithms of the data. The residuals from the extracted
trend, which are liable to be examined for their low-frequency content, con-
tain seasonal and irregular components at higher frequencies, which are not
directly attributable to the business cycle.

To remove these components, the detrended data from each country are
subjected to a process of lowpass filtering and subsampling, which serves to
discard all except the information that lies in the frequency interval [0, π/8] in
the spectrum of the original data. The filter is implemented in the frequency
domain by selecting the appropriate Fourier coefficients of the data. The
filtered data is reconstructed via a Fourier synthesis.

The filtering is also effective in overcoming any aliasing that could arise
from the process of subsampling that selects every eighth data point. In the
absence of an anti-aliasing filter, subsampling by a factor of 8 would serve
to map the information content in the upper seven octaves of the frequency
range into its lowest octave, wherafter the latter would be expanded by a
factor of 8 to occupy the interval [0, π]. With proper anti aliasing, the effect of
the subsampling is to map the unimpaired contents of the original data in the
frequency interval [0, π/8] onto the wider interval [0, π], which corresponds
to the full range of frequencies that is available to a sampled data sequence.

Pagan (1997) has remarked that AR(2) models that are fitted to de-
trended quarterly logarithmic output data typically possess real roots, whereas
they might be expected to possess complex roots reflecting the dynamics of
the business cycles. Within the context of quarterly data, the business cycle
is a low-frequency phenomenon; and it is not surprising that the AR roots
do not reflect its cyclicality.

Within the context of annual data, the business cycle has a considerably
higher frequency; and an AR(2) model fitted to such data would almost cer-
tainly capture its cyclicality. Compared with quarterly data, annual data is
liable to suffer from the effects of aliasing and phase distortion. By applying
the processes of anti aliasing and subsampling to the quarterly data to pro-
duce biennial data, we are ensuring that the information that is extracted is
appropriate to the purpose of estimating the business cycle.

The processes of filtering and subsampling the data are illustrated in
Figures 6 and 7, which relate to the U.K. over an extended data period of
40 years running form 1964Q1 to 2003Q4. Figure 6 shows the the putative
business cycle, which has been synthesised from the spectral ordinates of the
detrended data that lie in the interval [0, π/8]. Figure 7 displays the peri-
dodogram of the filtered and subsampled the data. This is the periodogram
of the business cycle; and it corresponds to the segment of the peridogram
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Table 1: The business-cycle parameters obtained via quadratic detrending

α1 α2 ρ ω σx σε b
SPAIN −0.6072 0.7592 0.8713 69.61 0.0204 0.0126 0.0272

FRANCE −0.5838 0.7178 0.8473 69.85 0.0152 0.0100 0.0204
U.K. −0.5270 0.6749 0.8215 71.29 0.0197 0.0138 0.0252

NORWAY −0.4899 0.5519 0.7429 70.75 0.0202 0.0179 0.0272
ITALY −0.3904 0.5504 0.7419 74.74 0.0122 0.0949 0.0252
U.S.A. −0.1318 0.2446 0.4946 82.34 0.0161 0.0176 0.0328

of Figure 3 that is supported on interval [0, π/8].
Figure 8 is an Argand diagram that indicates the location in the complex

plane of the roots of the autoregressive operator of the estimated AR(2)model.
The estimates have been derived by maximising the likelihood function of
Whittle (1951), which entails the assumption that the data are the product
of a circular process. (It is equivalent to propose that the sample represents
one cycle of a periodic function.)

To sustain this assumption, some attention has to be paid to the problem
of the disjunction that can occur at the points in the periodic extension of
the data where the end of the sample is joined to its beginning. Whereas the
problem can be ignored if the data sequence is a lengthy one, such as the
extended U.K. sequence, it needs to be addressed in the case of the shorter
sequences from the six OECD countries.

We believe that an appropriate way of dealing with this matter is to
extend the sample at both ends by forecasting and backcasting the data. In
particular, our procedure uses the preliminary estimates of an AR(2) model
to lengthen the sample by 25 per cent. Then, the extrapolated sample is
subjected to a tapering operation based on a split cosine bell. The latter is
nothing but a cosine bell with an inserted stretch of units.

5.2 The dynamics of the economies

Our first concern is to assess the degree of damping to which each economy
has been subject over the sample period. This is revealed by the estimated
value of the damping factor ρ, which, together with the angular velocity
ω, is entailed in the expression for the homogeneous second-order difference
equation under (10) and in its analytic solution under (11).

A question which arises is how the frequency value ω, or, equivalently, the
length of the cycle, that is implied by the estimated AR(2) equation is related
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Figure 6: The residual sequence from fitting a quadratic trend to the income
data of Figure 2. The interpolated line, which represents the business cycle,
has been obtained from the Fourier ordinates that generate the periodogram
of Figure 7.
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Figure 7: The periodogram of the sub sampled anti-aliased data with the
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Figure 8: An Argand diagram indicating the location in the complex plane
of the roots of the autoregressive operator of the estimated AR(2)model.
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Table 2: The structural business-cycle parameters

c h σx/σε

SPAIN 0.2755 1.4948 1.6202
FRANCE 0.3315 1.5136 1.5166

U.K. 0.3932 1.5868 1.4327
NORWAY 0.5944 1.6130 1.1319

ITALY 0.5972 1.7909 1.2909
U.S.A. 1.4081 2.5610 0.9158

to the degree of damping. Table 1 shows a high degree of inverse correlation
between the rankings of the values of ρ and ω, which is the angular velocity
or frequency measured in degrees per biennium—the lower the damping, i.e.
the closer ρ is to unity, the lower is ω and the longer is the cycle.

Table 1 also indicates, via the values of σx, the relative amplitude of the
economic cycles for each of the six countries. This is measured as the standard
deviation from the interpolated trend line of the logarithmic income series.
The values of σε represent estimates of the magnitudes of the disturbances
that drive the cycles.

The final column of the Table 1 gives the values of b which is the slope
parameter of a linear trend interpolated through the logarithmic series by
least-squares regression. These values represent the average rates of growth
of the countries for the period in question.

The parameters ρ and ω provide a complete characterisation of the dy-
namic properties of a second-order system. However, it is also insightful to
characterise the system in terms of the fundamental structural parameters
c and h, which are, respectively, the coefficients of friction and of stiffness.
These are displayed in Table 2, which also gives the ratio σx/σε. The rela-
tionship of the two sets of parameters is via the following equations,

(i) γ = ln(ρ), (ii) c = −2γ and (iii) h = γ2 + ω2. (41)

To make matters more intelligible, we display, in Table 3, the rankings of the
various measures.

The coincidence of the ranking of ρ with the inverse ranking of c follows
necessarily from their analytic relationship, which is indicated by (i) and (ii)
of (41). For the close relationship of the ranking of ω and h, there is no
such necessity, since γ is also present in (iii). Given the coincidence of the
rankings of ρ and c and the closeness of those of ω and h, it follows that c
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Table 3: The rankings of the parameters of Tables 1 and 2 in descending
order of magnitude and in ascending order—via the numbers in parenthesis

ρ c ω h σx σε σx/σε b
SPAIN 1(6) 6(1) 6(1) 6(1) 1(6) 5(2) 1(6) 2(4)

FRANCE 2(5) 5(2) 5(2) 5(2) 5(2) 6(1) 2(5) 6(1)
U.K. 3(4) 4(3) 3(4) 4(3) 3(4) 4(3) 3(4) 4(2)

NORWAY 4(3) 3(4) 4(3) 3(4) 2(5) 2(5) 5(2) 2(4)
ITALY 5(2) 2(5) 2(5) 2(5) 6(1) 1(6) 4(3) 4(2)
U.S.A. 6(1) 1(6) 1(6) 1(6) 4(3) 3(4) 6(1) 1(6)

and h display the same high degree of rank correlation as do ρ and ω, albeit
in the direct rather than the inverse sense.

There is also a close rank correlation between the damping factor ρ and
the variance ratio σx/σε. Both of these are readily expressed in terms of the
parameters of the difference equation. Whereas ρ2 = α2, there is

σ2
x

σ2
ε

=
(1 + α2)

(1 − α2)(1 + α2 + α1)(1 + α2 − α1)
. (42)

(See, for example, Pollock 1999 p. 533.) This variance ratio increases as
α2 = ρ2 increases towards unity. Also, within the range of variation of α1, in
which 1 + α2 + α1 > 0, the variance ratio increases as α1 declines. In Table
1, there is a perfect inverse rank correlation between α1 and α2. This gives
rise to the almost perfect rank correlation between ρ and σx/σε.

To understand the implications of these various relationships, one should
make reference to equation (8iii) which expresses ω in terms of the structural
coefficients c and h. The equation indicates that, within a given system with
a fixed stiffness parameter h, increasing the damping coefficient c will lead
to a lengthening of the duration of the cycle. On the other hand, for fixed c,
increasing h will shorten the duration of the cycle.

Since c and h are free to vary independently across the economies, there
should be no firm expectation concerning the nature of their relationship.
It transpires that h and c tend to vary together with a positive correlation,
which means that their variations have offsetting effects. However, for the
sample of 6 OECD countries, the effects of the variations in h heavily out-
weigh the offsetting effects of the variations in c.

When these effects are discerned through the autoregressive parameters ρ
and ω, it is found that economies with greater damping tend to have shorter
cycles. This is the opposite of a relationship that would be observed in a
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single system governed by second-order dynamics and subject to variable
damping. In that case, increasing the damping would lengthen the cycles.

There is a supposition that the lower the relative amplitude of the busi-
ness cycle the better are the prospects for the growth of the economy. This
idea was famously propounded in a pamphlet published in the U.K. by the
National Economic Development Council (1963) under the title of Conditions
Favourable to Faster Growth. It was proposed that the economic stop-go poli-
cies of the United Kingdom in the preceding decade had created a series of
booms and slumps that had inhibited the growth of the economy.

Table 3 gives no clear indication of a negative relationship between the
rates of growth of the countries and the relative amplitude of their economic
cycles. However, the question remains of whether such a relationship could
be found by observing the same economy in different epochs.

5.3 The effects of the Hodrick–Prescott filter

We now proceed to examine the effect of using the lowpass Hodrick–Prescott
filter, instead of a quadratic function, to remove the trend from the data,
in the attempt to reveal the business cycle. We shall attribute a range of
alternative values to the smoothing parameter λ. The higher the value of the
smoothing parameter, the more rigid is the estimated trend. The analysis of
section 3 has shown that, as λ increases, the resulting trend tends to a linear
function that is interpolated through the data by a least-squares regression.

Intuition suggests that the more flexible is the interpolated trend the lower
will be the amplitudes of the fluctuations in the residual sequence and the
shorter will be the duration of its cycles. This intuition has been supported
by an analysis in the frequency domain of the effect of applying the H–P
filter to a random walk. Figure 4 is relevant to that analysis.

We begin by setting λ = 8000. This value corresponds, via equation
(39ii), to the nominal frequency value of ω = π/30 radians per quarter and
to a duration of 15 years. In fact, the resulting trends that are interpolated
through the data are virtually linear. When the AR(2) model is fitted to the
detrended data, we obtain the parameter values that are recorded in Table
4.

The next value to be assigned to the smoothing parameter is λ = 1600,
which is the value that is commonly used in extracting macroeconomic trends
from quarterly data, and it has been proposed by Hodrick and Prescott (1980,
1997). This value produces a trend that strongly reflects the cyclical pattern
of the original time series. For this reason, it provides an attenuated version
of the business cycle. It will be observed from the comparison of Tables 4
and 5 that the relative amplitudes of the business cycles measured by σx
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Table 4: Parameters for smoothing parameter equal to 8000

α1 α2 ρ ω Λ σx σε

SPAIN −0.40128 0.70107 0.83730 76.14 0.20 0.01516 0.01049
FRANCE −0.28380 0.64995 0.80620 79.86 0.22 0.01140 0.00836

UK −0.24384 0.65370 0.80852 81.33 0.21 0.01414 0.01049
NORWAY −0.25612 0.57652 0.75929 80.29 0.27 0.01414 0.01140

ITALY −0.10582 0.40901 0.63954 85.25 0.37 0.00894 0.00774
U.S.A. 0.07377 0.36670 0.60556 93.49 0.34 0.01265 0.01183

Table 5: Parameters for smoothing parameter equal to 1600

α1 α2 ρ ω Λ σx σε

SPAIN −0.07488 0.52742 0.72623 87.04 0.27 0.00894 0.00775
FRANCE 0.05076 0.57258 0.73669 91.92 0.21 0.00707 0.00632

UK 0.11612 0.54694 0.73956 94.50 0.21 0.00949 0.00775
NORWAY 0.15596 0.56620 0.74980 95.97 0.20 0.00894 0.00707

ITALY 0.27894 0.23539 0.50536 106.02 0.35 0.00548 0.00548
U.S.A. 0.50569 0.27336 0.52284 118.92 0.27 0.00894 0.00775

are considerably reduced and the duration of the cycles, as reflected in the
angular velocity ω, is systematically reduced. This is in accordance with our
presuppositions.

The final value to be investigated is λ = 677.13, which corresponds nomi-
nally to an angular velocity of π/16 radians per quarter and to a duration of
8 years. These values correspond to the upper limit of the business cycles du-
ration according to the definition of Baxter and King (1999). These authors
have also attributed a minimum duration of 1.5 years to the business cycles.
(The resulting frequency band, which runs from π/16 radians per period up
to π/3 radians per period, has been imposed on the periodogram of Figure
3.) Artis, Marcellino and Proietti (2004), have implemented the definition
of Baxter and King via a bandpass filter that comprises a lowpass H–P filter
with λ = 0.52 followed by a highpass filter with λ = 677.13. The initial
lowpass filter may have little effect upon deseasonalised data for the reasons
that there is liable to be very little spectral power within the corresponding
stop band.
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Table 6: Parameters for smoothing parameter equal to 677.13

α1 α2 ρ ω Λ σx σε

SPAIN 0.23331 0.31921 0.56499 101.92 0.33 0.00548 0.00548
FRANCE 0.30219 0.55054 0.74199 101.75 0.18 0.00548 0.01414

UK 0.41685 0.51692 0.71897 106.85 0.18 0.00707 0.00548
NORWAY 0.40081 0.58485 0.76475 105.19 0.16 0.00632 0.00548

ITALY 0.58644 0.26694 0.51666 124.58 0.26 0.01414 0.00316
U.S.A. 0.81471 0.36210 0.60175 132.61 0.18 0.00707 0.00548

The parameters derived by fitting an AR(2) to these data are given in
table 6. We are disinclined to give much credence to these results for the
reason that the 8-year limit on the duration of the cycles is an artificial one
that does not appear to correspond to any evident feature in the spectral
structure of the data.

6 Conclusions

A schematic model has been proposed for the purpose of comparing the
economic cycles of six OECD countries. These countries have experienced
similar socio-economic conditions over the period 1980–2003. However, the
intensity of the disturbances to which they have been subject may have var-
ied, and the manner in which these have been propagated may have differed
in consequence of the differences in the economic structures of the countries
and in their policies of economic regulation.

Second-order stochastic differential equations have been used to represent
the structures that generate the cycles. Given a white-noise forcing function
with a wide bandwidth, these would correspond to discrete time ARMA(2,1)
equations. However, the business cycle components of the data are bounded
by the frequency of π/8 radians per quarter. On the assumption that the
forcing function is a band-limited process supported the frequency interval
[0, π/8], we are able to establish a direct correspondence between the pa-
rameters of a second-order stochastic differential equations and those of a
second-order autoregressive AR(2) equation.

In order to represent business cycles via an estimated AR(2) model, it
is necessary to purge the data of all elements with frequencies in excess of
π/8. These consists of seasonal fluctuations and of minor elements of noise.
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Thereafter, the data must be resampled by taking one observation in eight.
By this process, the spectral structure of the business cycle component can
be mapped into the full discrete-time frequency interval of [0, π].

The results of the empirical analysis are surprising. Contrary to what one
might expect, the length of the cycles experienced by the countries, measured
by 2π/ω, is inversely related to their degree of damping, measured by ρ. In
a given system characterised by a fixed stiffness parameter h (corresponding
to the strength of an error-correction mechanism), increasing the damping
coefficient c would serve to increase the duration of the cycle.

We draw similar conclusions regarding the dynamics when we use a more
flexible method of detrending the data. Fitting a more flexible trend will
produce a residual sequence in which the fluctuations have a lesser amplitude
and a shorter duration.
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