
EXERCISES IN FORECASTING III

The Identification of ARMA Models

An appropriate ARMA model for fitting to a stationary series may be identified by
inspecting the following thee functions:

(1) The Empirical Autocorrelation Function,
(2) The Empirical Partial Autocorrelation Function,
(3) The Nonparametric Estimate of the Spectral Density Function.

The procedures for determining the orders of an ARMA process from the first two
of these functions are spelt out in detail in Lecture 8 of the Yellow Book which is titled
Identification of ARIMA Models. There are numerous accounts of the so-called Box–
Jenkins methodology of model identification which can serve the same purpose. The
account in Chapter 3 of Holden, Peel and Thompson Economic Forecasting is also worth
reading; but it is not entirely adequate and there are no diagrams, which is a serious
deficiency.

The Pseudo-Random Data Series

Model identification is essentially a matter of practice. Therefore a large collection
of pseudo-random computer-generated data is provided in the files ARMADATA and XYARMA
which you should examine in detail. The processes which have generated the data in
ARMADATA are revealed in the following list. Those which have generated the data series
in XYARMA will be revealed to you only after you have attempted to guess the orders of
the processes:

(i)
1ARMA01: y(t) = (1− θL)ε(t)

y(t) = (1 + 0.75L)ε(t)

(ii)
2ARMA01: y(t) = (1− θL)ε(t)

y(t) = (1− 0.75L)ε(t)

(iii)
1ARMA10: (1− φL)y(t) = ε(t)

(1− 0.75L)y(t) = ε(t)

(iv)
2ARMA10: (1− φL)y(t) = ε(t)

(1 + 0.75L)y(t) = ε(t)

(v)
1ARMA11: (1− φL)y(t) = (1− θL)ε(t)

(1− 0.9L)y(t) = (1 + 0.9L)ε(t)

(vi)
2ARMA11: (1− φL)y(t) = (1− θL)ε(t)

(1 + 0.9L)y(t) = (1− 0.9L)ε(t)

(vii)
1ARMA20: (1 + α1L+ α2L

2)y(t) = ε(t)

(1− 1.273L− 0.81L2)y(t) = ε(t)

(viii)
2ARMA20: (1 + α1L+ α2L

2)y(t) = ε(t)

(1 + 1.85L− 0.855L2)y(t) = ε(t)
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(ix)
1ARMA02: y(t) = (1 + µ1L+ µ2L

2)ε(t)

y(t) = (1− 1.273L− 0.81L2)ε(t)

(x)
2ARMA02: y(t) = (1 + µ1L+ µ2L

2)ε(t)

y(t) = (1 + 1.85L− 0.855L2)ε(t)

(xi)
1ARMA21: (1 + αL+ α2L

2)y(t) = (1 + µL)ε(t)

(1− 1.785L+ 0.9025L2)y(t) = (1 + 0.95L)ε(t)

(xii)
2ARMA21: (1 + αL+ α2L

2)y(t) = (1 + µL)ε(t)

(1 + 1.691L+ 0.81L2)y(t) = (1− 0.95L)ε(t)

(xiii)
1ARMA22: (1 + αL+ α2L

2)y(t) = (1 + µ1L+ µ2L
2)ε(t)

(1− 1.4745L+ 0.51L2)y(t) = (1− 1.157L+ 0.81L2)ε(t)

(xiv)
2ARMA22: (1 + αL+ α2L

2)y(t) = (1 + µ1L+ µ2L
2)

(1− 1.275L+ 0.81L2)y(t) = (1 + 1.273L+ 0.81L2)ε(t)

You should plot each of these data series before examining the autocorrelation
function and the partial autocorrelation function. You should understand how the
features of these functions reflect those of the corresponding theoretical functions which
would be generated by the true parameters of the process. The feature of the theoretical
function can be attributed to the model orders and to the values of the parameters in
the way which is spelt out in Lecture 8.

The Periodogram and the Estimated Spectrum

It is probable that, by the end of the course, the periodogram and the estimated
spectral density function or “spectrum” will become your preferred means of model
identification. A further explanation of these functions is required before you can use
them effectively. Nevertheless, it is appropriate, at this stage, to gather some impression
of how their features relate to the parameters of the underlying processes which have
generated the data.

Unless a process is very evidently a seasonal or a cyclical one, the raw periodogram
is liable to have an irregular or volatile appearance. In order to a provide meaningful
estimate of the spectral density function of the process, the profile of the periodogram
must be smoothed. This is easily accomplished in MESOSAUR. After selecting a vari-
able, you select Spectrum from the Statistics menu. Then you specify the number
of frequency points which you want, and you press <Enter>. The default value is 100
points. Finally, you specify a so-called window width. In MESOSAUR, the spectral
density function is calculated by the Parzen window technique. This involves discarding
the higher-order autocovariances and applying a differential weighting scheme to the re-
mainder. The widow width is simply the number of autocovariances which are retained;
and, the smaller the width, the smoother is the estimate. It is a remarkable fact that this
technique of truncating and weighting the autocorrelation function is mathematically
equivalent to smoothing the profile of the periodogram by taking a moving average of
its ordinates. The mathematical connection between the autocorrelation fucntion and
the periodogram has been established at the end of Lecture 2: Seasons and Cycles in
the Yellow Book.
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1XARMA: MA(2) y(t) = (1 + 0.75L+ 0.5L2)ε(t)

2XARMA: AR(2) (1− 1.832L+ 0.95L2)y(t) = ε(t)

3XARMA: ARMA(2, 2) (1− 1.273L+ 0.81L2)y(t) = (1 + 1.273L+ 0.81L2)ε(t)

4XARMA: AR(2) (1− 1.724L+ 0.7275L2y(t) = ε(t)

5XARMA: AR(1) (1− 0.65L)y(t) = ε(t)

6XARMA: AR(4) (1− 0.656L4)y(t) = ε(t)

7XARMA: MA(1) y(t) = (1 + 0.95L)ε(t)

8XARMA: MA(2) y(t) = (1 + L+ 0.75L2)ε(t)

9XARMA: AR(3) (1− 2.775L+ 2.67L2 − 0.893L3)y(t) = ε(t)

1YARMA: AR(4) (1− 0.95L4)y(t) = ε(t)

2YARMA: AR(2) (1 + 1.871L+ 0.9025L2)y(t) = ε(t)

3YARMA: AR(1) (1− 0.99L)y(t) = ε(t)
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