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This essay is intended to accompany a lecture to beginning students of the course

of Economic Analytics, which is taught in the Institute of Econometrics of the

University of �Lodz in Poland. It provides, within a few pages, a broad historical

account the development of econometrics. It begins by describing the origin of

regression analysis and its concludes with an account of cointegration analysis.

The purpose of the essay is to provide a context in which the students can locate

various aspects of econometric analysis.

Introduction: The Business of Statistical Inference

The business of statistical inference is predicated upon the metaphysical
notion that, underlying the apparent randomness and disorder of events that
we observe in our universe, there is a set of regular and invariant structures.

In attempting to identify its underlying structure, we may imagine that a
statistical phenomenon is composed of a systematic or determinate component
and a component that is essentially random or stochastic.

The fundamental intellectual breakthrough that has accompanied the de-
velopment of the modern science of statistical inference is the recognition that
the random component has its own tenuous regularities that may be regarded
as part of the underlying structure of the phenomenon.

In the sphere of social realities, statistical science has uncovered many
regularities in the behaviour of large aggregates of apparently self-willed indi-
viduals. Examples spring readily to mind. Consider the expenditure on food
and clothing of a group of individual households that might be observed over
a given period. These expenditures vary widely, yet, when family income and
other measurable factors are taken into account, evident regularities emerge.

Denoting the expenditure of the ith family by yi and its income by xi, we
might postulate a statistical relationship of the form

yi = α + βxi + εi,

where α and β are parameters and εi is a random variable.
In fitting the data to the model, we would find that the systematic com-

ponent μi = α + βxi would, in many cases, amount to a large proportion of yi.
The residual part of yi would be attributed to the random variable εi.

The precise details of the decomposition of each yi would depend upon
the values attributed to the parameters α and β. These values can be assigned
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only in view of the more or less specific assumptions that are made about the
regularities inherent in the random variable εi.

It might be assumed, for example, that the εi are distributed independently
of each other with a common expected value of E(εi) = 0 and a common
variance of V (εi) = E(ε2

i ) = σ2. Then, as Chebyshev’s inequality shows, there
is an upper bound on the probability of large deviations of εi from zero; and it
is appropriate to attribute to α and β the values that minimise the quantity

S(α, β) =
∑

i

(yi − α − βxi)2,

which is the estimated sum of squares of the deviations.
Alternatively, it might be more realistic to assume that the dispersion of

the random component εi is related to the size of family income xi. Then, we
might specify that V (εi) = σ2xi; and the values of α and β would be found by
minimising

S(α, β) =
∑

i

x−1
i (yi − α − βxi)2.

The crucial assumptions concerning εi, describe the stochastic structure of the
model.

Doubtless, many would contend that the randomness in the variation of
household expenditures is more apparent than real. For they would argue that
the appearance of randomness is due to our failure to take into account a host
of other factors contributing to this behaviour. They might suggest that, if
every factor were taken into account, a perfect description of the behaviour
could be derived.

Fundamental though this objection might be, we can afford to ignore it;
for it makes little difference to the practice of statistical inference whether the
indeterminacy of the behaviour is the result of pure randomness or the result of
our inability to comprehend more than a few of an infinite number of peculiar
factors and circumstances affecting each household.

Francis Galton and the Origins of the Regression Equation

The equation that we have proposed for determining the household ex-
penditure is described as a regression equation. This odd terminology is due a
Victorian man of science by name of Francis Galton (1822–1911).

Galton, who was a first cousin of Charles Darwin (1809–1882), was also the
man who invented the word Eugenics to describe the science of improving the
human population by a programme of controlled breeding, designed to promote
desirable inherited characteristics. As is well know, the ideas of Eugenics were
widely popular in the early decades of the 20th century; and they sustained
many of the fatal aberrations that accompanied the era of the Nazis.

Galton first propounded his theory in the 1865 in an article titled Heredi-
tary Talent and Character. He elaborated it further in his 1869 book Hereditary
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Figure 1. Pearson’s data comprising 1078 measurements of the heights of fathers

(the abscissae) and of their sons (the ordinates), together with the two regression

lines. The correlation coefficient is 0.5013.

Genius, where he studied the way in which intellectual traits, moral traits and
traits of personality tend to run in families.

He noted that, as one generation succeeds another, the outstanding qual-
ities that have characterised the earlier generations will tend to be found in
an attenuated form in later generations. He described this phenomenon as a
tendency to mediocrity. Although the etymology of his words is impeccable,
they have a negative connotation. Nowadays, we prefer to talk of a central
tendency.

Galton was fully aware the process worked in both directions. He declared
that

The law of regression is even handed; it levies the same succession
tax on the transmission of badness as well as goodness. It discourages
the extravagant expectations of gifted parents that their children will
inherit their powers, it no less discountenances extravagant fears that
they will inherit all their weaknesses and diseases.

This implies that, as one generation succeeds another, the heights within
families that have been characterised by lack of stature will progress towards
the mean values. Thus, a regression analysis could be described, with equal
justification, as a progression analysis. Also, if the distributions of heights
is to remain the same from one generation to the next, then the two central
tendencies of progression and regression must be balanced by an equal and
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opposite dispersive tendency.
Galton conducted a detailed statistical investigation of such tendencies;

and his methodology reached its maturity in 1886 in an article titled Regression
Towards Mediocrity in Hereditary Stature. He noted that parents of exceptional
height tend to have tall offspring; but that, on average, their offspring are not
as exceptional in respect of their height as their parents.

The data that were collected by Galton were later supplemented by Karl
Pearson (1857–1936), who was another prominent early statistician and eugeni-
cist and who was Galton’s disciple and his biographer. Pearson collected the
heights of 1,078 fathers and their full-grown sons, in England, at the end of the
19th century. (See Pearson 1896 and Person and Lee 1896, 1903.)

In Figure 1, which displays Pearson’s data, each dot represents a father-son
pair. The heights of the fathers are measured on the horizontal axis and those
of their sons are on the vertical axis. Running through the scatter of points at
an angle of 45 degrees to the horizontal is what seems, at first glance, to be
an axis of symmetry—if the diagram were flipped around this axis, so that the
heights of the sons are on the horizontal and those of their the fathers are on
the vertical, then we might not be able to discern much difference. That would
be the expected outcome, if the distribution of the heights of adult males was
the same in each generation.

We might also be tempted to use the 45 degree line as the means of pre-
dicting the heights of the sons, knowing the heights of their fathers. However,
as we have already asserted, there is a tendency for tall fathers to produce
sons whose tallness is less accentuated. In fact, the best line for predicting the
height of a son is the thick black line that rises at an angle of 35 degrees from
the horizontal.

Classes of students can be challenged to uncover the reason why this re-
gression line is a better predictor that the line at 45 degrees. Often, in my
experience, a predominantly male class can be singularly obtuse in this matter.
On failing to find a convincing reason, they may be challenged to enumerate
the factors that determine the heights of the sons.

At this point, a thoughtful male student or an offended female student
may declare that the mother has an equal role with the father in determining
the height of their son. If we attribute an average height to the mother, in
place of her actual height, which has not been revealed by the data, then we
can imagine that the tall father and the average mother are likely to produce a
male child whose height, which is the product of the heights of his two parents,
is somewhere between the observed height of the father and the average height
of men.

However, there might be a tendency for tall men to marry tall women, with
result that the tallness of the man will be better preserved in his offspring. Gal-
ton was alert to this possibility. However, be declared that marriage selection
takes little or no account of shortness or tallness.
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Whereas he conceded that there are undoubtedly sexual preferences for
a moderate contrast in height, by which he meant that men rarely tolerate
women who are equal or superior in stature to themselves, he asserted that the
marriage choice is guided by so many and more important considerations that
stature appears to exert no perceptible influence upon it.

In fact, there is good reason to believe that human morphology has been
strongly influenced over time by social and cultural factors. The preference of
Victorian gentlemen of class for a woman of lesser stature than themselves is
just such a factor, albeit that this is unlikely to have had either a significant or
a lasting effect on the distribution of heights within the female population.

Another point to note is that the average height of men in late Victorian
England was increasing over time. This can be seen clearly in Figure 1. If the
distributions of the heights of the fathers and of their sons were identical, then
the 45 degree line would indeed be an axis of symmetry, and the regression
of the heights of the sons on the heights of their fathers and vice versa would
be indistinguishable. The two regression lines would intersect at a point on 45
degree line.

In fact, the intersection is at a significant distance from the line; which is
evidence of an increasing average height from one generation to the next. One
may attribute this to improvements in nutrition and health.

Disregarding such refinements, the relationship of the heights can be sum-
marised fairly well in reference to the properties of a bivariate normal of Gaus-
sian distribution. This may seem remarkable in view of the disparity between
the theory and the realities of human stature. In theory, the Gaussian distri-
bution extends over the entire plane. In practice, human heights are bounded
both from below, by the height of Tom Thumb, and above, by the height Fingal,
a giant of Celtic mythology.

R.A. Fisher and the Experimental Regression Model

The regression model that strongly influenced the early development of
econometrics has features that set it apart from the bivariate statistical model
of Galton, which might be classed as a descriptive regression. This was the
regression model of agronomy wherein the variable x that is plotted on the
horizontal axis is subject to experimental manipulation. The model was used
extensively By R.A. Fisher (1890–1962) in his work at the Rothamsted Exper-
imental Station.

The Rothamsted Station was founded in 1843, which makes it one of the
oldest agricultural research institutions in the world. From its inception, the
research entailed of a series of long-term field experiments in which the object
was to measure the effect on crop yields of inorganic and organic fertilisers. By
the end of the 19th century, these so-called Classical Field Experiments had
generated a vast amount of data that demanded a systematic analysis.

Fisher’s first task on joining in 1919 was to grapple with these data. Over
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the years, he generated many of the statistical methods that are associated
with the linear regression model. These include the theory of the design of
experiments and the theory of hypothesis testing. Fisher also propounded the
method of maximum-likelihood estimation. His first book, Statistical Methods
for Research Workers, which was published 1925, became a standard refer-
ence work for scientists in many disciplines, and the traces of it were readily
discernible in the early texts of econometrics.

R.A. Fisher also made significant contributions to the science of genetics
to the extent that, together with Sewall Wright and J.B.S. Haldane, he can
be regarded as one of the founders of what has been described as the modern
evolutionary synthesis.

It must also be recorded that Fisher was an ardent eugenicist. In 1911,
he was involved in forming the Cambridge University Eugenics Society with
John Maynard Keynes, R.C. Punnett and Horace Darwin (Charles Darwin’s
son). He went so far as to propose that the state should afford him a bursary
to sustain his prolific procreation, on the grounds that he was contributing to
the improvement of the race—he had two sons and seven daughters.

The basic experimental regression model of Fisher embodies a linear rela-
tionship between a dependent variable and one or more independent variables.
In Fisher’s context, the dependent variable might be the yield of a crop by
weight and the independent variables might be the quantity of fertiliser ap-
plied to a crop, the salinity of the soil, the amount of water available to the
crop and so forth.

It is supposed that there is a firm underlying relationship between the
dependent and the independent variables. The relationship is also subject to
additive disturbances, which summarise the effect on the dependent variable of
other factors that have not been included explicitly in the analysis.

The assumption is made that these additional and unobserved factors are
unaffected by the values of the independent variables that are included in the
systematic part of the model. Thus, in aggregate, they constitute a random
variable that, according to the classical assumptions, is independently and iden-
tically distributed at each instant of observation.

The parameters of the regression relationship are invariably estimated by
the method of least squares. In the case of the model with a single explanatory
variable, this entails interpolating a straight line through the scatter of the data
points in such a way as to minimise the sum of squares of the deviations of the
points from the line, when these distances are measured parallel to the vertical
y-axis.

The descriptive regression model of Galton can be reconciled with the
experimental regression model if we are prepared to overlook the fact that, in
the descriptive model, the x variable has its own Gaussian distribution. By
taking a specific value of x and asking what the consequent value of y is likely
to be, we are asking a question about the conditional distribution of y given x.
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This distribution has exactly the appearance that it would have in the
experimental model. In effect, when the x variables are divested of their prob-
ability measures, the resulting conditional distributions look the same for all
values of x, with the exception that they have differing mean values, which are
given by μx = α + βx.

The contours of the bivariate distribution of Galton’s descriptive regression
model give way to the contours of a ridge-like structure erected over the regres-
sion line. However, notwithstanding these appearances, the conditioning on x
does not give us the freedom to manipulate the values of the father’s heights in
an experimental manner. The ideas of stretching or compacting their bodies in
order to observe the effect on their offspring hardly bears a moment’s thought.
This would kill the fathers and it would preclude the possibility of their having
any offspring.

Nevertheless, we are able to manipulate height within a thought experi-
ment. In this sense, we may talk of the conjectural variation of x as opposed
to its actual manipulation. We can easily imagine fathers of various heights.
However, it is clear that such conjectural variation ought to be bounded, at
least, by the height of the micro dwarf Tom Thumb and by that of the the Irish
giant Fingal.

By the same token, the variation of x within the experimental model is
limited. Most of the explanatory variables that we have though of in connection
with the biometric version of the model are bounded away from zero. There
are also upper bounds on their quantities. Too much fertiliser would scorch
the plants, too much salt would kill them and too much water would destroy
the structure of the soils. Indeed, it would be wise to declare the regression
model to be valid only within the ranges of variation that are represented by
the sample from which it has been estimated.

In econometrics, it is uncommon to impose such limits on the ranges of
the variations of the explanatory variables. In a non-experimental situation,
the actual variations in the sample are liable to be limited. Often, the purpose
of the model is to form conjectures regarding the effects of wider variations.
Econometric regression models are frequently used to investigate what, in philo-
sophical jargon, are called counterfactual conditional propositions.

These are statements indicating what would be the case if something were
true that is not actually true, or if something were to be made to happen that
might not happen otherwise. In other words, econometric models are liable to
be used for speculative purposes rather than for descriptive purposes. For that
reason, they should often be treated with caution.

The difficulties with econometric modelling are exacerbated when there
are numerous explanatory variables on the right hand sides of the regression
equations. In the process of formulating economic policies, one is liable to
speculate about the effects of unprecedented combinations of the values of such
variables. The variables are embedded in a complex interdependent system, and
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they might not be amenable to independent variation, either in an experimental
manner or in a speculative counterfactual sense.

To cater to such complex interdependencies has been one of the objectives
of classical econometric theory. One of the essential difficulties came to light in
the early years of the 20th century in connection with the statistical estimation
of demand curves.

Statistical Demand Curves and the Simultaneous-Equations Model

The estimation of demand curves was a major preoccupation of American
statisticians and economists throughout the 1920’s and 1930’s. Many of their
studies focussed on the demand for agricultural produce. A typical example is
provided by a study of the demand for potatoes that was published in 1935 by
Holbrook Working (1895–1985) in a paper titled The Statistical Determination
of Demand Curves. The paper expresses some of the difficulties and the unease
that accompanied such exercises.

The principal difficulty arises from the fact that the prices and quantities of
economic goods are jointly determined within their markets by the interaction
of demand and supply. Therefore, it may be inappropriate to view the matter
from one side only.

Alfred Marshall (1842–1924) used a metaphor to convey the fact that eco-
nomic values are determined simultaneously by supply and demand. According
to Marshall (1920, p.348)

We might as reasonably dispute whether it is the upper or the under
blade of a pair of scissors that cuts a piece of paper, as whether value
is governed by utility or cost of production. It is true that, when one
blade is held still and the cutting is effected by moving the other, we
may say with careless brevity that the cutting is done by the second;
but the statement is not strictly accurate, and is to be excused only
so long as it claims to be merely a popular and not a strictly scientific
account of what happens.

The implication of this truism for the statistical determination of demand
curves was fully revealed by Elmer Joseph Working, (1900–1968), the younger
brother of Holbrook Working, who publish an article in 1927 titled What do
Statistical Demand Curves Show? Elmer Working produced a series of diagrams
that can still be found in many textbooks of econometrics.

He began by noting that, if both the demand and the supply curves are
liable to shift over time to the same degree, then their points of intersection
will form a seemingly unstructured scatter. If the shifting of the supply curve
is greater than the shifting of the demand curve, then a scatter of points will
be generated that will reveal the shape of the demand curve. Conversely, if
the demand curve is shifting over a stationary supply curve, then the scatter
of points will serve to reveal the latter.
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It might be inferred that, when both curves are shifting to an equal degree,
it will be impossible to disentangle them from the data. Nevertheless, Working
declared that

By intelligently applying proper refinements, and making corrections
to eliminate separately those factors which cause demand curves to
shift and those factors which cause supply curves to shift, it may be
possible even to obtain both a demand curve and a supply curve for
the same product and from the same original data.

What he was implying is that, if the shifts in the supply and demand curves
are due to separate variables that have no interaction, then it will possible to
identify both curves or schedules. In econometric jargon, we may describe the
prices and quantities that are determined in the market as the jointly dependent
variables in the supply and demand equations.

The two schedules will be capable of separate identification if each equation
contains exogenous variables that are not in the other equation. The term
exogenous denotes the fact that the variables are generated outside the system
of demand and supply. They will affect the endogenous variables that are
within the system, but they will not be affected in turn by the latter variables.

As an example, which may serve to fix these ideas more firmly, consider
the following system:

y1 = y2γ21 + ε1 : The Demand Equation,

y2 = y1γ12 + xβ + ε2 : The Supply Equation,

where

y1 represents the quantity of popcorn consumed and produced,
y2 represents the price of popcorn and
x represents the cost of maize.

These variables, which are deviations from mean values, have expected values
of zero. The effect of taking deviations is to simplify the algebra; for the
intercept terms are thereby eliminated from the equations. It is assumed that
the disturbances ε1 and ε2 are independent of the variable x, which is an
exogenous variable that it is generated in a context that lies outside the model.

In this model, the consumers of popcorn, whose behaviour is represented by
the demand equation, respond to the price of popcorn, whereas the producers,
whose behaviour is represented by the supply equation, set the price in view
of the demand for their product and in view of their costs of production. The
market is in a state of equilibrium, where the quantity produced is equal to the
quantity consumed.

Although the cost of maize is not the only cost of production, it can be
assumed, for present purposes, that it is the only one that varies significantly.
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The other costs, which are fixed, will have an effect that is subsumed in an
intercept term, which has been eliminated. The factors, other than price, that
determine the demand for popcorn are likewise assumed to be constant and are
subsumed in another intercept.

The effect of the variability of the cost of maize will be to shift the supply
curve over the more-or-less static demand curve, thereby allowing its parame-
ters to be determined from the observed variables.

The recognition of the possibility of achieving the identification of the pa-
rameters of models with jointly dependent variables motivated a search for
efficient methods of simultaneous-equation estimation. The problem was ad-
dressed and solved in theory by a formidable group of young statisticians work-
ing under the auspices on the Cowles Commissions in the late 1940’s and the
early 1950’s

The Cowles Commission for Research in Economics was founded in Col-
orado Springs in 1932 by Alfred Cowles, a businessman and economist. In
1939, it moved to the University of Chicago. In 1948, Tjalling C. Koopmans
became its director; and it was under his guidance that the definitive work on
simultaneous-equation estimation occurred. Rising opposition to the Cowles
Commission by the department of economics at University of Chicago during
the 1950’s encouraged the Cowles group to move to Yale University in 1955,
where the Commission was reincarnated as the Cowles Foundation.

The methods for estimating simultaneous-equation systems were the
indirect least-squares method, the method of limited-information maximum-
likelihood (Anderson and Rubin 1949, Anderson 1950 and Koopmans and Hood
1953) and the method of full-information maximum-likelihood (Koopmans, Ru-
bin, and Leipnik 1950).

It is fair to say that the maximum-likelihood methods defeated the prac-
titioners of their time. In the first place, the methods demanded computing
facilities that were not widely available. Also, their mathematical derivations
were demanding and they were not widely understood. However, in the late
1950’s and the early 1960’s these methods were effectively reinvented under
the guise of two-stage least squares (Basmann 1957 and Theil 1953, 1958) and
three-stage least-squares (Zellner and Theil 1962) and in a manner that ren-
dered them widely intelligible.

The Advent and the Demise of the Large-Scale Econometric Model

The idea of the joint or simultaneous determination of certain economic
variables met with a degree of resistance from several parties. In a paper titled
Causal Ordering and Identification, which was published in a Cowles Founda-
tion Monograph, Herbert Simon (1953) argued that multi-equation econometric
models should be structured in a recursive manner, such that the inputs to each
equation would be predetermined by preceding equations.

In his paper, Simon provided the following simple example: poor growing
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weather → small crop yield → increase in price of wheat. The associated system
of equations may be written as follows:

a11x1 = ε1,

a21x1 + a22x2 = ε2,

a32x2 + a33x3 = ε3.

Here, x1 is an index of the weather, x2 is the size of the crop and x3 is the price
of wheat. The three equations determine these three variables in sequence,
which can be portrayed by writing x1 → x2 → x3. It can be seen that this is
also a temporal sequence, albeit that Simon was keen to assert that a causal
ordering is not necessarily predicated on a temporal ordering.

Without doubt, the existence of a temporal ordering amongst the equations
can greatly alleviate the problems of identification and estimation, as well as
lending a dynamic quality to the models. To see this, we need only consider a
simple elaboration of Simon’s model in which the farmers growing this year’s
crop are reacting to last year’s prices.

The so-called cobweb model depicts farmers who overreact, to the extent
that a high price, last year, for their crops will lead, this year, to an oversupply
and to a glut on the market. The consequent fall in price will lead the farmers,
next year, to reduce the size of their crop, which will occasion a rise in prices.

These circumstances will generate a repetitive cycle of increasing and de-
clining crop yields in successive years, accompanied by falling and rising prices.
An issue arising is whether, over time, the cycles will be of an increasing or of
a decreasing amplitude. In theory, the matter depends on the geometry of the
diagram of supply and demand.

The work of the Cowles Commission on simultaneous-equation modelling
was accompanied by an increasing interest in large-scale macroeconometric
models, which were proposed as indispensable aids to governmental decision
making.

The Dutch economist Jan Tinbergen developed the first comprehensive
national model, which he first built for the Netherlands (Tinbergen 1937) and
later applied to the United States (Tinbergen 1939) and to the United Kingdom
after World War II (Tinbergen 1951). The first global macroeconomic model,
the Wharton Econometric Forecasting Associates’ LINK project, was initiated
by Lawrence Klein. The model was cited in 1980, when Klein was awarded the
Nobel Prize in Economics, as Tinbergen had been, together with the Norwegian
economist Ragnar Frishe, in 1969.

In the hands of the statisticians of the national central statistical offices,
such models grew to include hundreds of equations, each of which proposed to
depict some structural aspect of the economy or the behaviour of some well-
defined group of economic agents. There were equations for estimating a variety
of consumer demands, equations for describing industrial capital investments,
equations to describe house building activities in detail, and so forth.
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In reality, much of the modelling was on an ad-hoc basis, and it ignored the
methodology of the Cowles Commission. The beautiful and grandiose model of
linear simultaneous-equation systems was insufficiently flexible for the purposes
of the macroeconometric models, which embodied intractable non-linearities in
many of their sections.

Such models survive to this day within various governmental agencies,
often in highly refined forms. However, the prestige of large-scale macroecono-
metric models was severely damaged in the 1970’s, when it was revealed that
their forecasting performance was often far inferior to that of the simple un-
conditional time-series models of the autoregressive–moving average (ARMA)
variety.

Part of the problem here was that the equations of the macroeconometric
models had paid insufficient attention even to the simple laws of linear dynamic
systems, which is precisely what the ARMA models are. Such models were
popularised in the 1970’s with the publication of the book of Box and Jenkins
(1970).

Dynamic Economic Models

In an experimental situation, where one might be investigating the effects
of an input variable x on a mechanism or on an organism, one can set the
value of x and then wait until the system has achieved an equilibrium before
recording the corresponding value of the output variable y.

In economics, we are often interested in the dynamic response of y to
changes in x; and, given that x is continuously changing, the system might never
reach an equilibrium. Moreover, it is in the nature of economic relationships
that the adjustments of y to changes in x are distributed widely through time.

In the early days of econometrics, attempts were made to model the dy-
namic responses primarily by including lagged values of x on the RHS of the
regression equation; and the so-called distributed-lag model was commonly
adopted, which takes the form of

yt = β0xt + β1xt−1 + · · · + βkxt−k + εt.

(For an example of this approach, see Alt 1942.) Here, the sequence of coeffi-
cients {β0, β1, . . . , βk} constitutes the impulse-response function of the mapping
from {xt} to {yt}. That is to say, if we imagine that, on the input side, the
signal sequence is of the form

{xt} =
{

. . . , 0, 1, 0, . . . , 0, 0, . . .},

which comprises a single unit impulse preceded and followed by zero values,
then the output of the transfer function would be

{rt} =
{

. . . , 0, β0, β1, . . . , βk, 0, . . .
}
.
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A problem with the distributed-lag formulation is that it is profligate in
its use of parameters; and given that, in a dynamic econometric context, the
sequence {xt} is likely to show strong serial correlation, we may expect to
encounter problems of multicollinearity—which is to say that the estimates of
the parameters will be ill-determined with large standard errors.

It is difficult to specify a priori what the form of a lag response will take
in any particular econometric context. Nevertheless, there is a common pre-
sumption amongst economists that the coefficients will all be of the same sign,
and that, if this sign is positive, their values will rise rapidly to a peak before
declining gently to zero.

One such lag scheme, which accords with these expectations and which
is sparing in its use of parameters, is the geometric lag scheme. Its impulse
response is a geometrically declining sequence

{rt} =
{

. . . , 0, β, βφ, βφ2, . . . , βφk, . . .
}
,

which continues indefinitely, albeit that it may decline quite rapidly.
The effect of the pre-sample data values can be summarised with the help

of a parameter θ = β{x−1 + φx−1 + φ2x−3 + · · ·}, which will enable the model
to be written as

yt = β{xt + φxt−1 + · · · + φt−1x0} + φtθ + εt.

This is the model of Koyk (1954). Although the equation is not amenable to
ordinary least-squares regression, it is reasonably straightforward to estimate
its parameters.

A simpler way of creating a geometric lag scheme is to include a lagged
value of the dependent variable on the RHS of the equation to give

yt = φyt−1 + βxt + ε.

This is described, alternatively, as a model with a single lagged dependent
variable or as a model with first-order feedback.

By repeated substitution, we obtain

yt = φyt−1 + βxt + εt

= φyt−2 + β
{
xt + φxt−1

}
+ εt + φεt−1

...
= φnyt−n + β

{
xt + φxt−1 + · · · + φn−1xt−n+1

}
+ εt + φεt−1 + · · · + φn−1εt−n+1.

If |φ| < 1, then lim(n → ∞)φn = 0; and it follows that, as the number
of repeated substitutions increases indefinitely, the equation will tend to the
limiting form of

yt = β

∞∑
i=0

φixt−i +
∞∑

i=0

φiεt−i.
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Both the systematic and the stochastic part of this equation comprise the ge-
ometric lag scheme, whereas, in the previous model, the disturbance term εt

was assumed to be an element of a sequence of independently and identically
distributed random variables.

Nerlove (1956) was an influential advocate of models with lagged depen-
dent variables. In their original form, before the expansion that gives rise to
the impulse response function, they are amenable to estimation by ordinary
least-squares regression.

Whereas it can be justified by the fact that it is the consequence of some
simple behavioural models—namely of the partial adjustment mechanism and
the adaptive expectations mechanism—the geometric lag scheme has a limited
ability to model the variety of dynamic behaviour that one is liable to discover
amongst economic variables. For that reason, one might be advised, at least,
to adopt a second-order feedback scheme of the sort that is embodied in the
following equation:

yt = α1yt−1 + α2yt−2 + β0xt + β1xt−1 + εt.

The second-order model is capable of generating a variety of impulse responses,
including a damped sinusoidal response.

The failure of its equations to accommodate an adequate range of dynamic
behaviour may have been one of the main reasons for the demise of the large-
scale macroeconometric models.

The simple autoregressive moving-average models, which often show supe-
rior predictive powers, lack any explicit explanatory variables. Such models are
aimed at capturing the inherent dynamics of the data sequences. They take
the generic form of

yt = α1yt−1 + α2yt−2 + · · · + αpyt−p

+ μ0εt + μ1εt−1 + · · · + μqεt−q.

This equation comprises an autoregressive component with pth-order feed-
back and a moving-average component formed as a weighted sum of q successive
independently and identically distributed random variables.

Additional flexibility arises from the possibility of replacing the variable
yt by its first difference dt = yt − yt−1 or by its second difference dt − dt−1 =
yt−2yt−1+yt−2 to create the so-called autoregressive integrated moving average
(ARIMA) models.

The integrated models that account for the differences of a random variable
have provided effective means of mimicking the trajectories of macroeconomic
variables, such as income and consumption. The simplest of such models, which
defines a random-walk process in one dimension, has the equation

dt = yt − yt−1 = εt,

14
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Figure 2. A random walk generated by the equation yt = yt−1 + α + εt together

with an interpolated regression line. The variance of the white-noise disturbance is

V (εt) = 1 and the drift parameter is α = 0.2.

wherein εt is an element from a sequence of independently and identically
distributed random variables.

By applying the process of back substitution that has generated the geo-
metric distributed lag from the model with first-order feedback, it can be shown
that

yt = εt + εt−1 + · · · + ε1 + y0.

Here, y0 represents the starting value at time t = 0 of a process that wan-
ders haphazardly in random steps. A random walk in two dimensions, which
resembles a drunkard’s walk, is described as Brownian motion.

Although the process defined above has a zero expected value, it has no
central tendency and its variance or dispersion increases with each step. A
process that has a tendency to give rise to increasing values can be obtained
by including of a constant term α > 0, to create the equation

dt = yt − yt−1 = α + εt.

The outcome is described as a random walk with drift. This is illustrated in
Figure 2.

The process that begins at time t = 0 has an expected value of E(yt) = αt
for its level. The variance of yt continues to increase with each step. Therefore,
unless the steps are very small in comparison to the value of α, the expected
value of yt will be a poor predictor of its actual value.

Problems with Trended Data

Many econometric data sequences are nonstationary, with trends that per-
sist for long periods. However, the usual linear regression procedures presup-
pose that the relevant moment matrices will converge asymptotically to fixed

15
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limits as the sample size increases. This cannot happen if the data are trended,
in which case, the standard techniques of statistical inference will not be ap-
plicable.

In order to apply the regression procedures successfully, it is necessary to
find some means of reducing the data to stationarity. A common approach is
to subject the data to as many differencing operations as may be required to
achieve stationarity. Often, only a single differencing is required.

A problem with differencing is that it tends to remove, or at least to
attenuate severely, some of the essential information regarding the behaviour
of economic agents. There may be processes of equilibration by which the
relative proportions of econometric variables are maintained over long periods
of time. The evidence of this will be lost in the process of differencing the data.

When the original undifferenced data sequences share a common trend,
the coefficient of determination in a fitted regression is liable to be high; but
it is often discovered that the regression model looses much of its explanatory
power when the differences of the data are used instead.

In such circumstances, one might use the so-called cointegrating error-
correction model. The model depicts a mechanism whereby two trended eco-
nomic variables maintain an enduring long-term proportionality with each
other. Moreover, the data sequences comprised by the model are stationary,
either individually or in an appropriate combination; and this enables us apply
the standard procedures of statistical inference that are available to models
comprising data from stationary processes.

Consider taking yt−1 from both sides of the equation of yt = φyt−1+βxt+ε,
which represents the first-order dynamic model. This gives

dt = yt − yt−1 = (φ − 1)yt−1 + βxt + εt

= (1 − φ)
{

β

1 − φ
xt − yt−1

}
+ εt

= λ
{
γxt − yt−1

}
+ εt,

where λ = 1 − φ and where γ is the gain of the transfer function, which
is described, by economists, as the long-term multiplier in the relationship
between x and y. This is the so-called error-correction form of the equation;
and it indicates that the change in yt is a function of the extent to which the
proportions of the value xt and yt−1 differs from those that would prevail in a
steady state.

The error-correction form provides the basis for estimating the parameters
of the model when the signal sequence {xt} is trended or nonstationary. A
pair of nonstationary series that maintain a long-run proportionality are said
to be cointegrated. It is easy to obtain an accurate estimate of γ, which is the
coefficient of proportionality, simply by running a regression of yt−1 on xt.

Once a value for γ is available, the remaining parameter λ may be esti-
mated by regressing dt = yt − yt−1 upon the composite variable {γxt − yt−1}.
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This amounts to the two-step procedure of Engle and Granger (1987). However,
if the error-correction model is an unrestricted reparametrisation of an original
model in levels, then the parameters of the latter can be estimated by ordinary
least-squares regression. The estimates of the parameters of the error-correction
form of the model can be inferred directly from the least-squares estimates of
the parameters of the original model in levels.

The developments that culminated in cointegration analysis occurred on
many fronts. However, it is commonly agree that a significant impetus was
given by Granger and Newbold (1978), who revealed the dangers of reaching
spurious conclusions when regression models are fitted to the levels of trended
economic variables. It was revealed that the success of econometric analyses
that had delivered models that seemed to fit such data exceeding well was
illusory.

The analysis of Engle Granger (1987), for which they were jointly awarded
a Nobel prize, was extended by others, including Johansen (1988), who showed
how to estimate multi-equations systems that comprise several cointegrating
relationships amongst their variables.

In the context of a multi-equation linear system, a cointegrating relation-
ship amounts to a linear combination of the observed trended variables that
creates an untrended resultant. Such relationships exist only to the extent that
the variables within the economy obey stringent laws of proportionality. That is
to say, multi-equation models of cointegration create straightjackets that often
cannot be fitted easily to the economic variables.

Econometricians continue to seek more flexible ways of modelling the com-
plex interdependencies of economics variables.
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