
8. FILTERING SHORT NONSTATIONARY SEQUENCES

Wiener-Kolmogorov Filtering of Short Stationary Sequences

Assume that the observations running from t = 0 to t = T − 1 are gathered in a vector

y = ξ + η, (8.1)

where ξ is the signal component and η is the noise component. It may be assumed that
these are from independent zero-mean Gaussian processes that are completely characterised
by their first and second moments. These are

E(ξ) = 0, D(ξ) = Ωξ,

E(η) = 0, D(η) = Ωη,

and C(ξ, η) = 0.

(8.2)

A consequence of the independence of ξ and η is that D(y) = Ω = Ωξ + Ωη.

The autocovariance or dispersion matrices, which have a Toeplitz structure, may be obtained
by replacing the argument z within the relevant autocovariance generating functions by the
matrix LT = [e1, . . . , eT−1, 0].
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Using LT in place of z in the autocovariance function γ(z) of the data process gives

D(y) = Ω = γ0IT +
T−1∑
τ=1

γτ (Lτ
T + F τ

T ), (8.3)

where FT = L′
T is in place of z−1. Since LT and FT are nilpotent of degree T , such that

Lq
T , F q

T = 0 when q ≥ T , the index of summation has an upper limit of T − 1.

The optimal predictors of the signal and the noise components are their minimum-mean-
square-error estimates

E(ξ|y) = E(ξ) + C(ξ, y)D−1(y){y − E(y)} (8.4)
= Ωξ(Ωξ + Ωη)−1y = Zξy = x,

E(η|y) = E(η) + C(η, y)D−1(y){y − E(y)} (8.5)
= Ωη(Ωξ + Ωη)−1y = Zηy = h;

and it can be seen that y = x + h. The error dispersion matrices, which are equal, are

D(ξ|y) = D(ξ) − C(ξ, y)D−1(y)C(y, ξ) (8.6)
= Ωξ − Ωξ(Ωξ + Ωη)−1Ωξ,

D(η|y) = D(η) − C(η, y)D−1(y)C(y, η), (8.7)
= Ωη − Ωη(Ωξ + Ωη)−1Ωη.
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The estimating equations can be obtained via the criterion

Minimise S(ξ, η) = ξ′Ω−1
ξ ξ + η′Ω−1

η η subject to ξ + η = y. (8.8)

Since S(ξ, η) is the exponent of the normal joint density function, these are the maximum-
likelihood estimates.

Setting η = y − ξ gives the function

S(ξ) = ξ′Ω−1
ξ ξ + (y − ξ)′Ω−1

η (y − ξ). (8.9)

The minimising value is
x = (Ω−1

ξ + Ω−1
η )−1Ω−1

η y

= y − Ωη(Ωη + Ωξ)−1y = y − h.
(8.10)

A simple procedure for calculating the estimates x and h begins by solving the equation

(Ωξ + Ωη)b = y (8.11)

for the value of b. Thereafter, one can generate

x = Ωξb and h = Ωηb. (8.12)

If Ωξ and Ωη have a limited number of nonzero bands, then so has the lower-triangular
matrix G, which is the Cholesky factor of Ωξ + Ωη = GG′. The system GG′b = y may be
cast in the form of Gp = y and solved for p. Then, G′b = p can be solved for b.
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Filtering via Fourier Methods

The matrix of the circular autocovariances of the data is obtained by replacing the argument
z in the autocovariance generating function γ(z) by the matrix KT = [e1, . . . , eT−1, e0]:

D◦(y) = Ω◦ = γ(KT ) = γ0IT +
∞∑

τ=1

γτ (Kτ
T + K−τ

T ) = γ◦
0IT +

T−1∑
τ=1

γ◦
τ (Kτ

T + K−τ
T ). (8.13)

The circular autocovariances would be obtained by wrapping the sequence of ordinary auto-
covariances around a circle of circumference T and adding the overlying values. Thus

γ◦
τ =

∞∑
j=0

γjT+τ , with τ = 0, . . . , T − 1. (8.14)

The circulant autocovariance matrix is amenable to a spectral factorisation of the form

Ω◦ = γ(KT ) = Ūγ(D)U, (8.15)

wherein the jth element of the diagonal matrix γ(D) is

γ(exp{iωj}) = γ0 + 2
∞∑

τ=1

γτ cos(ωjτ). (8.16)
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The filtering can also be implemented using the circulant dispersion matrices

Ω◦
ξ = Ūγξ(D)U, Ω◦

η = Ūγη(D)U and

Ω◦ = Ω◦
ξ + Ω◦

η = Ū{γξ(D) + γη(D)}U,
(8.17)

where γξ(D) and γη(D) contain the ordinates of the component spectra. Replacing the
dispersion matrices within (8.5) and (8.6) by their circulant counterparts gives

x = Ūγξ(D){γξ(D) + γη(D)}−1Uy = Pξy, (8.18)

h = Ūγη(D){γξ(D) + γη(D)}−1Uy = Pηy. (8.19)

To implement the filters, a Fourier transform is applied to y to give Uy, which is in the
frequency domain. Then, the diagonal weighting matrices Jξ = γξ(D){γξ(D) + γη(D)}−1

and Jη = γη(D){γξ(D) + γη(D)}−1 are applied. Finally, the products are carried back into
the time domain by the inverse Fourier transform, which is represented by the matrix Ū .

If the components of y(t) reside in disjoint frequency bands, then these filters can achieve a
perfect separation.
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Dealing with Trended Data

The trend, estimated via polynomial regression, may be subtracted from the data, or else the
data may be reduced to stationarity by taking differences. Both methods entail the matrix
difference operator.

The ordinary second-difference operator acting on x(t) = {xt; t = 0,±1,±2, . . .} is

∇2 = (1 − L)2 = 1 − 2L + L2, (8.20)

where L is such that Lx(t) = x(t − 1).

For finite samples, the operator is a submatrix Q′ of ∇2(IT ) = ∇2
T = [Q∗, Q]′, illustrated for

T = 6 as follow:

∇2
6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
−2 1 0 0 0 0

1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[

Q′
∗

Q′

]
. (8.21)
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The inverse matrix is Σ2
T = [S∗, S], and there are

[S∗ S ]
[

Q′
∗

Q′

]
= S∗Q

′
∗ + SQ′ = IT , (8.22)

and [
Q′

∗
Q′

]
[S∗ S ] =

[
Q′

∗S∗ Q′
∗S

Q′S∗ Q′S

]
=

[
I2 0
0 IT−2

]
. (8.23)

The columns of submatrix S∗ provide a basis for the set of all polynomials of degree d − 1.

For T = 6, there is

∇−2
6 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 | 0 0 0 0
2 1 | 0 0 0 0
3 2 | 1 0 0 0
4 3 | 2 1 0 0
5 4 | 3 2 1 0
6 5 | 4 3 2 1

⎤
⎥⎥⎥⎥⎥⎦

= [S∗ S ] . (8.24)

The elements of the columns are the coefficients of the binomial expansion of (1 − z)−2.
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The OLS estimator of the trend ordinates is the vector

p = S∗(S′
∗S∗)−1S′

∗y. (8.25)

For an alternative expression, we use the identity

S∗(S′
∗S∗)−1S′

∗ = I − Q(Q′Q)−1Q′, (8.26)

which follows since Q and S∗ are complementary matrices. This gives

p = y − Q(Q′Q)−1Q′y. (8.27)

The residual vector is

e = Q(Q′Q)−1Q′y. (8.28)

Observe that e contains exactly the same information as the vector of differences Q′y. The
structure of the low-frequency spectrum, which might not be visible in the periodogram of
the differences, is evident in the periodogram of the residuals.
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Figure. The quarterly series of the logarithms of consumption in the U.K., for the years 1955

to 1994, together with a quadratic trend interpolated by least-squares regression.
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Figure. The residual sequence from fitting a quadratic trend to the logarithmic consumption

data. The interpolated line, which represents the business cycle, has been synthesised from the

Fourier ordinates in the frequency interval [0, π/8].
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Figure. The differences of the logarithmic consumption data.
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Figure. The periodogram of the logarithms of consumption in the U.K., for the years 1955 to

1994.
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Figure. The periodogram of the first differences of the logarithmic consumption data.
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Figure. The periodogram of the residual sequence obtained from the linear detrending of the

logarithmic consumption data.
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Recovering the Trend Component

The differencing of the data y to give g and the recovery of y from g are represented by[
Q′

∗
Q′

]
y =

[
g∗
g

]
and y = S∗g∗ + Sg, (8.29)

where p = S∗g∗ is a polynomial of degree d− 1 over t = 0, 1, . . . , T − 1, when d is the degree
of differencing. Let

Q′y = Q′(x + h) = z + k = g, (8.30)

where x is the trend component and h is the residue, and z and k are their differenced
versions.

To recover a trend estimate x = S∗z∗ + Sz requires the starting values in z∗. The criterion
for finding them is

Minimise (y − S∗z∗ − Sz)′(y − S∗z∗ − Sz) with respect to z∗. (8.31)

The solution is
z∗ = (S′

∗S∗)−1S′
∗(y − Sz). (8.32)

To recover the residue component h = Sk + S∗k∗, the criterion is

Minimise (S∗k∗ + Sk)′(S∗k∗ + Sk) with respect to k∗. (8.33)

The solution is
k∗ = −(S′

∗S∗)−1S′
∗Sk. (8.34)
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Wiener–Kolmogorov Estimates from Trended Data

The differenced data vector, which is stationary, is

Q′y = Q′ξ + Q′η = δ + κ = g. (8.35)

The dispersion matrices of the differenced components are

D(δ) = Ωδ and D(κ) = Q′ΩηQ. (8.36)

Let the estimates of ξ, η, δ = Q′ξ and κ = Q′η be denoted by x, h, d and k respectively.
Then

d = Ωδ(Ωδ + Ωκ)−1g = Ωδ(Ωδ + Q′ΩηQ)−1Q′y, (8.37)

k = Ωκ(Ωδ + Ωκ)−1g = Q′ΩηQ(Ωδ + Q′ΩηQ)−1Q′y. (8.38)

It can be shown that the estimate of the residue vector is

h = ΩηQ(Ωδ + Q′ΩηQ)−1Q′y, (8.39)

which differs from k by the omission of the leading differencing matrix Q′. The trend estimate
x can be obtained from y by the subtraction of the estimated residue:

x = y − h = y − ΩηQ(Ωδ + Q′ΩηQ)−1Q′y. (8.40)
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Figure. The residual sequence from fitting a linear trend to the logarithms of the Gross

Domestic Product data. The interpolated line, which represents the business cycle, has been

synthesised from the Fourier ordinates in the frequency interval [0, π/8].
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Figure. The trend/cycle component of U.K. Gross Domestic Product determined by the

Fourier method, superimposed on the logarithmic data.



D.S.G. POLLOCK: Lectures in Lodz

A Derivation of the Hodrick–Prescott Filter

It is assumed that the data vector y = ξ + η, comprises a component ξ generated by a
second-order random walk and a component η that is generated by a white-noise process.
Recall that Q′ denotes the matrix version of the second-difference operator. Then

Q′y = Q′ξ + Q′η = ζ + Q′η, (8.41)

where
E(ζ) = 0, D(ζ) = σ2

ζIT−2,

E(η) = 0, D(η) = σ2
ηIT ,

and C(ζ, Q′η) = 0.

(8.42)

The independence of ξ and η implies that D(Q′y) = σ2
ηQ′Q + σ2

ζI.

On the assumption that the components have a normal distribution, there is the following
joint density function:

N(ζ, η) = (2π)1−T σ2−T
ζ σ−T

η exp{−1
2
(σ−2

ζ ξ′QQ′ξ + σ−2
η η′η)}. (8.43)
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The maximum-likelihood estimate x of the trend component ξ is found by minimising a
criterion function that is derived from the quadratic exponent of the density function by
setting η = y − ξ:

S(ξ) = σ−2
ζ ξ′QQ′ξ + σ−2

η (y − ξ)′(y − ξ). (8.44)

The minimising value of ξ is

x = σ−2
η (σ−2

ζ QQ′ + σ−2
η I)−1y. (8.45)

According to the matrix inversion lemma, there is

(σ−2
ζ QQ′ + σ−2

η I)−1 = σ2
η

{
I − Q(Q′Q + [σ2

ζ/σ2
η]I)

}−1

Q′. (8.46)

Using this in (8.45) and writing σ2
ζ/σ2

η = λ−1, we get

x = y − Q(Q′Q + λ−1I)−1Q′y. (8.47)

This is the appropriate finite-sample version of the H–P trend-estimation filter.
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