3. THE DISCRETE FOURIER TRANSFORM

Complex Numbers

There are three ways of representing the conjugate complex numbers A and \*:

A=a+if = p(cosf +isinf) = pe'?,

i6

(3.1)
AN =a—if = p(cosf —isinf) = pe .

Here, there are

p=+az+ [? and tanf = 3/a. (3.2)

These are the Cartesian form, the trigonometrical form and the exponential form. The
parameter p = || is the modulus of the roots and the parameter § = arg()\), is the argument
of the exponential form. The Cartesian and trigonometrical representations are understood
by considering the Argand diagram ovrleaf.
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> Re

Figure The Argand diagram showing a complex
number A = « + 1 and its conjugate \* = o — 3.
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The exponential form is understood by considering the series expansions of cosf and isinf

about the point 8 = 0:
62 o9+ 9"
cos@={1———i—————|—---},

21 41 6!
(3.3)
WP P 6% i0° 107
A R T I TH &
Adding the series gives
. U T/
cosf +isinf = 1—|—1H—a—§+ﬂ+“-} (3.4)
= ¢lf,
Likewise, subtraction gives '
cosf —isinf = e 17, (3.5)
Equations (3.4) and (3.5) are known as Euler’s formulae. The inverse formulae are
0, ,—if
cosf = © e (3.6)
2
and . y »
a1 ey _ € —e
sinf = 2(6 e %) TR (3.7)
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Trigonometrical Identities

The addition theorems or compound-angle theorems are familiar from elementary trigonom-
etry where they are proved by geometric means:

(a) cos(A + B) = cos Acos B — sin Asin B,
(b) cos(A — B) = cos A cos B + sin Asin B,
(c) sin(A + B) = sin Acos B + cos Asin B,
(d) sin(A — B) = sin Acos B — cos Asin B.

(3.8)

We can also prove these using Euler’s equations from (3.6) and (3.7). Consider, for example,
the first equation (a). We have

cos(A+ B) = %{ exp (i[A + B]) + exp ( —i[A + B])}

— %{ exp(id) exp(iB) + exp(—iA) exp(—iB)}

1 - - (3.9)
= 5{(COSA—|—ISIDA)(COSB—|—181HB)—|—

(cos A —isin A)(cos B —isin B) }

— cos Acos B — sin Asin B.
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The other relationships are established likewise.

From the addition theorems, we can directly establish the following sum-product transfor-

mations:

sin A cos B = %{ sin(A + B) + sin(A — B) },
1

cos Asin B = —{sin(A + B) —sin(A — B)},
% (3.10)

cos Acos B = 5{ cos(A + B) + cos(A — B) },

sin Asin B = %{COS(A — B) — cos(A+ B)}.
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Trigonometrical Orthogonality Conditions

o 0, ifj#k;
(a) / cos(jz)cos(kx)dr = ¢ w, if j =k >0;
° o, ifj=k=0:

0, ifj+#k; (3.11)
m, ifj=k>0;

(b) /027T sin(jx) sin(kx)dz = {

27
(c) / cos(jx)sin(kx)dx =0, for all j, k.
0

To prove the results in (3.11)(a), we may use (3.10)(c) to rewrite the integral as

27 27
1
/ cos(jx) cos(kx)dx = 5 / { cos(|j + k|x) + cos([j — k]x)}daz
0 0
If 7 # k, then both the cosine terms complete an integral number of cycles over the range
0, 27]; and, therefore, they integrate to zero. If j = k > 0, then the second cosine becomes
unity, and, therefore, it integrates to 27 over the range [0, 27] whilst the first cosine term
integrates to zero. If j = k = 0, then both cosine terms become unity and both have integrals
of 2.
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The Fourier Decomposition of a Time Series

An arbitrary sequence {y;;t =0,1,...,T — 1} of T = 2n data points can expressed in terms
of T" sinusoidal functions. If
279 T
L R 3.12
Wj T J n=s5 ( )
which are at equally spaced points in the interval [0, 7], then
Y = Z {ozj cos(w;t) + B, sin(wjt)}. (3.13)
7=0
Let ¢; = [coj,...,cr—1,;] and s; = [so,...,87—1,] represent vectors of 1" values of the

functions cos(w;t) and sin(w;t), respectively. Then, there are the following orthogonality

conditions:
cie; =0 if i #j,
s;8;, =0 if i #£ 7, (3.14)
cis; =0 forall i,j.
In addition, there are the following sums of squares:
/ /
coCo = CpCn =T,
S080 = 8.8, = 0, (3.15)
, T
2

/ —
CjCJ = SJ

S5 =

6
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The vector ¢ = [1,1,...,1]" = ¢ is just the summation vector. The ‘regression’ formulae for
the Fourier coefficients are therefore

ag = (V1) Ny = T Zyt =1, (3.16)

t
= (cey) iy = 1 3.17
a; = (cjcj) cjy—TZytcoswz : (3.17)

¢

/ -1/ 2 .

B = (s;85)" siy = T Zyt sin w;t. (3.18)

t

_ 1 .

o, = (ccp) iy = 7 Z(—l)tyt, if T =2n. (3.19)
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The Periodogram and the Spectral Analysis of Variance

There is a complete decomposition of the sum of squares of the elements of y which is
analogous to that of a regression analysis:

y—ozobla—i—Zoz c]—l—z (3.20)

Consider writing o3¢/t = §?//t = ¢’y where ¥ = [y,...,%] is the vector whose repeated

element is the sample mean 3. It follows that 'y — adi/t = v’y — ¥’y = (y — §)'(y — 7).
Therefore, we can rewrite the equation as

(y—9)(y Z{a +67} == Zp?, (3.21)

and it follows that we can express the variance of the sample as

T—1 n

S SR A (e

t=0 j=1

o

The proportion of the variance which is attributable to the component at frequency w; is
(aZ + 5%)/2 = p7/2, where p; is the amplitude of the component.

(3.22)
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Figure. Wolfer’s Sunspot numbers 1749-1924
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Figure 3. The periodogram of Wolfer’s Sunspot numbers 1749-1924.
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The Periodogram and the Empirical Autocovaraiances

A natural way of representing the serial dependence of the elements of a data sequence is to
estimate their autocovariances. The empirical autocovariance of lag 7 is

T—-1

Z(yt — ) WYt—r — Y)- (3.23)

t=7

Cr =77

The empirical autocorrelation of lag 7, defined by r, = ¢, /¢y, provides a measure of the
relatedness that is independent of the units of measurement.

It is straightforward to establish the relationship between the periodogram and the sequence
of autocovariances. The periodogram may be written as

2
I]_T

{Zcos wit)(ye — } {Zsmwj (ys — y)}Ql. (3.24)

The identity > , cos(w;t)(y: —y) = D, cos(w;t)y; follows from the fact that, by construction,
>, cos(w;t) = 0 for all j.
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Expanding the squares in (3.24) gives

() =3 { 32 3 costet)cosys)e ) ) }
;{zzsm o)) o1~ )0 9)

and, via the identity cos(A) cos(B) + sin(A) sin(B) = cos(A — B), this becomes

1) = +{ > 3oyt~ o~ D) - ol (3.26)

Next, on defining 7 = ¢t — s and writing ¢; = > _,(y+ — ¥)(yt—r — y)/T, the expression is

reduced to
T—1

Z cos(w;T)cr, (3.27)

T=1—

which is a Fourier transform of the sequence of empirical autocovariances.

10
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Complex Exponential Forms

The equation

S

Yy = {ozj cos(w;t) + B, sin(wjt)}. (3.28)
§=0

can be written in a more concisely using

1 : .
cos(w;t) = 2( et 4 e7@it) and sin(w;t) = ?l(e“"jt — e Wit), (3.29)

Then

=0 =0
" . o (3.30)
_ chelet _|_ZC;<6 iwjt Z Cjelet7
7=0 7=0 j=—n

where (; = (a; —i8;)/2, which has (7 = (_; = (o; +i3;)/2 as its complex conjugate. Also
CO = p and Cn = Op.

11
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The exponential exp(—iw;) = exp(—i2nj/T) is T-periodic in the index j. Therefore,

exp(—iw;) = exp(—iwr_;). Likewise for exp(iw;). By taking (¥ = (_; = (r—;, we may
write

T-1
ye=» e, (3.31)
=0

wherein the time and frequency indices aret,5 = 0,1,...,T—1. The sequence (p,(1,...,(r_1
constitute the spectral ordinates of the data. The inverse of (3.31) is the transform that maps
from the data to the spectral ordinates:

1 T—1
G =7 D et (3.32)
t=0

Equations (3.31) and (3.32) summarise the discrete Fourier transform.

12





