
3. THE DISCRETE FOURIER TRANSFORM

Complex Numbers

There are three ways of representing the conjugate complex numbers λ and λ∗:

λ = α + iβ = ρ(cos θ + i sin θ) = ρeiθ,

λ∗ = α − iβ = ρ(cos θ − i sin θ) = ρe−iθ.
(3.1)

Here, there are
ρ =

√
α2 + β2 and tan θ = β/α. (3.2)

These are the Cartesian form, the trigonometrical form and the exponential form. The
parameter ρ = |λ| is the modulus of the roots and the parameter θ = arg(λ), is the argument
of the exponential form. The Cartesian and trigonometrical representations are understood
by considering the Argand diagram ovrleaf.
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Figure The Argand diagram showing a complex

number λ = α + iβ and its conjugate λ∗ = α − iβ.
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The exponential form is understood by considering the series expansions of cos θ and i sin θ
about the point θ = 0:

cos θ =
{

1 − θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

}
,

i sin θ =
{

iθ − iθ3

3!
+

iθ5

5!
− iθ7

7!
+ · · ·

}
.

(3.3)

Adding the series gives

cos θ + i sin θ =
{

1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+ · · ·

}
= eiθ.

(3.4)

Likewise, subtraction gives
cos θ − i sin θ = e−iθ. (3.5)

Equations (3.4) and (3.5) are known as Euler’s formulae. The inverse formulae are

cos θ =
eiθ + e−iθ

2
(3.6)

and

sin θ = − i
2
(eiθ − e−iθ) =

eiθ − e−iθ

2i
. (3.7)
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Trigonometrical Identities

The addition theorems or compound-angle theorems are familiar from elementary trigonom-
etry where they are proved by geometric means:

(a) cos(A + B) = cos A cos B − sinA sinB,

(b) cos(A − B) = cos A cos B + sinA sinB,

(c) sin(A + B) = sinA cos B + cos A sinB,

(d) sin(A − B) = sinA cos B − cos A sinB.

(3.8)

We can also prove these using Euler’s equations from (3.6) and (3.7). Consider, for example,
the first equation (a). We have

cos(A + B) =
1
2
{

exp
(
i[A + B]

)
+ exp

(
− i[A + B]

)}
=

1
2
{

exp(iA) exp(iB) + exp(−iA) exp(−iB)
}

=
1
2
{
(cos A + i sinA)(cos B + i sinB)+

(cos A − i sinA)(cos B − i sinB)
}

= cos A cos B − sinA sinB.

(3.9)
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The other relationships are established likewise.

From the addition theorems, we can directly establish the following sum–product transfor-
mations:

(a) sinA cos B =
1
2
{

sin(A + B) + sin(A − B)
}
,

(b) cos A sinB =
1
2
{

sin(A + B) − sin(A − B)
}
,

(c) cos A cos B =
1
2
{

cos(A + B) + cos(A − B)
}
,

(d) sinA sinB =
1
2
{

cos(A − B) − cos(A + B)
}
.

(3.10)
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Trigonometrical Orthogonality Conditions

(a)
∫ 2π

0

cos(jx) cos(kx)dx =

⎧⎪⎨
⎪⎩

0, if j �= k;

π, if j = k > 0;

2π, if j = k = 0;

(b)
∫ 2π

0

sin(jx) sin(kx)dx =
{

0, if j �= k;

π, if j = k > 0;

(c)
∫ 2π

0

cos(jx) sin(kx)dx = 0, for all j, k.

(3.11)

To prove the results in (3.11)(a), we may use (3.10)(c) to rewrite the integral as
∫ 2π

0

cos(jx) cos(kx)dx =
1
2

∫ 2π

0

{
cos([j + k]x) + cos([j − k]x)

}
dx.

If j �= k, then both the cosine terms complete an integral number of cycles over the range
[0, 2π]; and, therefore, they integrate to zero. If j = k > 0, then the second cosine becomes
unity, and, therefore, it integrates to 2π over the range [0, 2π] whilst the first cosine term
integrates to zero. If j = k = 0, then both cosine terms become unity and both have integrals
of 2π.
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The Fourier Decomposition of a Time Series

An arbitrary sequence {yt; t = 0, 1, . . . , T − 1} of T = 2n data points can expressed in terms
of T sinusoidal functions. If

ωj =
2πj

T
, j = 0, . . . , n =

T

2
, (3.12)

which are at equally spaced points in the interval [0, π], then

yt =
n∑

j=0

{
αj cos(ωjt) + βj sin(ωjt)

}
. (3.13)

Let cj = [c0j , . . . , cT−1,j ]′ and sj = [s0,j , . . . , sT−1,j ]′ represent vectors of T values of the
functions cos(ωjt) and sin(ωjt), respectively. Then, there are the following orthogonality
conditions:

c′icj = 0 if i �= j,

s′isj = 0 if i �= j,

c′isj = 0 for all i, j.

(3.14)

In addition, there are the following sums of squares:

c′0c0 = c′ncn = T,

s′0s0 = s′nsn = 0,

c′jcj = s′jsj =
T

2
.

(3.15)
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The vector c0 = [1, 1, . . . , 1]′ = ι is just the summation vector. The ‘regression’ formulae for
the Fourier coefficients are therefore

α0 = (ι′ι)−1ι′y =
1
T

∑
t

yt = ȳ, (3.16)

αj = (c′jcj)−1c′jy =
2
T

∑
t

yt cos ωit, (3.17)

βj = (s′jsj)−1s′jy =
2
T

∑
t

yt sinωjt. (3.18)

αn = (c′ncn)−1c′ny =
1
T

∑
t

(−1)tyt, if T = 2n. (3.19)
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The Periodogram and the Spectral Analysis of Variance

There is a complete decomposition of the sum of squares of the elements of y which is
analogous to that of a regression analysis:

y′y = α2
0ι

′ι +
∑

j

α2
jc

′
jcj +

∑
j

β2
j s′jsj . (3.20)

Consider writing α2
0ι

′ι = ȳ2ι′ι = ȳ′ȳ where ȳ′ = [ȳ, . . . , ȳ] is the vector whose repeated
element is the sample mean ȳ. It follows that y′y − α2

0ι
′ι = y′y − ȳ′ȳ = (y − ȳ)′(y − ȳ).

Therefore, we can rewrite the equation as

(y − ȳ)′(y − ȳ) =
T

2

∑
j

{
α2

j + β2
j

}
=

T

2

∑
j

ρ2
j , (3.21)

and it follows that we can express the variance of the sample as

1
T

T−1∑
t=0

(yt − ȳ)2 =
1
2

n∑
j=1

(α2
j + β2

j )

=
2

T 2

∑
j

{(∑
t

yt cos ωjt

)2

+
(∑

t

yt sinωjt

)2
}

.

(3.22)

The proportion of the variance which is attributable to the component at frequency ωj is
(α2

j + β2
j )/2 = ρ2

j/2, where ρj is the amplitude of the component.
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Figure. Wolfer’s Sunspot numbers 1749–1924
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Figure 3. The periodogram of Wolfer’s Sunspot numbers 1749–1924.
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The Periodogram and the Empirical Autocovaraiances

A natural way of representing the serial dependence of the elements of a data sequence is to
estimate their autocovariances. The empirical autocovariance of lag τ is

cτ =
1
T

T−1∑
t=τ

(yt − ȳ)(yt−τ − ȳ). (3.23)

The empirical autocorrelation of lag τ , defined by rτ = cτ/c0, provides a measure of the
relatedness that is independent of the units of measurement.

It is straightforward to establish the relationship between the periodogram and the sequence
of autocovariances. The periodogram may be written as

I(ωj) =
2
T

[{ T−1∑
t=0

cos(ωjt)(yt − ȳ)
}2

+
{ T−1∑

t=0

sin(ωjt)(yt − ȳ)
}2

]
. (3.24)

The identity
∑

t cos(ωjt)(yt− ȳ) =
∑

t cos(ωjt)yt follows from the fact that, by construction,∑
t cos(ωjt) = 0 for all j.
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Expanding the squares in (3.24) gives

I(ωj) =
2
T

{ ∑
t

∑
s

cos(ωjt) cos(ωjs)(yt − ȳ)(ys − ȳ)
}

+
2
T

{ ∑
t

∑
s

sin(ωjt) sin(ωjs)(yt − ȳ)(ys − ȳ)
}

,

(3.25)

and, via the identity cos(A) cos(B) + sin(A) sin(B) = cos(A − B), this becomes

I(ωj) =
2
T

{ ∑
t

∑
s

cos(ωj [t − s])(yt − ȳ)(ys − ȳ)
}

. (3.26)

Next, on defining τ = t − s and writing cτ =
∑

t(yt − ȳ)(yt−τ − ȳ)/T , the expression is
reduced to

I(ωj) = 2
T−1∑

τ=1−T

cos(ωjτ)cτ , (3.27)

which is a Fourier transform of the sequence of empirical autocovariances.
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Complex Exponential Forms

The equation

yt =
n∑

j=0

{
αj cos(ωjt) + βj sin(ωjt)

}
. (3.28)

can be written in a more concisely using

cos(ωjt) =
1
2
(eiωjt + e−iωjt) and sin(ωjt) =

−i
2

(eiωjt − e−iωjt). (3.29)

Then

yt =
n∑

j=0

(αj − iβj

2

)
eiωjt +

n∑
j=0

(αj + iβj

2

)
e−iωjt

=
n∑

j=0

ζje
iωjt +

n∑
j=0

ζ∗j e−iωjt =
n∑

j=−n

ζje
iωjt,

(3.30)

where ζj = (αj − iβj)/2, which has ζ∗j = ζ−j = (αj + iβj)/2 as its complex conjugate. Also
ζ0 = α0 and ζn = αn.
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The exponential exp(−iωj) = exp(−i2πj/T ) is T -periodic in the index j. Therefore,
exp(−iωj) = exp(−iωT−j). Likewise for exp(iωj). By taking ζ∗j = ζ−j = ζT−j , we may
write

yt =
T−1∑
j=0

ζje
iωjt, (3.31)

wherein the time and frequency indices are t, j = 0, 1, . . . , T−1. The sequence ζ0, ζ1, . . . , ζT−1

constitute the spectral ordinates of the data. The inverse of (3.31) is the transform that maps
from the data to the spectral ordinates:

ζj =
1
T

T−1∑
t=0

yte
−iωjt. (3.32)

Equations (3.31) and (3.32) summarise the discrete Fourier transform.
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