
1. THE ALGEBRA FOR TIME-SERIES ANALYSIS

Rational Functions and the z-transform

A univariate and strictly causal transfer function mapping from the input sequence {xt} to the
output sequence {yt} can be represented by the equation

p∑
j=0

αjyt−j =
q∑

j=0

βjxt−j , with α0 = 1. (1.1)

Consider T realisations of the equation (1.1) indexed by t =∈ {0,±1,±2, . . .}. By associating each
equation with the corresponding power zt of an indeterminate algebraic symbol z and by adding
them together, a z-transform polynomial equation is derived that can be denoted by

α(z)y(z) = β(z)x(z) or, equivalently, y(z) =
β(z)
α(z)

x(z). (1.2)

Here,
y(z) = y0 + y1(z + z−1) + y2(z2 + z−2) + · · · ,

x(z) = x0 + x1(z + z−1) + x2(z2 + z−2) + · · · ,
α(z) = 1 + α1z + · · · + αpz

p and

β(z) = β0 + β1z + · · · + βqz
q

(1.3)

are described as the z-transforms of the corresponding sequences.
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Expansions of Rational Function

The rational function β(z)/α(z) = {ω0 + ω1z + ω2z
2 + · · ·

}
has a series expansion. The method of

finding the coefficients of the series expansion can be illustrated by the second-order case:

β0 + β1z

1 − φ1z − φ2z2
=

{
ω0 + ω1z + ω2z

2 + · · ·
}
. (1.4)

We rewrite this equation as

β0 + β1z =
{
1 − φ1z − φ2z

2
}{

ω0 + ω1z + ω2z
2 + · · ·

}
. (1.5)

Then, by performing the multiplication on the RHS, and by equating the coefficients of the same
powers of z on the two sides of the equation, we find that

β0 = ω0,

β1 = ω1 − φ1ω0,

0 = ω2 − φ1ω1 − φ2ω0,
...

0 = ωn − φ1ωn−1 − φ2ωn−2,

ω0 = β0,

ω1 = β1 + φ1ω0,

ω2 = φ1ω1 + φ2ω0,
...

ωn = φ1ωn−1 + φ2ωn−2.

(1.6)
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Figure 1. The impulse response of the transfer function b(z)/a(z) with a(z) = 1.0−0.673z+
0.463z2 + 0.486z3 and b(z) = 1.0 + 0.208z + 0.360z2.



D.S.G. POLLOCK: Lectures in Lodz

Representations via Toeplitz Matrices

The set of T equations can be arrayed in a matrix format as follows:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 y−1 . . . y−p

y1 y0 . . . y1−p

...
...

. . .
...

yp yp−1 . . . y0

...
...

...
yT−1 yT−2 . . . yT−p−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

1
α1
...

αp

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 x−1 . . . x−q

x1 x0 . . . x1−q

...
...

. . .
...

xq xq−1 . . . x0

...
...

...
xT−1 xT−2 . . . xT−q−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

β0

β1
...

βq

⎤
⎥⎥⎦ . (1.7)

Setting y−1 = · · · = y−p = 0 and x−1 = · · · = x−k = 0 and extending the matrices on the right
creates banded lower-triangular (LT) Toeplitz matrices of order T .

Let IT = [e0, e1, . . . , eT−1] and define LT = [0, e0, . . . , eT−2], which is a matrix lag operator. Setting
z = LT within α(z) and β(z) produces LT Toeplitz matrices A = α(LT ) and B = β(LT ). Likewise,
y(z) = y0 + y1z + · · · + yT−1z

T−1 and x(z) = x0 + x1z + · · · + xT−1z
T−1 give Y = y(LT ) and

X = x(LT ). Then,

Y Ae0 = Y α = AY e0 = Ay and, likewise, XBe0 = Xβ = BXe0 = Bx, (1.8)

where α = Ae0, β = Be0, y = Y e0 and x = Xe0 are the leading columns of the matrices.
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Representations via Circulant Matrices

Define KT = [e1, e2, . . . , eT−1, e0]. This is an orthonormal circulant matrix such that K ′
T KT =

KT K ′
T = IT . Its powers form a T -periodic sequence: KT+q = Kq for all q.

The powers K0
T = IT , KT , . . . KT−1

T form a basis for the circulant matrices of order T . If α(z) is a
polynomial of degree less than T , then there is a corresponding circulant matrix:

A = α(KT ) = α0IT + α1KT + · · · + αT−1K
T−1
T . (1.9)

An absolutely summable sequence {γi} can also be mapped into a circulant matrix by a process of
circular wrapping. Thus, if

∑ |γi| < ∞, and if γ(z) =
∑

γjz
j , then setting z = KT gives

Γ = γ(KT ) =
{ ∞∑

j=0

γjT

}
IT +

{ ∞∑
j=0

γ(jT+1)

}
KT + · · · +

{ ∞∑
j=0

γ(jT+T−1)

}
KT−1

= ϕ0IT + ϕ1KT + · · · + ϕT−1K
T−1
T .

(1.10)

Given that {γi} is a convergent sequence, it follows that the sequence of the matrix coefficients
{ϕ0, ϕ1, . . . , ϕT−1} converges to {γ0, γ1, . . . , γT−1} as T increases.

If X = x(KT ) and Y = y(KT ) are circulant matrices,
then XY = Y X is also a circulant matrix.

(1.11)
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The Spectral Factorisation of a Circulant Matrix

The spectral factorisation of KT entails the discrete Fourier transform. Define the Fourier matrix

UT = T−1/2[W jt
T ; t, j = 0, . . . , T − 1], (1.12)

of which the generic element in the jth row and tth column is

W jt
T = exp(−i2πjt/T ) = cos(ωjt) − i sin(ωjt), where ωj = 2πj/T. (1.13)

The matrix UT is a unitary, and it fulfils the condition

ŪT UT = UT ŪT = IT , (1.14)

where ŪT = T−1/2[W−jt
T ; t, j = 0, . . . , T − 1] denotes the conjugate matrix.

The operator KT can be factorised as

KT = ŪT DT UT = UT D̄T ŪT , (1.15)

where
DT = diag{1, W, W 2, . . . , WT−1} (1.16)

is a diagonal matrix whose elements are the T roots of unity, which are on the circumference of the
unit circle in the complex plane. Observe that DT is T -periodic, such that Dq+T

T = Dq
T , and that

Kq
T = ŪT Dq

T UT = UT D̄q
T ŪT for any integer q.
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Figure. The 6th roots of unity inscribed in the unit circle.
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Linear and Circular Convolutions

If ψ(j) = {ψj ; j = 0± 1,±2, . . .} are filter coefficients and if y(t) = {yt; t = 0,±1,±2, . . .} are data,
then the convolution ψ(j) ∗ y(t) = x(t) = {xt; t = 0,±1,±2, . . .}, which is the filtered sequence, has

xt =
∑

j

ψjyt−j =
∑

j

ψt−jyj . (1.17)

Convolution is also entailed in generating the coefficients of the product of two polynomials or
power series. Define the z-transforms ψ(z) =

∑
j ψjz

j , y(z) =
∑

t ytz
t and x(z) =

∑
t xtz

t. Then,
in place of the convolution, there is a multiplication or a “modulation”:

x(z) = ψ(z)y(z). (1.18)

The product X = ΨY of the LT Toeplitz matrices Ψ = ψ(LT ) and Y = y(z) entails a convolution.

There is also a process of circular convolution, which is applicable to finite sequences. If these are
{ψ0, ψ1, . . . , ψn} and {y0, y1, . . . , yn}, then the generic element of their circular convolution is

x◦
t =

∑
j

ψ◦
j y◦

t−j =
∑

t

ψ◦
j−ty

◦
t , (1.19)

wherein ψ◦
j = ψj mod n and y◦

t = yt mod n. The product X◦ = Ψ◦X◦ = {Ūγψ(D)U}{Ūγx(D)U} =
Ū{γψ(D)γ(D)x}U of the circulant matrices Ψ◦ = ψ(KT ) and Y ◦ = y(KT ) entails a circular convo-
lution. Also, it entails the frequency-domain modulation γ(D) = γψ(D)γ(D)x.
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α0 α1 α2 2.0 2.0 2.0

β3 β2 β1 β0 0 0

Figure. A method for finding the linear convolution of two sequences. The element

γ4 = α1β3 + α2β2 of the convolution may be formed by multiplying the adjacent

elements on the two rulers and by summing their products.
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Figure. A device for finding the circular convolution of two sequences. The upper

disc is rotated clockwise through successive angles of 30 degrees. Adjacent numbers

on the two discs are multiplied and the products are summed to obtain the coefficients

of the convolution.




