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An account is given of various filtering procedures that have been implemented in a

computer program, which can be used in analysing econometric time series. The pro-

gram provides some new filtering procedures that operate primarily in the frequency

domain. Their advantage is that they are able to achieve clear separations of compo-

nents of the data that reside in adjacent frequency bands in a way that the conventional

time-domain methods cannot.

Several procedures that operate exclusively within the time domain have also been

implemented in the program. Amongst these are the bandpass filters of Baxter and

King and of Christiano and Fitzgerald, which have been used in estimating business

cycles. The Henderson filter, the Butterworth filter and the Leser or Hodrick–Prescott

filter are also implemented. These are also described in this paper

Econometric filtering procedures must be able to cope with the trends that are

typical of economic time series. If a trended data sequence has been reduced to sta-

tionarity by differencing prior to its filtering, then the filtered sequence will need to be

re-inflated. This can be achieved within the time domain via the summation operator,

which is the inverse of the difference operator. The effects of the differencing can also

be reversed within the frequency domain by recourse to the frequency-response function

of the summation operator.

1. Introduction

This paper gives an account of some of the facilities that are available in a new
computer program, which implements various filters that can be used for extracting
the components of an economic data sequence and for producing smoothed and
seasonally-adjusted data from monthly and quarterly sequences.

The program can be downloaded from the following web address:

http://www.le.ac.uk/users/dsgp1/

It is accompanied by a collection of data and by three log files, which record steps
that can be taken in processing some typical economic data. Here, we give an
account of the theory that lies behind some of the procedures of the program.

The program originated in a desire to compare some new methods with exist-
ing procedures that are common in econometric analyses. The outcome has been
a comprehensive facility, which will enable a detailed investigation of univariate
econometric time series. The program will also serve to reveal the extent to which
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the results of an economic analysis might be the consequence of the choice of a
particular filtering procedure.

The new procedures are based on the Fourier analysis of the data, and they
perform their essential operations in the frequency domain as opposed to the time
domain. They depend upon a Fourier transform for carrying the data into the
frequency domain and upon an inverse transform for carrying the filtered elements
back to the time domain. Filtering procedures usually operate exclusively in the
time domain. This is notwithstanding fact that, for a proper understanding of the
effects of a filter, one must know its frequency-response function.

The sections of this paper give accounts of the various classes of filters that
have been implemented in the program. In the first category, to which section 2
is devoted, are the simple finite impulse response (FIR) or linear moving-average
filters that endeavour to provide approximations to the so-called ideal frequency-
selective filters. Also in this category of FIR filters is the time-honoured filter of
Henderson (1916), which is part of a seasonal-adjustment program that is widely
used in central statistical agencies.

The second category concerns filters of the infinite impulse response (IIR)
variety, which involve an element of feedback. The filters of this category that are
implemented in the program are all derived according to the Wiener–Kolmogorov
principle. The principle has been enunciated in connection with the filtering of
stationary and doubly-infinite data sequences—see Whittle (1983), for example.
However, the purpose of the program is to apply these filters to short non stationary
sequences. In section 3, the problem of non stationarity is broached, whereas, in
section 4, the adaptations that are appropriate to short sequences are explained.

Section 5 deals with the new frequency-domain filtering procedures. The details
of their implementation are described and some of their uses are highlighted. In
particular, it is shown how these filters can achieve an ideal frequency selection,
whereby all of the elements of the data that fall below a given cut-off frequency are
preserved and all those that fall above it are eliminated.

2. The FIR filters

One of the purposes in filtering economic data sequences is to obtain a representa-
tion of the business cycle that is free from the distractions of seasonal fluctuations
and of high-frequency noise. According to Baxter and King (1999), the business
cycle should comprise all elements of the data that have cyclical durations of no
less than of one and a half years and not exceeding eight years. For this purpose,
they have proposed to use a moving-average bandpass filter to approximate the
ideal frequency-selective filter. An alternative approximation, which has the same
purpose, has been proposed by Christiano and Fitzgerald (2003). Both of these
filters have been implemented in the program.

A stationary data sequence can be resolved into a sum of sinusoidal elements
whose frequencies range from zero up to the Nyquist frequency of π radians per
sample interval, which represents the highest frequency that is observable in sam-
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Figure 1. The frequency response of the truncated bandpass filter of 25 coeffi-

cients superimposed upon the ideal frequency response. The lower cut-off point

is at π/16 radians (11.25◦), corresponding to a period of 32 quarters, and the

upper cut-off point is at π/3 radians (60◦), corresponding to a period of the 6

quarters.

pled data. A data sequence {yt, t = 0, 1, . . . , T −1} comprising T = 2n observations
has the following Fourier decomposition:

yt =
n∑

j=0

{αj cos(ωjt) + βj sin(ωjt)}. (1)

Here, ωj = 2πj/T ; j = 0, . . . , n, are the Fourier frequencies, which are equally
spaced in the interval [0, π], whereas αj , βj are the associated Fourier coefficients,
which indicate the amplitudes of the sinusoidal elements of the data sequence. An
ideal filter is one that transmits the elements that fall within a specified frequency
band, described as the pass band, and which block elements at all other frequencies,
which constitute the stop band.

In representing the properties of a linear filter, it is common to imagine that it
is operating on a doubly-infinite data sequence of a statistically stationary nature.
Then, the Fourier decomposition comprises an infinity of sinusoidal elements of
negligible amplitudes whose frequencies form a continuum in the interval [0, π].
The frequency-response function of the filter displays the factors by which the
amplitudes of the elements are altered in their passage through the filter.

For an ideal filter, the frequency response is unity within the pass band and
zero within the stop band. Such a response is depicted in Figure 1, where the
pass band, which runs from π/16 to π/3 radians per sample interval, is intended
to transmit the elements of a quarterly econometric data sequence that constitute
the business cycle.

To achieve an ideal frequency selection with a linear moving-average filter
would require an infinite number of filter coefficients. This is clearly impractical;
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and so the sequence of coefficients must be truncated, whereafter it may be modified
in certain ways to diminish the adverse effect of the truncation.

Approximation to the Ideal Filter

Figure 1 also shows the frequency response of a filter that has been derived by
taking twenty-five of the central coefficients of the ideal filter and adjusting their
values by equal amounts so that they sum to zero. This is the filter that has been
proposed by Baxter and King (1999) for the purpose of extracting the business
cycle from economic data. The filter is affected by a considerable leakage, whereby
elements that fall within the stop band are transmitted in part by the filter.

The z-transform of a sequence {ψj} of filter coefficients is the polynomial
ψ(z) =

∑
j ψjz. Constraining the coefficients to sum to zero ensures that the

polynomial has a root of unity, which is to say that ψ(1) =
∑

j ψj = 0. This
implies that ∇(z) = 1 − z is a factor of the polynomial, which indicates that the
filter incorporates a differencing operator.

If the filter is symmetric, such that ψ(z) = ψ0+ψ1(z+z−1)+ · · ·+ψq(zq +z−q)
and, therefore, ψ(z) = ψ(z−1), then 1 − z−1 is also a factor. Then, ψ(z) has
the combined factor (1 − z)(1 − z−1) = −z∇(z)2, which indicates that the filter
incorporates a twofold differencing operator. Such a filter is effective in reducing a
linear trend to zero; and, therefore, it is applicable to econometric data sequences
that have an underlying log-linear tend.

The filter of Baxter and King (1999), which fulfils this condition, is appropriate
for the purpose of extracting the business cycle from a trended data sequence.
Figure 2 shows the logarithms of data of U.K. real domestic consumption for the
years 1955–1994 through which a linear trend has been interpolated. Figure 3 shows
the results of subjecting these data to the Baxter–King filter. A disadvantage of
the filter, which is apparent in Figure 3, is that it is incapable of reaching the ends
of the sample. The first q sample values and the last q remain unprocessed.

To overcome this difficulty, Christiano and Fitzgerald (2003) have proposed a
filter with a variable set of coefficients. To generate the filtered value at time t, they
associate the central coefficient ψ0 with yt. If yt−p falls within the sample, then
they associate it with the coefficient ψp. Otherwise, if it falls outside the sample, it
is disregarded. Likewise, if yt+p falls within the sample, then it is associated with
ψp, otherwise it is disregarded. If the data follow a first-order random walk, then
the first and the last sample elements y0 and yT−1 receive extra weights A and B,
which correspond to the sums of the coefficients discarded from the filter at either
end. The resulting filtered value at time t may be denoted by

xt = Ay0 + ψty0 + · · · + ψ1yt−1 + ψ0yt

+ ψ1yt+1 + · · · + ψT−1−tyT−1 + ByT−1.
(2)

This equation comprises the entire data sequence y0, . . . , yT−1; and the value
of t determines which of the coefficients of the infinite-sample filter are involved
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Figure 2. The quarterly sequence of the logarithms of consumption in the

U.K., for the years 1955 to 1994, together with a linear trend interpolated by

least-squares regression.
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Figure 3. The sequence derived by applying the truncated bandpass filter of

25 coefficients to the quarterly logarithmic data on U.K. Consumption.
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Figure 4. The sequence derived by applying the bandpass filter of Christiano

and Fitzgerald to the quarterly logarithmic data on U.K. Consumption.
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in producing the current output. Thus, the value of x0 is generated by looking
forwards to the end of the sample, whereas the value of xT−1 is generated by
looking backwards to the beginning of the sample.

For data that appear to have been been generated by a first-order random walk
with a constant drift, it is appropriate to extract a linear trend before filtering the
residual sequence. Figure 4 provides an example of the practice. In fact, this has
proved to be the usual practice in most circumstances.

Within the category of FIR filters, the program also implements the time
honoured smoothing filter of Henderson (1916), which forms an essential part of
the detrending procedure of the X-11 program of the Bureau of the Census. This
program provides the method of seasonal adjustment that is used predominantly
by central statistical agencies.

Here, the end-of-sample problem is overcome by supplementing the Henderson
filter with a set of asymmetric filters that can be applied to the elements of the first
and the final segments. These are the Musgrave (1964) filters. (See Quenneville,
Ladiray and Lefranc, 2003 for a recent account of these filters.) In the X-11 ARIMA
variant, which is used by Statistics Canada, the alternative recourse is adopted of
extrapolating the data beyond the ends of the sample so that it can support a
time-invariant filter that does run to the ends.

3. The Wiener–Kolmogorov Filters

The program also provides several filters of the feedback variety that are commonly
described as infinite-impulse response (IIR) filters. The filters in question are de-
rived according to the finite-sample Wiener–Kolmogorov principle that has been
expounded by Pollock (2000, 2007).

The ordinary theory of Wiener–Kolmogorov filtering assumes a doubly-infinite
data sequence y(t) = ξ(t)+ η(t) = {yt; t = 0,±1,±2, . . .} generated by a stationary
stochastic process. The process is compounded from a signal process ξ(t) and a
noise process η(t) that are assumed to be statistically independent and to have
zero-valued means. Then, the autocovariance generating function of y(t) is given
by

γy(z) = γξ(z) + γη(z), (3)

which is sum of the autocovariance functions of ξ(t) and η(t).
The object is to extract estimates of the signal sequence ξ(t) and noise sequence

η(t) from the data sequence. The z-transforms of the relevant filters are

βξ(z) =
γξ(z)

γξ(z) + γη(z)
=

ψξ(z−1)ψξ(z)
φ(z−1)φ(z)

, (4)

and

βη(z) =
γη(z)

γξ(z) + γη(z)
=

ψη(z−1)ψη(z)
φ(z−1)φ(z)

. (5)
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It can been that βξ(z) + βη(z) = 1, in view of which the filters can be described as
complementary.

The factorisations of the filters that are given on the RHS enable them to be
applied via a bi-directional feedback process. In the case of the signal extraction
filter βξ(z), the process in question can be represented by the equations

φ(z)q(t) = ψξ(z)y(z) and φ(z−1)x(t) = ψξ(z−1)q(z−1), (6)

wherein q(z), y(z) and x(z) stand for the z-transforms of the corresponding se-
quences q(t), y(t) and x(t).

To elucidate these equations, we may note that, in the first of them, the ex-
pression associated with zt is

m∑
j=0

φjqt−j =
n∑

j=0

ψξ,jyt−j . (7)

Given that φ0 = 1, this serves to determine the value of qt. Moreover, given that
the recursion is assumed to be stable, there need be no restriction on the range
of t. The first equation, which runs forward in time, generates an intermediate
output q(t). The second equation, which runs backwards in time, generates the
final filtered output x(t).

Filters for Trended Data

The classical Wiener–Kolmogorov theory can be extended in a straightforward
way to cater for non stationary data generated by integrated autoregressive moving-
average (ARIMA) processes in which the autoregressive polynomial contains roots
of unit value. Such data processes can be described by the equation

y(z) =
δ(z)
∇p(z)

+ η(z) or, equivalently, ∇p(z)y(z) = δ(z) + ∇p(z)η(z), (8)

where ∇p(z) = (1 − z)p is the p-th power of the difference operator.
Here, there has to be some restriction on the range of t together with the

condition that the elements yt and ηt are finite within this range. Also, the z-
transform must comprise the appropriate initial conditions, which are effectively
concealed by the notation. (See Pollock 2008 on this point.)

Within the program, three such filters have been implemented. The first is the
filter of Leser (1961) and of Hodrick and Prescott (1980, 1997), which is designed to
extract the non stationary signal or trend component when the data are generated
according to the equation

∇2(z)y(z) = g(z) = δ(z) + ∇2(z)η(z), (9)

where δ(t) are η(t) are mutually independent sequences of independently and iden-
tically distributed random variables, generated by so-called white-noise processes.
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Figure 5. The frequency-response function of the Hodrick–Prescott smoothing

filter for various values of the smoothing parameter λ.
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Figure 6. The frequency-response function of the lowpass Butterworth filters

of orders n = 6 and n = 12 with a nominal cut-off point of 2π/3 radians.

With γδ(z) = σ2
δ and γξ(z) = σ2

δ∇(z−1)∇(z) and with γη(z) = σ2
η, the z-transforms

of the relevant filters become

βξ(z) =
1

1 + λ∇2(z−1)∇2(z)
, (10)

and

βη(z) =
∇2(z−1)∇2(z)

λ−1 + ∇2(z−1)∇2(z)
, (11)

where λ = σ2
η/σ2

δ , which is described as the smoothing parameter.
The frequency-response functions of the filters for various values of λ are shown

in Figure 5. These are obtained by setting z = e−iω = cos(ω) − i sin(ω) in the
formula of (10) and by letting ω run from 0 to π. (In the process, the imaginary
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Figure 7. The pole–zero diagrams of the lowpass Butterworth filters for n = 6
when the cut-off is at ω = π/2 (left) and at ω = π/8.

quantities are cancelled so as to give rise to the real-valued functions that are plotted
in the diagram.)

It is notable that the specification of the underlying process y(t), in which
both the signal component ξ(z) = δ(z)/∇(z) and the noise component η(z) have
spectral density functions that extend over the entire frequency range, precludes
the clear separation of the components. This is reflected in the fact that, for all but
the highest values λ, the filter transmits significant proportions of the elements at
all frequencies.

The second of the Wiener–Kolmogorov filters that are implemented in the
program is capable of a much firmer discrimination between the signal and noise
than is the Leser (1961) filter. This is the Butterworth (1930) filter, which was
originally devised as an analogue filter but which can also be rendered in digital
form—See Pollock (2000). The filter is appropriate for extracting the component
(1 + z)nδ(z) from the sequence

g(z) = (1 + z)nδ(z) + (1 − z)nκ(z). (12)

Here, δ(t) and κ(t) denote independent white-noise processes, whereas there is
usually g(z) = ∇2(z)y(z), where y(t) is the data process. This corresponds to the
case where twofold differencing is required to eliminate a trend from the data. Under
these circumstances, the equation of the data process is liable to be represented by

y(z) = ξ(z) + η(z)

=
(1 + z)n

∇2(z)
δ(z) + (1 − z)n−2κ(z).

(13)

However, regardless of the degree of differencing to which y(t) must be subjected
in reducing it to stationarity, the z-transforms of the complementary filters will be

βξ(z) =
(1 + z−1)n(1 + z)n

(1 + z−1)n(1 − z)n + λ(1 − z−1)n(1 + z)n
, (14)

9
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and

βη(z) =
(1 − z−1)n(1 − z)n

(1 + z−1)n(1 − z)n + λ−1(1 − z−1)n(1 + z)n
, (15)

where λ = σ2
κ/σ2

δ .
It is straightforward to determine the value of λ that will place the cut-off

of the filter at a chosen point ωc ∈ (0, π). Consider setting z = exp{−iω} in the
formula of (14) of the lowpass filter. This gives the following expression for the
gain:

βξ(e−iω) =
1

1 + λ

(
i
1 − e−iω

1 + e−iω

)2n

=
1

1 + λ
{

tan(ω/2)
}2n .

(16)

At the cut-off point, the gain must equal 1/2, whence solving the equation
βξ(exp{−iωc}) = 1/2 gives λ = {1/ tan(ωc/2)}2n.

Figure 6 shows how the rate of the transition of the Butterworth frequency
response between the pass band and the stop band is affected by the order of the
filter. Figure 7 shows the pole–zero diagrams of filters with different cut-off points.
As the cut-off frequency is reduced, the transition between the two bands becomes
more rapid. Also, some of the poles of the filter move towards the perimeter of the
unit circle.

A Filter for Seasonal Adjustment

The Wiener–Kolmogorov principle is also used in deriving a filter for the sea-
sonal adjustment of monthly and quarterly econometric data. The filter is derived
from a model that combines a white-noise component η(t) with a seasonal com-
ponent obtained by passing an independent white noise ν(t) through a rational
filter with poles located on the unit circle at angles corresponding to the seasonal
frequencies and with corresponding zeros at the same angles but located inside the
circle. The z-transform of the output sequence gives

y(z) = η(z) +
R(z)
S(z)

ν(z) or

S(z)y(z) = S(z)η(z) + R(z)ν(z),
(17)

where
R(z) = 1 + ρz + ρ2z2 + · · · + ρs−1zs−1 (18)

with ρ < 1, and
S(z) = 1 + z + z2 + · · · + zs−1. (19)

10
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Figure 8. The gain of a filter for the seasonal adjustment of monthly data.

The defining parameters are ρ = 0.9 and λ = σ2
η/σ2

ν = 0.125

The z-transform of the seasonal-adjustment filter is

β(z) =
σ2

ηS(z)S(z−1)
S(z)S(z−1)σ2

η + σ2
νR(z)R(z−1)

. (20)

Setting z = exp{−iω} and letting ω run from 0 to π generates the frequency
response of the filter, of which the modulus or gain is plotted in Figure 8 for the
case where ρ = 0.9 and λ = σ2

η/σ2
ν = 0.125.

4. The Finite-Sample Realisations of the W–K Filters

To derive the finite-sample version of a Wiener–Kolmogorov filter, we may consider
a data vector y = [y0, y1, . . . , yt−1, ]′ that has a signal component ξ and a noise
component η:

y = ξ + η. (21)

The two components are assumed to be independently normally distributed with
zero means and with positive-definite dispersion matrices. Then,

E(ξ) = 0, D(ξ) = Ωξ,

E(η) = 0, D(η) = Ωη,

and C(ξ, η) = 0.

(22)

A consequence of the independence of ξ and η is that D(y) = Ωξ + Ωη.
The estimates of ξ and η, which may be denoted by x and h respectively, are

derived according to the following criterion:

Minimise S(ξ, η) = ξ′Ω−1
ξ ξ + η′Ω−1

η η subject to ξ + η = y. (23)

11
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Since S(ξ, η) is the exponent of the normal joint density function N(ξ, η), the
resulting estimates may be described, alternatively, as the minimum chi-square
estimates or as the maximum-likelihood estimates.

Substituting for η = y − ξ gives the concentrated criterion function S(ξ) =
ξ′Ω−1

ξ ξ+(y−ξ)′Ω−1(y−ξ). Differentiating this function in respect of ξ and setting
the result to zero gives a condition for a minimum, which specifies the estimate x.
This is Ω−1

η (y − x) = Ω−1
ξ x, which, on pre multiplication by Ωη, can be written as

y = x − ΩηΩ−1
ξ x = (Ωξ + Ωη)Ω−1

ξ x. Therefore, the solution for x is

x = Ωξ(Ωξ + Ωη)−1y. (24)

Moreover, since the roles of ξ and η are interchangeable in this exercise, and, since
h + x = y, there are also

h = Ωη(Ωξ + Ωη)−1y and x = y − Ωη(Ωξ + Ωη)−1y. (25)

The filter matrices Bξ = Ωξ(Ωξ + Ωη)−1 and Bη = Ωη(Ωξ + Ωη)−1 of (24) and (25)
are the matrix analogues of the z-transforms displayed in equations (4) and (5).

A simple procedure for calculating the estimates x and h begins by solving the
equation

(Ωξ + Ωη)b = y (26)

for the value of b. Thereafter, one can generate

x = Ωξb and h = Ωηb. (27)

If Ωξ and Ωη correspond to the narrow-band dispersion matrices of moving-
average processes, then the solution to equation (26) may be found via a Cholesky
factorisation that sets Ωξ + Ωη = GG′, where G is a lower-triangular matrix with
a limited number of nonzero bands. The system GG′b = y may be cast in the form
of Gp = y and solved for p. Then, G′b = p can be solved for b. The procedure has
been described by Pollock (2000).

Filters for Short Trended Sequences

To adapt these estimates to the case of trended data sequences may require
the provision of carefully determined initial conditions with which to start the
recursive processes. A variety of procedures are available that are similar, if not
identical, in their outcomes. The procedures that are followed in the program
depend upon reducing the data sequences to stationarity, in one way or another,
before subjecting them to the filters. After the data have been filtered, the trend
is liable to be restored.

The first method, which is the simplest in concept, requires the trend to be
represented by a polynomial function. In some circumstances, when the economy
has been experiencing steady growth, the polynomial will serve as a reasonable

12
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characterisation of its underlying trajectory. Thus, in the period 1955–1994 a log-
linear trend function provides a firm benchmark against which to measure the
cyclical fluctuations of the U.K. economy. The residual deviations from this trend
may be subjected to a lowpass filter; and the filtered output can be added to the
trend to produce a representation of what is commonly described as the trend-cycle
component.

It is desirable that the polynomial trend should interpolate the scatter of points
at either end of the data sequence. For this purpose, the program provides a method
of weighted least-squares polynomial regression with a wide choice of weighting
schemes, which allow extra weight to be placed upon the initial and the final runs
of observations.

An alternative way of eliminating the trend is to take differences of the data.
Usually, twofold differencing is appropriate. The matrix analogue of the second-
order backwards difference operator in the case of T = 5 is given by

∇2
5 =

[
Q′

∗
Q′

]
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

⎤
⎥⎥⎥⎥⎦ . (28)

The first two rows, which do not produce true differences, are liable to be discarded.
In general, the p-fold differences of a data vector of T elements will be obtained by
pre multiplying it by a matrix Q′ of order (T − p) × T . Applying Q′ to equation
(21) gives

Q′y = Q′ξ + Q′η

= δ + κ = g.
(29)

The dispersion matrices of the differenced vectors are

D(δ) = Ωδ = Q′D(Ωξ)Q and D(κ) = Ωκ = Q′D(Ωη)Q. (30)

The estimates d and k of the differenced components are given by

d = Ωδ(Ωδ + Q′ΩηQ)−1Q′y (31)

and
k = Q′ΩηQ(Ωδ + Q′ΩηQ)−1Q′y. (32)

To obtain estimates of ξ and η, the estimates of their difference versions must be
re-inflated via an anti-differencing or summation operator. We begin by observing
that the inverse of ∇2

5 is a twofold summation operator given by

∇−2
5 = [S∗ S ] =

⎡
⎢⎢⎣

1 0 | 0 0 0
2 1 | 0 0 0
3 2 | 1 0 0
4 3 | 2 1 0
5 4 | 3 2 1

⎤
⎥⎥⎦ . (33)

13
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The first two columns, which constitute the matrix S∗, provide a basis for all linear
functions defined on {t = 0, 1, . . . , T − 1 = 5}. The example can be generalised to
the case of a matrix ∇−p

T of order T . However, in the program, the maximum order
of differencing is p = 2.

We observe that, if g∗ = Q′
∗y and g = Q′y are available, then y can be recovered

via the equation
y = S∗g∗ + Sg. (34)

In effect, the elements of g∗, which may be regarded as polynomial parameters,
provide the initial conditions for the process of summation or integration, which we
have been describing as a process of re-inflation.

The equations by which the estimates of ξ and η may be recovered from those
of δ and κ are analogous to equation (34). They are

x = S∗d∗ + Sd and h = S∗k∗ + Sk. (35)

In this case, the initial conditions d∗ and k∗ require to be estimated. The appro-
priate estimates are the values that minimise the function

(y − x)′Ω−1
η (y − x) = (y − S∗d∗ − Sd)′Ω−1

η (y − S∗d∗ − Sd)

= (S∗k∗ + Sk)′Ω−1
η (S∗k∗ + Sk).

(36)

These values are
k∗ = −(S′

∗Ω
−1
η S∗)−1S′

∗Ω
−1
η Sk (37)

and
d∗ = (S′

∗Ω
−1
η S∗)−1S′

∗Ω
−1
η (y − Sd). (38)

Equations (37) and (38) together with (31) and (32) provide a complete so-
lution to the problem of estimating the components of the data. However, it is
possible to eliminate the initial conditions from the system of estimating equations.
This can be achieved with the help of the following identity:

P∗ = S∗(S′
∗Ω

−1
η S∗)−1S′

∗Ω
−1
η

= I − ΩηQ(Q′ΩηQ)−1Q′ = I − PQ.
(39)

In these terms, the equation of (35) for h becomes h = (I − P∗)Sk = PQSk. Using
the expression for k from (32) together with the identity Q′S = IT−2 gives

h = ΩηQ(Ωδ + Q′ΩηQ)−1Q′y. (40)

This can also be obtained from the equation (32) for k by the removal of the leading
differencing matrix Q′. It follows immediately that

x = y − h

= y − ΩηQ(Ωδ + Q′ΩηQ)−1Q′y.
(41)

14
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Figure 9. The periodogram of the first differences of the U.K. logarithmic

consumption data.
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Figure 10. The periodogram of the residual sequence obtained from the linear

detrending of the logarithmic consumption data. A band, with a lower bound of

π/16 radians and an upper bound of π/3 radians, is masking the periodogram.

The elimination of the initial conditions is due to the fact that η is a stationary
component. Therefore, it requires no initial conditions other than the zeros that
are the appropriate estimates of the pre-sample elements. The direct estimate x of
ξ does require initial conditions, but, in view of the adding-up conditions of (21),
x can be obtained more readily by subtracting from y the estimate h of η, in the
manner of equation (41).

Observe that, since
f = S∗(S′

∗S∗)−1S′
∗y (42)

is an expression for the vector of the ordinates of a polynomial function fitted to the
data by an ordinary least-squares regression, the identity of (39) informs us that

f = y − Q(Q′Q)−1Q′y (43)

15



D.S.G. POLLOCK: IDEOLOG—A FILTERING PROGRAM

is an alternative expression.
The residuals of an OLS polynomial regression of degree p, which are given by

y − f = Q(Q′Q)−1Q′y, contain same the information as the vector g = Q′y of the
p-th differences of the data. The difference operator has the effect of nullifying the
element of zero frequency and of attenuating radically the adjacent low-frequency
elements. Therefore, the low-frequency spectral structures of the data are not per-
ceptible in the periodogram of the differenced sequence. Figure 9 provides evidence
of this.

On the other hand, the periodogram of a trended sequence is liable to be
dominated by its low-frequency components, which will mask the other spectral
structures. However, the periodogram residuals of the polynomial regression can
be relied upon to reveal the spectral structures at all frequencies. Moreover, by
varying the degree p of the polynomial, one is able to alter the relative emphasis
that is given to high-frequency and low-frequency structures. Figure 10 shows that
the low-frequency structure of the U.K. consumption data is fully evident in the
periodogram of the residuals from fitting a linear trend to the logarithmic data.

A Flexible Smoothing Filter

A derivation of the estimator of ξ is available that completely circumvents
the problem of the initial conditions. This can be illustrated with the case of a
generalised version of the Leser (1961) filter in which the smoothing parameter
is permitted vary over the course of the sample. The values of the smoothing
parameter are contained in the diagonal matrix Λ = diag{λ0, λ1, . . . , λT−1}. Then,
the criterion for finding the vector is to minimise

L = (y − ξ)′(y − ξ) + ξ′QΛQ′ξ. (44)

The first term in this expression penalises departures of the resulting curve
from the data, whereas the second term imposes a penalty for a lack of smoothness
in the curve. The second term comprises d = Q′ξ, which is the vector of the p-th
order differences of ξ. The matrix Λ serves to generalise the overall measure of the
curvature of the function that has the elements of ξ as its sampled ordinates, and
it serves to regulate the penalty for roughness, which may vary over the sample.

Differentiating L with respect to ξ and setting the result to zero, in accordance
with the first-order conditions for a minimum, gives

y − x = QΛQ′x = QΛd. (45)

Multiplying the equation by Q′ gives Q′(y − x) = Q′y − d = Q′QΛd, whence
Λd = (Λ−1 + Q′Q)−1Q′y. Putting this into the equation x = y − QΛd gives

x = y − Q(Λ−1 + Q′Q)−1Q′y

= y − ΛQ(I + ΛQ′Q)−1Q′y.
(46)
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Figure 11. The logarithms of annual U.K. real GDP from 1873 to 2001 with an interpo-

lated trend. The trend is estimated via a filter with a variable smoothing parameter.

This filter has been implemented in the program under the guise of a variable
smoothing procedure. By giving a high value to the smoothing parameter, a stiff
curve can be generated, which approaches a straight line as λ → ∞. On the other
hand, structural breaks can be accommodated by greatly reducing the value of the
smoothing parameter in their neighbourhood. When λ → 0, the filter tends to
transmit the unaltered data values.

Figure 11 shown an example of the use of this filter. There were brief dis-
ruptions to the steady upwards progress of GDP in the U.K. after the two world
wars. These breaks have been absorbed into the trend by reducing the value of the
smoothing parameter in their localities. By contrast, the break that is evident in
the data following the year 1929 has not been accommodated in the trend.

A Seasonal-Adjustment Filter

The need for initial conditions cannot be circumvented in cases where the
seasonal adjustment filter is applied to trended sequences. Consider the filter that
is applied to the differenced data g = Q′y to produce a seasonally-adjusted sequence
q. Then, there is

q = Q′
S(Q′

SQS + λ−1Q′
RQR)Q′

Sg, (47)

where Q′
R and Q′

S are the matrix counterparts of the polynomial operators R(z)
and S(z) of (18) and (19) respectively. The seasonally adjusted version of the
original trended data will be obtained by re-inflating the filtered sequence q via the
equation

j = S∗q∗ + Sq, (48)

where
q∗ = (S′

∗S∗)−1S′
∗(y − Sq) (49)
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is the value that minimises the function

(y − j)′(y − j) = (y − S∗q∗ + Sq)′(S∗q∗ + Sq). (50)

5. The Frequency-Domain Filters

Often, in the analysis economic data, we would profit from the availability of a
sharp filter, with a rapid transition between the stop band and the pass band that
is capable of separating components of the data that lie in closely adjacent frequency
bands.

An example of the need for such a filter is provided by a monthly data sequence
with an annual seasonal pattern superimposed on a trend–cycle trajectory. The
fundamental seasonal frequency is of π/6 radians or 30 degrees per month, whereas
the highest frequency of the trend–cycle component is liable to exceed π/9 radians
or 20 degrees. This leaves a narrow frequency interval in which a filter that is
intended to separate the tend–cycle component from the remaining elements must
make the transition from its pass band to its stop band.

To achieve such a sharp transition, a FIR or moving-average filter requires
numerous coefficients covering a wide temporal span. Such filters are inappropriate
to the short data sequences that are typical of econometric analyses. Rational filters
or feedback filters, as we have described them, are capable of somewhat sharper
transitions, but they also have their limitations.

When a sharp transition is achieved by virtue of a rational filter with relatively
many coefficients, the filter tends to be unstable on account of the proximity of some
its poles to the circumference of the unit circle. (See Figure 7 for an example.) Such
filters can be excessively influenced by noise contamination in the data and by the
enduring effects of ill-chosen initial conditions.

A more effective way of achieving a sharp cut-off is to conduct the filtering
operations in the frequency domain. Reference to equation (1) shows that an ideal
filter can be obtained by replacing with zeros the Fourier coefficients that are asso-
ciated with frequencies that fall within the stop band.

Complex Exponentials and the Fourier Transform

The Fourier coefficients are determined by regressing the data on the trigono-
metrical functions of the Fourier frequencies according to the following formulae:

αj =
2
T

∑
t

yt cos ωjt, and βj =
2
T

∑
t

yt sinωjt. (51)

Also, there is α0 = T−1
∑

t yt = ȳ, and, in the case where T = 2n is an even
number, there is αn = T−1

∑
t(−1)tyt.
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It is more convenient to work with complex Fourier coefficients and with com-
plex exponential functions in place sines and cosines. Therefore, we define

ζj =
αj − iβj

2
. (52)

Since cos(ωjt) − sin(ωjt) = e−iωjt, it follows that the complex Fourier transform
and its inverse are given by

ζj =
1
T

T−1∑
t=0

yte
−iωjtdt ←→ yt =

T−1∑
j=0

ζje
iωjt, (53)

where ζT−j = ζ∗j = (αj + βj)/T . For a matrix representation of these transforms,
one may define

U = T−1/2[exp{−i2πtj/T}; t, j = 0, . . . , T − 1],

Ū = T−1/2[exp{i2πtj/T}; t, j = 0, . . . , T − 1],
(54)

which are unitary complex matrices such that UŪ = ŪU = IT . Then,

ζ = T−1/2Uy ←→ y = T 1/2Ūζ, (55)

where y = [y0, y1, . . . yT−1]′ and ζ = [ζ0, ζ1, . . . ζT−1]′ are the vectors of the data
and of their spectral ordinates, respectively.

This notation can be used to advantage for representing the process of applying
an ideal frequency-selective filter. Let J be a diagonal selection matrix of order T
of zeros and units, wherein the units correspond to the frequencies of the pass band
and the zeros to those of the stop band. Then, the selected Fourier ordinates are
the nonzero elements of the vector Jζ. By an application of the inverse Fourier
transform, the selected elements are carried back to the time domain to form the
filtered sequence. Thus, there is

x = ŪJUy = Ψy. (56)

Here, ŪJU = Ψ = [ψ◦
|i−j|; i, j = 0, . . . , T − 1] is a circulant matrix of the filter coef-

ficients that would result from wrapping the infinite sequence of the ideal bandpass
coefficients around a circle of circumference T and adding the overlying elements.
Thus

ψ◦
k =

∞∑
q=−∞

ψqT+k. (57)

Applying the wrapped filter to the finite data sequence via a circular convolu-
tion is equivalent to applying the original filter to an infinite periodic extension of
the data sequence. In practice, the wrapped coefficients of the time-domain filter
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Figure 12. The residual sequence from fitting a linear trend to the logarithmic

consumption data with an interpolated line representing the business cycle.

matrix Ψ would be obtained from the Fourier transform of the vector of the diago-
nal elements of the matrix J . However, it is more efficient to perform the filtering
by operating upon the Fourier ordinates in the frequency domain, which is how the
program operates.

The method of frequency-domain filtering can be used to mimic the effects of
any linear-time invariant filter, operating in the time domain, that has a well-defined
frequency-response function. All that is required is to replace the selection matrix
J of equation (59) by a diagonal matrix containing the ordinates of the desired
frequency response, sampled at points corresponding to the Fourier frequencies.

In the case of the Wiener–Kolmogorov filters, defined by equation (24) and
(25), one can consider replacing the dispersion matrices Ωξ and Ωη by their circular
counterparts

Ω◦
ξ = ŪΛξU and Ω◦

η = ŪΛηU. (58)

Here, Λξ and Λη are diagonal matrices containing ordinates sampled from the spec-
tral density functions of the respective processes. The resulting equations for the
filtered sequences are

x = Ω◦
ξ(Ω

◦
ξ + Ω◦

η)−1y = ŪΛξ(Λξ + Λη)−1Uy = ŪJξUy (59)

and
h = Ω◦

η(Ω◦
ξ + Ω◦

η)−1y = ŪΛη(Λξ + Λη)−1Uy = ŪJηUy. (60)

An example of the application of the lowpass frequency-domain filter is pro-
vided by Figure 12. Here, a filter with a precise cut-off frequency of π/8 radians
has been applied to the residuals from the linear detrending of the logarithms of
the U.K. consumption data.

The appropriate cut-off frequency for this filter has been indicated by the peri-
odogram of Figure 10. The smooth curve that has been interpolated through these
residuals has been constituted from the Fourier ordinates in the interval [0, π/8].
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The same residual sequence has also been subjected to the approximate band-
pass filter of Christiano and Fitzgerald (2003) to generate the estimate business
cycle of Figure 4. This estimate fails to capture some of the salient low-frequency
fluctuations of the data.

The highlighted region Figure 10 also show the extent of the pass band of the
bandpass filter; and it appears that the low-frequency structure of the data falls
mainly below this band. The fact that, nevertheless, the filter of Christiano and
Fitzgerald does reflect a small proportion of the low-frequency fluctuations is due
to its substantial leakage over the interval [0, π/16], which falls within its nominal
stop band.

Extrapolations and Detrending

To apply the frequency-domain filtering methods, the data must be free of
trend. This can be achieved either by differencing the data or by applying the
filter to data that are residuals from fitting a polynomial trend. The program has
a facility for fitting a polynomial time trend of a degree not exceeding 15. To avoid
the problems of collinearity that arise in fitting ordinary polynomials specified in
terms of the powers of the temporal index t, a flexible generalised least-squares
procedure is provided that depends upon a system of orthogonal polynomials.

In applying the methods, it is also important to ensure that there are no
significant disjunctions in the periodic extension of the data at the points where
the end of one replication of the sample sequence joins the beginning of the next
replication. Equivalently, there must be a smooth transition between the start and
finish points when the sequence of T data points is wrapped around a circle of
circumference T .

The conventional means of avoiding such disjunctions is to taper the mean-
adjusted, detrended data sequence so that both ends decay to zero. (See Bloomfield
1976, for example.) The disadvantage of this recourse is that it falsifies the data
at the ends of the sequence, which is particularly inconvenient if, as is often the
case in economics, attention is focussed on the most recent data. To avoid this
difficulty, the tapering can be applied to some extrapolations, which can be added
to the data, either before or after it has been detrended.

In the first case, a polynomial is fitted to the data; and tapered versions of the
residual sequence that have been reflected around the endpoints of the sample are
added to the extrapolated branches of the polynomial. Alternatively, if the data
show strong seasonal fluctuations, then a tapered sequence based on successive
repetitions of the ultimate seasonal cycle is added to the upper branch, and a
similar sequence based on the first cycle is added to the lower branch.

In the second case, where the data have already been detrended, by the sub-
traction of a polynomial trend or by the application of the differencing operator,
the extrapolations will be added to the horizontal axis.

This method of extrapolation will prevent the end of the sample from being
joined directly to its beginning. When the data are supplemented by extrapolations,
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Figure 13. The trend/cycle component of U.K. Consumption determined by

the frequency-domain method, superimposed on the logarithmic data.

the circularity of the filter will effect only the furthest points the extrapolations,
and the extrapolations will usually be discarded after the filtering has taken place.
However, in many cases, extrapolations and their associated tapering will prove to
be unnecessary. A case in point is provided by the filtering of the residual sequence
of the logarithmic consumption data that is illustrated by Figure 12.

Anti-Differencing

After a differenced data sequence has been filtered, it will be required to reverse
the effects of the differencing via a process of re-inflation. The process can be
conducted in the time domain in the manner that has been indicated in section 4,
where expressions have been derived for the initial conditions that must accompany
the summation operations.

However, if the filtered sequence is the product of a highpass filter and if
the original data have been subjected to a twofold differencing operation, then an
alternative method of re-inflation is available that operates in the frequency domain.
This method is used in the program only if the filtering itself has taken place in the
frequency domain.

In that case, the reduction to stationarity will be by virtue of a centralised
twofold differencing operator of the form

(1 − z−1)(1 − z) = −z∇2(z) (61)

The frequency-response function of the operator, which is obtained by setting z =
exp{−iω} in this equation, is

f(ω) = 2 − 2 cos(ω). (62)

The frequency response of the anti-differencing operator is v(ω) = 1/f(ω).
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The matrix version of the centralised operator can be illustrated by the case
where T = 5:

N5 =

⎡
⎢⎣

n′
0

−Q′

n′
4

⎤
⎥⎦ = −

⎡
⎢⎢⎢⎢⎢⎣

−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

0 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎦

. (63)

In applying this operator to the data, the first and the last elements of NT y,
which are denoted by n′

0y and n′
T−1y, respectively, are not true differences. There-

fore, they are discarded to leave −Q′y = [q1, . . . , qT−2]′. To compensate for this
loss, appropriate values are attributed to q0 and qT−1, which are formed from
combinations of the adjacent values, to create a vector of order T denoted by
q = [q0, q1, . . . , qT−2, qT−1]′.

The highpass filtering of the data comprises the following steps. First, the vec-
tor q is translated to the frequency domain to give γ = Uq. Then, the frequency-
response matrix Jη is applied to the resulting Fourier ordinates. Next, in order to
compensate for the effects of differencing, the vector of Fourier ordinates is premul-
tiplied by a diagonal matrix V = diag{v0, v1, . . . , vT−1}, wherein vj = 1/f(ωj); j =
0, . . . , T − 1, with ωj = 2πj/T . Finally, the result is translated back to the time
domain to create the vector h.

The vector of the complementary component is x = y − h. Thus there are

h = ŪHηUq and x = y − ŪHηUq, (64)

where Hη = V Jη. It should be noted that the technique of re-inflating the data
within the frequency domain cannot be applied in the case of a lowpass compo-
nent for the reason that f(0) = 0 and, therefore, the function v(ω) = 1/f(ω) is
unbounded at the zero frequency ω = 0. However, as the above equations indicate,
this is no impediment to the estimation of the corresponding component x.

An example of the application of these procedures is provided by Figure 13,
which concerns the familiar logarithmic consumption data, through which a smooth
trend-cycle function has been interpolated. This is indistinguishable from the func-
tion that is obtained by adding the smooth business-cycle of Figure 12 to the linear
trend that was subtracted for the data in the process of detrending it. The program
also allows the trend-cycle function to be constructed in this manner.

Seasonal Adjustment in the Frequency Domain

The method of frequency-domain filtering is particularly effective in connection
with the seasonal adjustment of monthly or quarterly data. It enables one to remove
elements not only at the seasonal frequencies but also at adjacent frequencies by

23



D.S.G. POLLOCK: IDEOLOG—A FILTERING PROGRAM

10

10.25

10.5

10.75

11

11.25

11.5

0 50 100 150

Figure 14. The plot of a seasonally adjusted version of the consumption data

of Figures 2 and 13, obtained via the time domain filter
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Figure 15. The seasonal component extracted from the U.K. consumption

data by a time-domain filter.
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Figure 16. The seasonal component extracted from the U.K. consumption

data by a frequency-domain filter.
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allowing one to define a neighbourhood for each of the stop bands surrounding the
fundamental seasonal frequency and its harmonics.

If only the fundamental seasonal element and its harmonics are entailed in its
synthesis, then the estimated seasonal component will be invariant from year to
year. If elements at the adjacent frequencies are also present in the synthesis, then
it will evolve gradually over the length of the sample period.

The effects of the seasonal-adjustment filters of the program are illustrated in
Figures 14–16. Figure 14 shows the seasonally adjusted version of the logarithmic
consumption data that has been obtained via the Wiener–Kolmogorov filter of
section 4. Figure 15 shows the seasonal component that has been extracted in the
process.

The regularity of this component is, to some extent, the product of the filter.
Figure 16 shows a less regular seasonal component that has been extracted by the
frequency-domain filter described in the present section. This component has been
synthesised from elements at the Fourier frequencies and from those adjacent to
them that have some prominence if the periodogram of Figure 10.

6. The Program and its Code

The code of the program that has been described in this paper is freely available at
the web address that has been given. This code is in Pascal. A parallel code in C has
been generated with the help of a Pascal-to-C translator, which has been written
by the author. The aim has been to make the program platform-independent and
to enable parts of it to be realised in other environments.

This objective has dictated some of the features of the user interface of the
program, which, in its present form, eschews such devices as pull-down menus and
dialogue boxes etc. Subsequent versions of the program will make limited use of
such enhancements.

However, the nostrum that a modern computer program should have a mode-
less interface will be resisted. Whereas such an interface is necessary for programs
such as word processors, where all of the functions should be accessible at all times,
it is less appropriate to statistical programs where, in most circumstances, the user
will face a restricted set of options. Indeed, the present program is designed to
restrict the options, at each stage of the operations, to those that are relevant.

A consequence of this design is that there is no need of a manual of instructions
to accompany the program. Instead, the three log files that record the steps taken
in filtering some typical data sequences should provide enough help to get the user
underway. What is more important is that the user should understand the nature
of the statistical procedures that have been implemented; and this has been the
purpose of the present paper.

References

Baxter, M., and R.G. King, (1999). Measuring Business Cycles: Approximate
Band-Pass Filters for Economic Time Series. Review of Economics and Statistics,

25



D.S.G. POLLOCK: IDEOLOG—A FILTERING PROGRAM

81, 575–593.

Bloomfield, P., (1976). Fourier Analysis of Time Series: An Introduction. John
Wiley and Sons, New York.

Butterworth, S., (1930). On the Theory of Filter Amplifiers. The Wireless Engineer
(From 1923 to 1930, the journal was called Experimental Wireless and the Radio
Engineer), 7, 536–541.

Christiano, L.J. and T.J. Fitzgerald, (2003). The Band-pass Filter. International
Economic Review, 44, 435–465.

Hodrick, R.J., and E.C. Prescott, (1980). Postwar U.S. Business Cycles: An
Empirical Investigation, Working Paper, Carnegie–Mellon University, Pittsburgh,
Pennsylvania.

Hodrick, R.J., and E.C. Prescott, (1997). Postwar U.S. Business Cycles: An Em-
pirical Investigation. Journal of Money, Credit and Banking, 29, 1–16.

Ladiray, D., and B. Quenneville, (2001). Seasonal Adjustment with the X-11
Method, Springer Lecture Notes in Statistics 158, Springer Verlag, Berlin.

Baxter, M., and R.G. King, (1999). Measuring Business Cycles: Approximate
Band-Pass Filters for Economic Time Series. Review of Economics and Statistics,
81, 575–593.

Henderson, R., (1916). Note on Graduation by Adjusted Average. Transactions of
the Actuarial Society of America, 17, 43–48.

Henderson, R., (1924). A New Method of Graduation. Transactions of the Actu-
arial Society of America, 25, 29–40.

Leser, C.E.V. (1961). A Simple Method of Trend Construction. Journal of the
Royal Statistical Society, Series B, 23, 91–107.

Musgrave, J. (1964). A Set of End Weights to End all End Weights, Working
Paper, US Bureau of the Census, Washington

Pollock, D.S.G., (2000). Trend Estimation and De-Trending via Rational Square
Wave Filters. Journal of Econometrics, 99, 317–334.

Pollock, D.S.G., (2007). Wiener–Kolmogorov Filtering, Frequency-Selective Filter-
ing and Polynomial Regression. Econometric Theory, 23, 71–83.

Pollock, D.S.G., (2008). Investigating Economic Trends and Cycles, in Palgrave
Handbook of Econometrics: Vol. 2 Applied Econometrics, T.C. Mills and K. Pat-
terson (editors). Palgrave Macmillan Ltd, Houndmills, Basingstoke.

Quenneville, B., D. Ladiray and B. Lefranc, (2003). A Note on Musgrave Asym-
metrical Trend-cycle Filters. International Journal of Forecasting, 19, 727–734.

Whittle, P., (1983). Prediction and Regulation by Linear Least-Square Methods,
Second Edition, Basil Blackwell, Oxford.

26


