EXERCISES IN STATISTICS

Series A, No. 8

1. The value of the mean of a random sample of size 20 from a normal population is $\bar{x}=81.2$ Find the 95% confidence interval for the mean of the population on the assumption that the variance is $V(x)=80$.

Answer. We have $\bar{x}=81.2, V(x)=80, n=20$ and a confidence level of $Q=0.95$. The confidence interval is derived from the following probability statement:

$$
P\left(\bar{x}-\beta \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+\beta \frac{\sigma}{\sqrt{n}}\right)=Q
$$

The values of β corresponding to $Q=0.95$ is $\beta=1.960$. Therfore the confindence interval is

$$
\bar{x} \pm \beta \frac{\sigma}{\sqrt{n}}=81.2 \pm 1.96 \frac{\sqrt{80}}{\sqrt{20}}=[77.28,85.12]
$$

2. Let \bar{x} be the mean of a random sample of size n from an $N\left(\mu, \sigma^{2}\right)$ population. What is the probability that the interval $(\bar{x}-2 \sigma / \sqrt{n}, \bar{x}+2 \sigma / \sqrt{n})$ includes the point μ ?
Answer. We have

$$
P\left(\bar{x}-2 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+2 \frac{\sigma}{\sqrt{n}}\right)=P\left(-2 \leq z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \leq 2\right),
$$

where $z \sim N(0,1)$ is a standard normal variate. From tables, we find that $P(z \in[0,2])=0.4772$. Therefore $P(-2 \leq z \leq 2)=0.9544$.
3. The mean of a random sample of size 17 from a normal population is $\bar{x}=4.17$. Determine the 90% confidence interval for the population mean when the estimate variance of the population is 5.76.
Answer. We are given $\bar{x}=4.7, \hat{\sigma}^{2}=5.76$ and $n=17$. Also the level of confidence is $Q=0.90$. We infer that

$$
\frac{\bar{x}-\mu}{\hat{\sigma} / \sqrt{n}} \sim t(16)
$$

has a t dustribution of 16 degress of freedom; and, from tables, we find that $P(t \in[-b, b])=0.90$ implies that $b=1.746$. From the probability statement

$$
P\left(\bar{x}-b \frac{\hat{\sigma}}{\sqrt{n}} \leq \mu \leq \bar{x}+b \frac{\hat{\sigma}}{\sqrt{n}}\right)=Q
$$

SERIES A No.8, ANSWERS

we derive a confidence interval of the form

$$
\bar{x} \pm b \frac{\hat{\sigma}}{\sqrt{n}}=4.7 \pm 1.746 \frac{\sqrt{5.76}}{\sqrt{17}}=[77.28,85.12]
$$

4. Let \bar{x} be the mean of a random sample of size n from a distribution which is $N\left(\mu, \sigma^{2}\right)$ where $\sigma^{2}=90$. Find n such that $P(\bar{x}-1 \leq \mu \leq \bar{x}+1)=0.9$ approximately.
Answer. If $x \sim N\left(\mu, \sigma^{2}\right)$, then

$$
P\left(\bar{x}-\beta \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+\beta \frac{\sigma}{\sqrt{n}}\right)=0.90
$$

implies $\beta=1.645$. With $\sigma^{2}=90$, we have

$$
\beta \frac{\sigma}{\sqrt{n}}=1=1.645 \frac{\sqrt{90}}{\sqrt{n}}
$$

which implies that

$$
\sqrt{n}=1.645 \sqrt{90} \text { and therefore } n \simeq 244
$$

