EXERCISES IN STATISTICS

Series A, No. 6

1. Let x_{1} and x_{2} have the joint p.d.f $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ with $0 \leq x_{1}, x_{2} \leq 1$. Find the conditional mean of x_{2} given x_{1}.
Answer. First let us show that

$$
\int_{x_{2}} \int_{x_{1}} f\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=1:
$$

We have

$$
\begin{aligned}
& \int_{x_{2}} \int_{x_{1}}\left(x_{1}+x_{2}\right) d x_{1} d x_{2}=\int_{x_{2}}\left[\frac{x_{1}^{2}}{2}+x_{2} x_{1}\right]_{0}^{1} d x_{2} \\
& =\int_{x_{2}}\left(\frac{1}{2}+x_{2}\right) d x_{2}=\left[\frac{x_{2}}{2}+\frac{x_{2}^{2}}{2}\right]_{0}^{1}=1 .
\end{aligned}
$$

From this we can see that $f\left(x_{2}\right)=\left[\frac{1}{2}+x_{2}\right]$. Likewise, by an argument of symmetry, we have $f\left(x_{1}\right)=\left[\frac{1}{2}+x_{1}\right]$.

Next consider

$$
\begin{aligned}
& E\left(x_{2} \mid x_{1}\right)=\int_{x_{2}} x_{2} \frac{f\left(x_{1}, x_{2}\right)}{f\left(x_{1}\right)} d x_{2} \\
& \quad=\frac{1}{\left(\frac{1}{2}+x_{1}\right)} \int_{x_{2}} x_{2}\left(x_{1}+x_{2}\right) d x_{2}=\frac{1}{\left(\frac{1}{2}+x_{1}\right)}\left[\frac{x_{1} x_{2}^{2}}{2}+\frac{x_{2}^{3}}{3}\right]_{x_{2}=0}^{1} \\
& \quad=\frac{1}{\left(x_{1}+\frac{1}{2}\right)} \frac{\left(3 x_{1}+2\right)}{6}=\frac{3 x_{1}+2}{6 x_{1}+3} .
\end{aligned}
$$

2. Find the $P(x<y \mid x<2 y)$ when $f(x, y)=e^{-(x+y)}$. Draw a diagram to represent the event.

Answer.

$$
\begin{aligned}
P(x<a y) & =\int_{y=0}^{\infty} \int_{x=0}^{a y} f(x, y) d x d y=\int_{y=0}^{\infty} e^{-y}\left\{\int_{x=0}^{a y} e^{-x}\right\} d y \\
& =\int_{y=0}^{\infty} e^{-y}\left[-e^{-x}\right]_{0}^{a y} d y=\int_{y=0}^{\infty} e^{-y}\left[1-e^{-a y}\right] d y \\
& =\left[-e^{-y}+\frac{e^{-(1+a) y}}{1+a}\right]_{0}^{\infty}=1-\frac{1}{1+a}
\end{aligned}
$$

Hence we get

$$
\begin{gathered}
P(x<y)=1-\frac{1}{2}=\frac{1}{2} \\
P(x<2 y)=1-\frac{1}{3}=\frac{2}{3} \\
P(x<y \mid x<2 y)=\frac{P(x<y)}{P(x<2 y)}=\frac{1}{2} \cdot \frac{3}{2}=\frac{3}{4} .
\end{gathered}
$$

3. The variance of $x_{1}+x_{2}$ is $V\left(x_{1}\right)+V\left(x_{2}\right)+2 C\left(x_{1}, x_{2}\right)$. Extend this result to find the variance of $x_{1}+x_{2}+x_{3}$.

Answer.

$$
\begin{aligned}
V\left(x_{1}+x_{2}+x_{3}\right) & =V\left\{\left(x_{1}+x_{2}\right)+x_{3}\right\} \\
& =V\left(x_{1}+x_{2}\right)+V\left(x_{3}\right)+2 C\left(x_{1}+x_{2}, x_{3}\right) \\
& =V\left(x_{1}\right)+V\left(x_{2}\right)+V\left(x_{3}\right)+2 C\left(x_{1}+x_{2}, x_{3}\right)+2 C\left(x_{1}, x_{2}\right)
\end{aligned}
$$

But

$$
\begin{aligned}
C\left(x_{1}+x_{2}, x_{3}\right)= & E\left[\left\{\left(x_{1}+x_{2}\right)-E\left(x_{1}+x_{2}\right)\right\}\left\{x_{3}-E\left(x_{3}\right)\right\}\right] \\
= & E\left[\left\{x_{1}-E\left(x_{1}\right)\right\}+\left\{x_{2}-E\left(x_{2}\right)\right\}\right]\left[x_{3}-E\left(x_{3}\right)\right] \\
& =E\left[\left\{x_{1}-E\left(x_{1}\right)\right\}\left\{x_{3}-E\left(x_{3}\right)\right\}\right] \\
& +E\left[\left\{x_{2}-E\left(x_{2}\right)\right\}\left\{x_{3}-E\left(x_{3}\right)\right\}\right] \\
& =C\left(x_{1}, x_{3}\right)+C\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Substituting this result into the expression for $V\left(x_{1}+x_{2}+x_{3}\right)$ gives
$V\left(x_{1}+x_{2}+x_{3}\right)=V\left(x_{1}\right)+V\left(x_{2}\right)+V\left(x_{3}\right)+2 C\left(x_{1}, x_{2}\right)+2 C\left(x_{1}, x_{3}\right)+2 C\left(x_{2}, x_{3}\right)$.
4. Find $V\left(x_{1}-x_{2}\right)$. Prove that

$$
C\left(x_{1}, x_{2}\right) \leq \sqrt{V\left(x_{1}\right) V\left(x_{2}\right)} \leq \frac{1}{2}\left\{V\left(x_{1}\right)+V\left(x_{2}\right)\right\} .
$$

Answer. For the first part,

$$
\begin{aligned}
V\left(x_{1}-x_{2}\right)= & E\left\{\left(x_{1}-x_{2}\right)-E\left(x_{1}-x_{2}\right)\right\}^{2} \\
= & E\left[\left\{x_{1}-E\left(x_{1}\right)\right\}-\left\{x_{2}-E\left(x_{2}\right)\right\}\right]^{2} \\
= & E\left\{x_{1}-E\left(x_{1}\right)\right\}^{2}-2 E\left[\left\{x_{1}-E\left(x_{1}\right)\right\}\left\{x_{2}-E\left(x_{2}\right)\right\}\right] \\
& \quad+E\left\{x_{2}-E\left(x_{2}\right)\right\}^{2} \\
& =V\left(x_{1}\right)+V\left(x_{2}\right)-2 C\left(x_{1}, x_{2}\right)
\end{aligned}
$$

For the second part, we may assume that

$$
-1 \leq \rho=\frac{C\left(x_{1}, x_{2}\right)}{\sqrt{V\left(x_{1}\right) V\left(x_{2}\right)}} \leq 1
$$

It follows that

$$
C\left(x_{1}, x_{2}\right) \leq \sqrt{V\left(x_{1}\right)+V\left(x_{2}\right)}
$$

Also we have

$$
0 \leq\left(\sqrt{V\left(x_{1}\right)}-\sqrt{V\left(x_{2}\right)}\right)^{2}=V\left(x_{1}\right)-2 \sqrt{V\left(x_{1}\right)} \sqrt{V\left(x_{2}\right)}+V\left(x_{2}\right)
$$

whence

$$
\frac{1}{2}\left\{V\left(x_{1}\right)+V\left(x_{2}\right)\right\} \geq \sqrt{V\left(x_{1}\right)+V\left(x_{2}\right)}
$$

and the result follows from combining the inequalities.

