EXERCISES IN MATHEMATICS

Series G, No. 3: Answers

1. Let $y = x^n$ where n = p/q. By differentiating the equation $y^q = x^p$ on both sides, show that $dy/dx = nx^{n-1}$.

Answer. We have

$$\frac{d}{dy}(y^q) = qy^{q-1}$$
 and $\frac{d}{dx}(x^p) = py^{p-1}$.

Therefore

$$\frac{dy}{dx} = \frac{d(x^p)}{dx} \cdot \frac{dy}{d(y^q)} = \frac{px^{p-1}}{qy^{q-1}} = n\left(\frac{x^p}{y^q}\right)\frac{y}{x} = nx^{n-1},$$

since $x^p/y^q = 1$ and $y/x = x^{n-1}$.

2. The following figures relate to the consumption of natural gas (millions tonnes of coal equivalent) in Britain over a 10-year period:

- (i) Plot a graph of the series and of its logarithm and ascertain whether it follows a process of linear growth or a process of exponential growth.
- (ii) Using the formula $y_t = y_0 e^{\rho t}$, calculate the average annual growth (a) for the period 1966–1970 inclusive, (b) for the period 1971–1975 inclusive, (c) for the entire period 1966–1975.
- (iii) Calculate the same rates using the formula $y_t = y_0(1+r)^t$.
- (iv) Calculate the linear growth rates using the formula $y_t = y_0 + gt$.

Answer.

(ii) The equation for exponential growth is $y_t = y_0 e^{\rho t}$. The growth rate ρ is given by

$$\rho = \frac{1}{t} \ln \left(\frac{y_t}{y_0} \right).$$

The grow rates over the various periods are calculated as

$$\rho_{66-70} = \frac{1}{5} \ln \left(\frac{179}{12} \right) = 54.05\%,$$

$$\rho_{71-75} = \frac{1}{5} \ln \left(\frac{554}{288} \right) = 13.08\%,$$

1

EXERCISES IN MATHEMATICS, G3

$$\rho_{66-75} = \frac{1}{10} \ln \left(\frac{554}{12} \right) = 38.32\%.$$

(iii) The equation for geometric growth is $y_t = y_0(1+r)^t$. This gives

$$\frac{1}{t}\ln\left(\frac{y_t}{y_0}\right) = \ln(1+r) \quad \text{whence}$$

$$1 + r = \exp\left\{\frac{1}{t}\ln\left(\frac{y_t}{y_0}\right)\right\}.$$

The grow rates over the various periods are calculated as

$$r_{66-70} = \exp\left\{\frac{1}{5}\ln\left(\frac{179}{12}\right)\right\} - 1 = 71.69\%,$$

$$r_{71-75} = \exp\left\{\frac{1}{5}\ln\left(\frac{554}{288}\right)\right\} - 1 = 13.98\%,$$

$$r_{66-75} = \exp\left\{\frac{1}{10}\ln\left(\frac{554}{12}\right)\right\} - 1 = 46.70\%.$$

3. The costs of a manufacturing firm, as a function of its output q, are given by

$$C = \frac{1}{3}q^3 - 5q^2 + 30q + 10.$$

Assume that conditions of perfect competition prevail such that the price $p = \bar{p} = 6$ is not affected by the quantity which the firm brings to the market. Find the output quantity which maximises the firm's profits which are defined by $\pi(q) = R - C$ where $R = p \times q$ is the firm's sales revenue. Confirm that a maximising quantity has been found by evaluating the second derivative $d^2\pi/dq^2$.

Answer. The revenues are R = 6q. The profits are given by

$$\pi(q) = R - C = 6q - \frac{1}{3}q^3 + 5q^2 - 30q - 10.$$

The first-order condition for a maximum is

$$\frac{d\pi}{dq} = 6 - q^2 + 10q - 30 = 0,$$

which is rearranged to give

$$0 = q^{2} - 10q + 24$$
$$= (q - 6)(q - 4).$$

EXERCISES IN MATHEMATICS, G3

There are two solutions: q = 4, 6. To determine their status, we must evaluate the second derivative at either point:

$$\frac{d^2\pi}{dq^2} = -2q + 10.$$

At q=4 the second derivative is positive which indicates a minimum. At q=6it is negative which indicates a maximum.

4. Find the values of x which satisfy the condition dy(x)/dx = 0 in each of the following cases, and ascertain whether they correspond to maxima, to minima or to points of inflection:

(i)
$$y = \frac{1}{2}x^3 + x^2 + x$$
,

(ii)
$$y = \frac{1}{3}x^3 - x + 10$$
,

(i)
$$y = \frac{1}{3}x^3 + x^2 + x$$
,
(ii) $y = \frac{1}{3}x^3 - x + 10$,
(iii) $y = \frac{1}{3}x^3 - x + 10$,
(iv) $y = x^3 + 2x^2 - 7x + 1$,
(v) $y = (x^2 - 1)^2$,
(vi) $y = \frac{1+x}{x^2}$.

(iv)
$$y = x^3 + 2x^2 - 7x + 1$$

(v)
$$y = (x^2 - 1)^2$$

$$(vi) \quad y = \frac{1+x}{x^2}$$

Answer.

(i) We have

$$f(x) = \frac{1}{3}x^3 + x^2 + x,$$
 $f''(x) = 2x + 2,$
 $f'(x) = x^2 + 2x + 1,$ $f'''(x) = 2.$

The first-order condition is $f'(x) = x^2 + 2x + 1 = (x+1)^2 = 0$, which implies a unique solution of x = -1. Then f''(-1) = 0 and f'''(-1) = 2. This indicates a point of inflection at x = -1. Also f'(x) > 0 for x < -1 and for x > -1; and so f(x) is a non-decreasing function of x.

(ii) We have

$$f(x) = \frac{1}{3}x^3 - x + 10,$$
 $f''(x) = 2x,$
 $f'(x) = x^2 - 1,$ $f'''(x) = 2.$

The first-order condition is $f'(x) = x^2 - 1 = 0$ which has the solutions $x = \pm 1$. Then f''(1) = 2 and f''(-1) = -2. This indicates a minimum x = 1 and a maximum at x = -1.

(iii) Both the numerator and denominator contain the factor x+1 and we have

$$f(x) = x^2 + 3x + 2,$$
 $f''(x) = 2,$
 $f'(x) = 2x + 3,$ $f'''(x) = 0.$

The first-order condition is f'(x) = 2x + 3 = 0 which implies a unique solution of x = -3/2 which is a minimum.

3

EXERCISES IN MATHEMATICS, G3

(iv) We have

$$f(x) = x^3 + 2x^2 - 7x + 1,$$
 $f''(x) = 6x + 4,$
 $f'(x) = 3x^2 + 4x - 7,$ $f'''(x) = 6.$

The first-order condition is $f'(x) = 3x^2 + 4x - 7 = (x-1)(3x+7) = 0$ which indicates solutions of $x = 1, -2\frac{1}{3}$. The second derivatives at these points are f''(1) = 10 and $f''(-2\frac{1}{3}) = -10$ which indicates that x = 1 gives a minimum and that $x = -2\frac{1}{3}$ gives a maximum.

(v) We have

$$f(x) = (x^2 - 1)^2,$$
 $f''(x) = 12x^2 - 4,$
 $f'(x) = 4x(x^2 - 1) = 4x^3 - 4x,$ $f'''(x) = 24x.$

The first-order condition is $f'(x) = x(4x^2 - 4) = 0$ which indicates solutions of $x = \pm 1$ and x = 0. The second derivatives at these points are $f''(\pm 1) = 0$ and f''(0) = -4, which indicates minima at $x = \pm 1$ and a maximum at x = 0.

(vi) We have

$$f(x) = x^{-2} + x^{-1},$$
 $f''(x) = 6x^{-4} + 2x^{-3},$
 $f'(x) = -2x^{-3} - x^{-2},$ $f'''(x) = -24x^{-5} - 6x^{-4}.$

The first-order condition is $f'(x) = -2x^{-3} - x^{-2} = 0$ which entails the condition 2 + x = 0. of which the solution is x = -2. The second derivative at this point is f''(-2) = 2/16, which indicates a minimum.

5. Let $Y = \alpha L^{\lambda} K^{\kappa}$. Show that

$$\frac{\partial Y}{\partial L}\frac{L}{Y} = \lambda$$
 and $\frac{\partial Y}{\partial K}\frac{K}{Y} = \kappa$.

Answer. The derivatives are

$$\frac{\partial Y}{\partial L} \cdot \frac{L}{Y} = \alpha \{ \lambda L^{\lambda - 1} \} K^{\kappa} \cdot \frac{L}{Y} = \lambda \frac{\{ \alpha L^{\lambda} K^{\kappa} \}}{Y} = \lambda,$$
$$\frac{\partial Y}{\partial K} \cdot \frac{L}{K} = \alpha L^{\lambda} \{ \kappa K^{\kappa - 1} \} \cdot \frac{K}{Y} = \kappa \frac{\{ \alpha L^{\lambda} K^{\kappa} \}}{Y} = \kappa.$$

The function in question is the Cobb-Douglas production function which gives the total output Y of an enterprise in terms of the quantities of labour L and capital K. The returns to scale are indicated by the sum of the exponents:

 $\lambda + \kappa < 1 \Longrightarrow$ decreasing returns to scale, $\lambda + \kappa = 1 \Longrightarrow$ constant returns to scale, $\lambda + \kappa > 1 \Longrightarrow$ economies of scale.