EXERCISES IN MATHEMATICS

Series F, No. 1: Answers

Sets, Logic and Venn Diagrams

- 1. Prove De Morgan's rules using a Venn diagram.
- 2. Substitute the symbols + for addition and × for multiplication in place of ∪ and ∩ respectively in the statements (15)–(18) of the laws of Boolean algebra. Determine whether the resulting statements concerning the arithmetic operations are true or false. Attempt to give a complete statement of the rules of arithmetic.

Answer. On substituting \times for \cap and + for \cup we derive the following statements:

(15)	Commutative law:	A + B = B + A,	True	
		$A \times B = B \times A,$	True	
(16)	Associative law:	(A+B)+C=A	$A + (B + C), \qquad 2$	True
		$(A \times B) \times C = A$	$A \times (B \times C),$ 2	True
(17)	Distributive law:	$A \times (B + C) = 0$	$(A \times B) + (A \times C)$, True
		$A + (B \times C) = 0$	$(A+B) \times (A+C)$, False
(18)	Idempotency law:	A + A = A,	False	
		$A \times A = A.$	False	

The axioms of arithmetic may be stated as follows:

The set of real number is closed under the binary operations of addition + and multiplication \times such that, for any numbers x, y, z, the following are true:

- (i) Commutativity : x + y = y + x,
- (ii) $x \times y = y \times x,$
- (iii) Associativity : (x+y) + z = x + (y+z),
- (iv) $(x \times y) \times z = x \times (y \times z),$
- (v) Distributivity : $x \times (y+z) = (x \times y) + (x \times z),$

(*)
$$x + (y \times z) \neq (x + y) \times (x + z),$$

(vi) Unity: There exists a number 1 such that $1 \times x = x$ for every $x.$
(vii) Zero: There exists a number 0 such that $x + 0 = x$ for every $x.$
(viii) Negatives: For every $x \neq 0$, there exist an unique negative $-x$
such that $x + (-x) = 0.$

(ix) Inverses: For every
$$x \neq 0$$
, there exist an unique inverse x^{-1} such that $x \times x^{-1} = 1$.

3. Evaluate the following expressions:

(a)	$A \cup (B^c \cup A)^c,$	(c)	$A \cap (B^c \cap A)^c,$
(b)	$A \cap (B \cup A^c),$	(d)	$A \cup (A \cap B)^c.$

Answer.

(a)

$$A \cup (B^{c} \cup A)^{c} = A \cup (B \cap A^{c}) \qquad De \ Morgan$$

$$= (A \cup B) \cap (A \cup A^{c}) \qquad Distributivity$$

$$= (A \cup B) \cap S = A \cup B \qquad By \ (20), \ (i), \ (iv).$$

(b)

$$A \cap (B \cup A^{c}) = (A \cap B) \cup (A \cap A^{c}) \qquad Distributivity$$

$$= (A \cap B) \cup \emptyset \qquad By (20), (ii),$$

$$= A \cap B \qquad By (20), (v).$$

(c)
$$A \cap (B^c \cap A)^c = A \cap (B \cup A^c) \qquad De \ Morgan$$
$$= (A \cap B) \qquad See \ above$$

(d)

$$A \cup (A \cap B)^{c} = A \cup (A^{c} \cup B^{c}) \qquad De \ Morgan$$

$$= (A \cup A^{c}) \cup B^{c} \qquad Associativity$$

$$= S \cup B^{c} = S \qquad By \ (20), \ (i) \ (iii).$$

4. A statement in Boolean algebra may be transformed into a statement in propositional logic. Consider the following:

(a)
$$(A \cup B)^c = A^c \cap B^c$$
 and (b) $(A \cap B)^c = A^c \cup B^c$.

Let A represent the circumstance of being a man and let B be the condition of having less than forty years of age. Let \cap stand for the conjunction "and" and let \cup stand for the logical "or". Also let A^c be rendered as not A. Using these elements, attempt to construct two sentences in simple English which correspond to the Boolean expressions above.

Answer. (a) A person who is not either male or under forty is neither male nor under forty. (The person is therefore a woman over forty). (b) A person who is not both male and under forty is either female or over forty.

Our use of language may be symbolised by writing

- (a) not(either A or B) \iff (neither A nor B),
- (b) not(both A and B) \iff either (not A) or (not B).
- 5. The Pascal computer language defines the operators **not**, **and** and **or**. Two of these operators are used in the following lines of code which instruct an algorithm for plotting a graph to draw line segments only within vertical limits:

if $(not(y \ge upperBound))$ and $(not(y \le lowerBound))$ then LineTo(x, y);

Rewrite the first line of code (a) using a **not** and an **or** just once and (b) using a single **and**.

Answer. The following three clauses are equivalent:

- if $(not(y \ge upperBound))$ and $(not(y \le lowerBound))$ then LineTo(x, y);
- if not $((y \ge upperBound)$ or $(y \le lowerBound))$ then LineTo(x, y);
- if (y < upperBound) and (y > lowerBound) then LineTo(x, y);