
INTRODUCTORY ECONOMETRICS : Exercise 5 (Supplementary)

Matrices of Zeros and Units for Modelling Seasonal Variations

1. The values assumed by the variable yt in the four quarters of the year τ
are given by the equation
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or equally by the equivalent equation
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Find the matrix of the transformation which maps the vector [δ0, δ1, δ2, δ3]′

into the vector [φ, γ0, γ1, γ2]′ and confirm, by matrix multiplication, that
this is the inverse of the matrix of (2).

2. Let the seasonal variation in yt be represented by the equation

(3) yt = α0 + α1 cos
(πt

2

)
+ β1 sin

(πt
2

)
+ α2(−1)t + et.

Show that, for the four quarters of the year τ , we have the following matrix
equation:
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3. Find explicit expressions for the simple least-squares estimates of the coef-

ficients α0, α1, β1, and α2 of equation (4) when the data consist of T = 4p
observations spanning p years. For example, α0 = T−1

∑T
t=1 yt.

4. Confirm the following identity:
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5. By using the results from question 1, or by any other means, find the
matrix transformation which maps from [α0, α1, β1, α2]′ to [φ, γ0, γ1, γ2]′

together with its inverse.


