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The effect of the conventional model-based methods of seasonal adjustment is to nullify

the elements of the data that reside at the seasonal frequencies and to attenuate the

elements at the adjacent frequencies. It may be desirable to nullify some of the adja-

cent elements instead of merely attenuating them. For this purpose, two alternative

procedures are presented that have been implemented in a computer program.

In the first procedure, the seasonal-adjustment filter is augmented by additional

filters that are targeted at the adjacent frequencies. In the second procedure, a Fourier

transform is deployed to reveal the elements of the data at all the frequencies. This

allows the elements in the vicinities of the seasonal frequencies to be eliminated or

attenuated at will.

In spite of the success of these procedures, the question is raised of whether the

estimated trend-cycle trajectory that is devoid of high-frequency noise can serve in

place of the seasonally adjusted data.

Introduction

This paper discusses some existing and some newly proposed methods for the
seasonal adjustment of economic data.

Two sets of methods are used preponderantly, at present, by central statistical
offices. These are the heuristic methods that comprise the venerable X-11 procedure
of Shiskin, Young and Musgrave (1967) and its derivatives and the newer model-
based methods that are represented primarily by the SEATS TRAMO package of
Augustin Maravall—see Gómez and Maravall (1997) and Caporello and Maravall
(2004). A broad perspective on model-based business-cycle analysis and seasonal
adjustment has been provided by Kaiser and Maravall (2001).

Both sets of methods, which operate in the time domain, are complicated and
difficult to master, albeit that they are nowadays accompanied by helpful online
guidance. The X-11 program is well served by the monograph of Ladiray and
Quenneville (2001). However, problems can arise with these methods that can be
overcome by methods that operate in the frequency domain.

The traditional procedures that are based on the X-11 program were informed
by a limited theory of filtering, which can be improved on. The model-based meth-
ods are the products of a dominant opinion amongst economists that economic
investigations should be conducted within the context of well-defined models of
economic activities. A difficulty with this opinion is that the models are sometimes
incapable of capturing the complexities of the economic data. They can lead to dis-
torted views of economic reality and to other failures when the models cannot be
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fitted adequately to the data. This can happen when the data are too heterogenous
to sustain a model with fixed parameters.

Another problem that affects the time-domain methods of seasonal adjustment
is that they nullify completely only the elements at the seasonal seasonal frequency
and its harmonics. The seasonal fluctuations may comprise elements at adjacent
frequencies that also need to be removed from the data.

A testimony to this problem has been provided by McElroy and Roy (2017),
who have provided a means of detecting residual seasonal effects in seasonally ad-
justed date. The issue has also been raised by Findley et al. (2005). The present
paper describes some means of addressing the problem that operate in the time
domain and in the frequency domain.

The ultimate purpose has been to build a program that comprises both some
amended versions of the time-domain procedures and a full set of frequency-domain
procedures. Then, the two sets of procedures will bear mutual comparison.

Comb Filters

Any time-domain procedure for seasonal adjustment must contain a component
that acts in the manner of a comb filter. This filter is a rational polynomial function
of the lag operator, albeit that it can be represented as a ratio of two polynomials
of which the argument is a complex number z. Thus, the comb filter will be
represented by

Σ(z)

P (z)
=

1 + z + z2 + · · ·+ zs−1

1 + ρz + (ρz)2 + · · ·+ (ρz)s−1
=

(1− zs)(1− ρz)
(1− z)(1− ρszs)

, (1)

where ρ ∈ (0, 1) and where s = 4, 12 denotes either a quarterly or a monthly
frequency of observation. Here, the numerator polynomial contains zeros at the
seasonal frequencies, which are ωj = 2πj/s; j = 1, 2, . . . , s− 1. These are amongst
the roots of the equation 1 − zs = 0, which are the so-called roots of unity (The
zero at the angle ω0 = ωs is excluded.)

The poles that accompany the zeros are provided by the solution to the equa-
tion 1 − ρszs = 0, where ρ < 1 is close to unity. These are the roots of the
denominator polynomial of the filter. The poles take the values ρ exp(i2πj/s);
j = 1, 2, . . . , s − 1, which is to say that they lie on a circle in the complex plane
of radius ρ−1. Figure 1 depicts the poles and the zeros of the comb filter, albeit
that, for graphical purposes, the argument z of the polynomials has been replaced
by z−1, to keep the poles within the unit circle.

The nullification of the seasonal elements of the data is achieved by the zeros of
the filter. The effects of these zeros at other frequencies is limited by the presence of
the poles of the filter that lie on the same axes or radii as the zeros and that are close
to the unit circle. At frequencies that are remote from the seasonal frequencies, the
effects of the poles and the zeros are largely cancelled.
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Figure 1. The pole-zero diagram of the unidirectional comb filter for monthly data. The

poles are marked by crosses and the zeros are marked by circles.

The filter of equation (1) is unidirectional and backward looking, such that the
filtered values will be formed from past and present values of the data. The filter
will, therefore, induce a phase shift or a time lag in the processed data.

To avoid such an effect, the filter must reach equally forwards and backwards
in time. For this reason, it is appropriate adopt a bidirectional filter of the form

B(z) = µ
Σ(z−1)Σ(z)

P (z−1)P (z)
. (2)

Here, µ if a factor that is adjusted to ensure that the value of B(z) is unity when
at z = 1. This will ensure that the filter preserves the level of the data.

The effect of the filter is revealed by its frequency response function, which
shows the manner in which the filter modifies the amplitudes of the sinusoidal
elements of which the data is composed. It is obtained by setting z = exp{−iω}
and by running ω from zero to the limiting frequency of π. The frequency response
of the monthly comb filters with ρ = 0.8 and ρ = 0.9 is shown in Figure 2.

The expansion of the rational function of (2) will give rise to a doubly-infinite
sequence of coefficients. Therefore, the filter cannot be applied directly to a finite
sequence of data, unless one is prepared to truncate the sequence of coefficients.
Instead, the filter may be applied in two passes running through the data in opposite
directions.

These processes can be represented by the equations

P (z)q(z) = Σ(z)y(z) and P (z−1)x(z) = Σ(z−1)q(z), (3)
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Figure 2. The frequency response function of the bidirectional comb filter for monthly

data with ρ = 0.8, giving the lesser peaks, and ρ = 0.9, giving the higher peaks.

where y(z) =
∑
ytz

t is the z-transform of the data sequence y(t) = {yt; t =
0 ± 1,±2, . . .}, where q(t) is an intermediate sequence generated by the forward
pass of the one-sided filter of (1) and where x(t) is the final filtered sequence re-
sulting from the backwards pass of the filter. In order to initiate the forwards and
backwards passes, it is necessary to supply some initial conditions, to be obtained
by backcasting and forecasting the elements of y(t) and q(t) respectively.

Wiener–Kolmogorov Filters

A problem with the filter of (2) is the manner in which the peaks of the
frequency reponse function that lie between the seasonal frequencies are diminished.
Ideally, they should reach values close to unity so that the non-seasonal elements
of the data can be largely preserved. Also, this filter offers little control over the
width of the clefts that surround the seasonal frequencies.
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Figure 3. The frequency response functions of the ordinary seasonal adjustment filter

for monthly data with λ = 0.5. and ρ = 0.8 (the solid line) and with λ = 0.5. and

ρ = 0.99 (the dashed line).

These problems can be overcome by adopting a Wiener–Kolmogorov formula-
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tion that gives rise to the following filter:

Ψ(z) = µ
Σ(z−1)Σ(z)

Σ(z−1)Σ(z) + λP (z−1)P (z)
. (4)

Figure 3 shows the frequency response function of two such filters, wherein the
parameter values are ρ = 0.99 and λ = 0.5, which give rise to a frequency response
function with narrow clefts at the seasonal frequencies, and ρ = 0.8 and λ = 0.5,
which give rise to one with wide clefts.

The Wiener–Kolmogorov filters are commonly derived from statistical
models comprising additive components. In this context, the filtered data rep-
resent a minimum-mean-square-error estimate of one or other the components of
the model.

An heuristic model that gives rise to the filter of (4) is represented in a z-
transform notation by

y(z) =
P (z)

Σ(z)
ν(z) + η(z)

= ξ(z) + η(z),

(5)

where y(z) =
∑
ytz

t is the z-transform of the stochastic sequence y(t) = {yt; t =
0± 1,±2, . . .}, and where ξ(z), η(z) and ν(z) are defined likewise.

Here, ξ(z) represents the seasonal fluctuations, whereas η(z) represents what-
ever other motions may be present in the detrended data. Both ν(z) and η(z)
stand for mutually independent white-noise processes with variances of σ2

ν and σ2
η,

respectively.
It would be possible to elaborate the representation of the non-seasonal pro-

cess η(t) by making it the product of an autoregressive moving-average process.
However, the purpose of the model is not to provide a realistic representation of
the process to be filtered. Instead, the model is to be regarded solely as a means
of deriving an appropriate filter.

It is notable that the model has no trend function. Whatever trend there may
be in the data to filtered can be removed, usually, by interpolating a polynomial
function of an appropriate degree into the data. In that case, y(z) will correspond
to the residuals of a polynomial regression.

The presence of complex roots of unit modulus within the polynomial Σ(z)
implies that the process y(t) is non-stationary in amplitude. It may be reduced to
stationarity by multiplying throughout by Σ(z) to give

Σ(z)y(z) = P (z)ν(z) + Σ(z)η(z)

= δ(z) + κ(z) = g(z).
(6)

The conditional expectation η(z) given g(z) is

E{η(z)|g(z)} = E{η(z)}+
C{η(z), g(z)}
V {g(z)}

[g(z)− E{g(z)}]. (7)
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Give that
V {g(z)} = σ2

νP (z−1)P (z) + σ2
ηΣ(z−1)Σ(z) and

C{g(z), η(z)} = σ2
ηΣ(z),

(8)

and given that E{η(z)} = E{g(z)} = 0, it follows that

E{η(z)|g(z)} =
Σ(z−1)Σ(z)

Σ(z−1)Σ(z) + λP (z−1)P (z)
y(z) = Ψ(z)y(z), (9)

where λ = σ2
ν/σ

2
η. It will be recognised that Ψ(z) is the ratio of the autocovariance

generating function of the component to be estimated to that of the data sequence.
In order to apply the filter in a bidirectional manner, it is necessary to factorise

the denominator as the product of a factor in z, to be used in the forwards pass,
and a factor in z−1, to be used in the backwards pass. There is also a need to
supply initial conditions for both processes. These difficulties can be overcome by
adopting a genuine finite-sample version of the filter.

The Finite-Sample Wiener–Kolmogorov Filter

To derive the finite-sample version of the Wiener–Kolmogorov filter, consider
a vector y = [y0, y1, . . . , yT−1]′ of T values drawn from the process represented by
y(z). In accordance with equation (5), the vector may be decomposed as

y = ξ + η. (10)

The finite-sample version of the filter of (9) will be a matrix transformation of order
T that maps from the data vector y to a vector h that represents the estimate of
η. To derive such a transformation, one can begin by finding the matrix analogues
of the operators Σ(z) and P (z).

These matrices can be obtained by replacing the argument z by the matrix
lag operator LT = [e1, . . . , eT−1, 0] of order T , which is derived from the identity
matrix IT = [e0, e1, . . . , eT−1]′ by deleting the leading column and by adding a
column of zeros to the end of the array.

The resulting matrices, denoted by ΣT = Σ(LT ) and PT = P (LT ) are lower-
triangular. The matrices corresponding to Σ(z−1) and P (z−1) are the upper trian-
gular matrices Σ′T and P ′T respectively.

With the matrix operators in place of the polynomial operators, the following
matrix transformation is derived:

h = Σ′T (ΣTΣ′T + λPTP
′
T )−1ΣT y. (11)

It is notable that the first s−1 elements of ΣT y differ from the remaining elements
in so far as they comprise fewer than s elements of the data vector. To supply the
missing elements, some pre-ample values of the data might be generated.

An alternative recourse is to discard the first s− 1 elements of the transforma-
tion. Consider the following equations

Σ(LT )y =

[
S′∗
S′

]
y =

[
g∗
g

]
, P (LT )x =

[
R′∗
R′

]
x =

[
z∗
z

]
. (12)
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The effect of discarding the subvectors g∗ and z∗ can be achieved by replacing ΣT
and PT by S′ and R′ respectively. Then, the matrix analogue of the filter equation
becomes

h = Ψy = S(S′S + λR′R)−1S′y. (13)

This equation can also be derived from a conditional expectation. Applying
S′ to the equation y = ξ + η, representing the seasonally fluctuating data, gives

S′y = R′ν + S′η

= δ + κ = g.
(14)

This is just a segment of T − s elements drawn from the process represented by
equation (6).

The expectations and the dispersion matrices of the component vectors of g
are

E(δ) = 0, D(δ) = σ2
νR
′R,

E(κ) = 0, D(κ) = σ2
ηS
′S.

(15)

The conditional expectation of η, given the transformed data g = S′y, is
provided by the formula

h = E(η|g) = E(η) + C(η, g)D−1(g){g − E(g)}

= C(η, g)D−1(g)g,
(16)

where the second equality follows in view of the zero-valued expectations of η and
g. Within this expression, there are

D(g) = σ2
νR
′R+ σ2

ηS
′S and C(η, g) = σ2

ηS. (17)

Putting these details into (16) gives the following estimate of η:

h = σ2
ηS(σ2

νR
′R+ σ2

ηS
′S)−1S′y

= S(S′S + λR′R)−1S′y,
(18)

where λ = σ2
ν/σ

2
η.

A simple procedure for calculating h begins by solving the equation

(S′S + λR′R)b = S′y = g (19)

for the value of b. Thereafter, one can generate h = Sb.
The solution to equation (19) may be found via a Cholesky factorisation that

sets S′S + λR′R = LDL′, where L is a lower-triangular matrix with a limited
number of nonzero bands and D is a diagonal matrix. The system LDL′b = g may
be cast in the form of Lp = g and solved for p. Then, L′b = D−1p can be solved
for b, whence h = Sb can be derived.
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It will be observed that the equation (18) can also be written as

h = (SL′−1)D−1(L−1S′)y, (20)

where SL′−1 is an upper-triangular matrix, and where its transpose L−1S′ is a
lower-triangular matrix. This equation corresponds to a method of bi-directional
filtering in which p = L−1S′y represents a real-time filtering and h = SL′−1D−1p
represent a reverse-time filtering, which is also described as a smoothing operation.

The transformation h = Ψy of (13) and (18) entails a bi-symmetric matrix
(which is symmetric with respect to both the NW–SE and the NE–SW diagonals).

One consequence of this characteristic is that the outcome is invariant with
respect to the reversal of the order of the element in the vectors y and h. Thus, if
the reversed vectors are denoted by y# = Jy and h# = Jh, where J is a matrix
with units on the NE–SW diagonal and with zeros elsewhere, then h# = Ψy#.
That is not the case for the transformation of (11).
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Figure 4. The frequency response functions of the ordinary seasonal adjustment filter

for quarterly data with λ = 0.5. and ρ = 0.9).
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Figure 5. The residuals from a linear detrending of the logarithms of an index of quarterly

U.K. Consumption for the years 1955 to 1994, with a superimposed seasonally adjusted

sequence.
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Figure 4 shows the frequency response function of the seasonal adjustment
filter for quarterly data and Figure 5 shows the effect of applying the quarterly
seasonal filter to the residuals from a linear detrending of the logarithms of an
index of quarterly U.K. Consumption for the years 1955 to 1994. Figure 6 shows
the seasonal component that has been extracted from these data.

The seasonally adjusted data of Figure 5 have a rough and irregular profile that
contrasts markedly with the regularity of the seasonal component. That regularity
is unsurprising in view of the fact that the component comprises a restricted set of
seasonal elements consisting only of those at the fundamental seasonal frequency
and at its harmonic frequency, together with some severely attenuated elements at
the adjacent frequencies.
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Figure 6. The seasonal component extracted from the logarithms of an index of quarterly

U.K. Consumption for the years 1955 to 1994.

One might wish for a smoother version for the trajectory of the seasonally
adjusted data. Such trajectories are shown in figures 12 and 14, where they are
designated as trend-cycle functions. They are accompanied by seasonally fluctuat-
ing residual sequences that are much rougher than that of Figure 6.

Lying within the data, between the regular series of seasonal fluctuations and
the smooth trend-cycle function, will be a rough and irregular sequence that is liable
to be regarded as noise that is fit to be discarded, unless it shows some correlation
with other economic variables.

A smooth trend-cycle function can be created by applying the time-domain
Butterworth filter to the data. The residual deviations of the data from the trend-
cycle trajectory can be subjected to a seasonal adjustment procedure to create a
seasonal component and a residual component, which is the putative noise.

Widening the Seasonal Stopbands

Figure 3 shows the ordinary seasonal adjustment filter for monthly data when
the smoothing parameters is λ = 0.5 and the pole parameter is ρ = 0.8. There is a
complete nullification of the elements at the seasonal frequencies; and those at the
adjacent frequencies are attenuated to an extent that diminishes rapidly as their
distance from the seasonal frequencies increases.
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To increase the attenuation of the elements of the data that are adjacent to
the seasonal frequencies, one can reduce the value of ρ within the polynomial P (z).
This will draw the poles away from the unit circle, with an effect that can be seen
by comparing the two functions that are plotted in of Figure 3.

It may be required to impose a greater attenuation on the adjacent elements
than can be achieved by reductions in the value of ρ, and it may be desirable to
confine this effect more narrowly to the vicinities of the seasonal frequencies.

For this purpose, it might be appropriate to apply the seasonal-adjustment
filter twice or more in succession and with poles and zeros that are displaced from
the seasonal frequencies by small angles. A twofold filter with equal displacements
on either side of the seasonal frequencies could take the form of

Ψζ(ω) = Ψ(ω − ζ)Ψ(ω + ζ), (21)

where ζ is the angle of the displacement. It should be observed that cos(π + ζ) =
cos(π − ζ). Thus, the same factor is present in both Ψ(ω − ζ) and Ψ(ω + ζ). To
avoid the duplication, it is reasonable to exclude the factor from the first of these
filters.
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Figure 7. The frequency response function of the double seasonal adjustment filter for

monthly data with offsets of 2 degrees.

75 shows the frequency response of the resulting double filter in which the
offsets are ±ζ = ±2 degrees (0.0349 radians). The lack of zeros at the seasonal
frequencies allows a small amount of leakage to occur, which increases with the size
of the offsets and with the value of ρ. Given the likely prominence of the elements
of the data at the seasonal frequencies, this leakage is liable to prove problematic.

To overcome the leakage of the double filter, it is possible to combine the
standard filter with the two offset filters to create a triple filter. The first and
primary filter will have its poles and zeros at exactly the seasonal frequencies. The
second and the third of the filters will have their poles and zeros offset to the left
and to the right, respectively. Moreover, it may be desirable to apply differing
offsets relative to some or all of the seasonal frequencies.

Thus, if it were required to place additional poles and zeros on either side of
the frequencies ωj , then it would be appropriate to compound the denominator
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polynomials P (z) of the offset filters from the factors

1− 2ρ cos(ωj + ζ1)z + ρ2z2 and 1− 2ρ cos(ωj − ζ2)z + ρ2z2 (22)

and to compound their numerator polynomials Σ(z) from similar factors, but with
ρ = 1.

The appropriate displacements can be determined with reference to the peri-
odogram of the seasonal data after their trend has been removed. This will indicate
which of the data elements adjacent to the seasonal elements should be taken into
account, to be eliminated or attenuated.

The frequency response of such a triple filter is illustrated in Figure 8. Here,
the values of λ = 0.5 and ρ = 0.8, which have characterised the previous filters,
are retained. However, an offset of 3 degrees (0.0524 radians) has been applied on
either side of each of the seasonal frequencies.

A problem with the frequency response of the triple filter is that its values at
the midpoints between the seasonal frequencies are significantly less that unity. This
conflicts with the intention of preserving the elements of the data at these points
and in the vicinities thereof. There is also an uncomfortable degree of leakage in
the wide stop bands of the filter. Similar but a less severe problems also arises with
the double filter. These problems can be overcome by operating in the frequency
domain.
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Figure 8 The frequency response function of the triple seasonal adjustment filter for

monthly data with offsets of 3 degrees.

Filters for Extracting the Trend-Cycle Function

The economic models that underlie the SEATS-TRAMO and the STAMP pro-
grams contain explicit trend functions in the nature of second-order or integrated
random walks. These functions give rise to filters that can be used to extract tend-
cycle functions from the data, which are somewhat smoother than the seasonally
adjusted data sequences.

In the seasonal adjustment procedures of the IDEOLOG program, the trend is
extracted by a polynomial regression. The regression residuals are then subjected
to a seasonal adjustment filter, whereafter they are added back to the polynomial
to create the seasonally adjusted data.
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The trend extraction filters of the SEATS-TRAMO and the STAMP programs
can be mimicked, nevertheless, by applying a low pass smoothing filter to the sea-
sonally adjusted residuals. When the resulting sequence is added to the polynomial
trend, the result is similar to those obtained from the above-mentioned programs.

The procedures of the SEATS-TRAMO programs are based on the airline
passenger model of Box and Jenkins (1976), which is represented by the equation

y(z) =
(1− θz)(1−Θzs)

(1− z)(1− zs)
ε(z) =

(1− θz)(1−Θzs)

∇2(z)Σ(z)
ε(z), (23)

where ∇2(z) = (1− z)2 is the twofold differencing operator. The parameter values
estimated by Box and Jenkins, which are the values that determine the frequency
response functions of Figures 9 and 10, are θ = 0.4 and Θ = 0.6.

The program effects a decomposition of the data into a seasonal component,
a trend-cycle component and a noise component that are described by statistically
independent processes driven by separate white-noise forcing functions. It espouses
the principle of canonical decompositions that has been expounded by Hillmer and
Tiao (1982).
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Figure 9. The frequency response of the seasonal-adjustment filter associated with the

monthly airline passenger model.
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Figure 10. The frequency response of the trend extraction filter associated with the

monthly airline passenger model.
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This principle proposes that any elements of white noise that are present in
the seasonal component and the trend component, after an initial decomposition,
should be extracted from them and assigned to the noise component. The filters
for estimating the trend component and the seasonal component are derived by
applying the Wiener–Kolmogorov principle to the revised decomposition.

Thus, the filters can be derived from a meta-model defined by the equation

y(z) =
U(z)

∇2(z)
τ(z) +

V (z)

Σ(z)
ζ(z) + η(z), (24)

where τ(z), ζ(z) and η(z) represent mutually independent white-noise processes and
where U(z) and V (z) are polynomials with zeros on the unit circle such as to elim-
inate the white-noise components within the trend and the seasonal components,
which would have uniform spectra over the interval [0, π].

Whereas no explicit expressions are available for U(z) and V (z), the expressions
for Ωτ (z) = U(z−1)U(z) and Ωζ(z) = V (z−1)V (z) have been provided by Hillmer
and Tao (1982). On this basis, the trend-extraction filter can be represented by the
equation

β(z) = σ2
τ

U(z−1)U(z)

∇2(z−1)∇2(z)
× ∇2(z−1)Σ(z−1)Σ(z)∇2(z)

σ2
ε(1− θz−1)(1−Θz−1)(1−Θz)(1− θz)

=
σ2
τ

σ2
ε

Σ(z−1)ΩτΣ(z)

(1− θz−1)(1−Θz−1)(1−Θz)(1− θz)

(25)

This is a ratio of the autocovariance generating functions of the trend component
and of the data. The filter for extracting the seasonal component is constructed
likewise. The seasonally adjusted sequence is created by subtracting the estimated
seasonal component from the data sequence. Therefore, it may be regarded as a
composite of the trend component and the noise component

Figure 9 represents the frequency response function of the seasonal adjustment
filter derived from the airline passenger model. It hardly differs from the frequency
response function of Figure 3 derived from the heuristic model of (5). Figure 10
represents the frequency response function of the trend extraction filter derived
from the airline passenger model.

In order to mimic the trend extraction filter of Figure 10, a smoothing filter
based on a second-order moving average µ(z) = 1 + µ1z + µ2z

2 can be applied in
series with the seasonal adjustment filter of (13). The smoothing filter is represented
by

M(z−1)M(z) =
(1 + µ1z

−1 + µ2z
−2)(1 + µ1z + µ2z

2)

(1 + µ1 + µ2)2
. (26)

The purpose of the denominator is to ensure that the filter has a unit at the zero
frequency.
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0

0.25

0.5

0.75

1

0 π/6 π/3 π/2 2π/3 5π/6 π

Figure 11. The frequency response of a trend extraction filter that mimicks that of the

monthly airline passenger model.

A parsimonious parametrisation of the smoothing filter is achieved by adopting
a second-order moving average of the form 1+(1+κ)z+κz2, with κ ∈ [0, 1]. Figure
11 shows the frequency response function of a filter that compounds the smoothing
filter with the filter of which the frequency response is depicted in Figure 3 by the
unbroken line. In this case, The smoothing parameter is κ = 0.6.

As the frequency value increases, the attenuations are not as severe as those
of the frequency response of the airline filter, but a closer correspondence could be
achieved at the cost of attributing additional parameters to the smoothing filter.
The effect of applying this filter to the quarterly sequence of Figure 4 is shown in
Figure 12.
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Figure 12. The effect of applying the trend extraction filter to the sequence depicted in

Figure 8.

The Frequency-Domain Methods

The methods of seasonal adjustment that operate in the frequency domain are
more flexible than the conventional time-domain methods. The Fourier ordinates
of a detrended data sequence can be rescaled in any way that is deemed to be
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appropriate, thereby altering the amplitude of the sinusoidal elements of which the
data are composed.
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Figure 13. The periodogram of the residual sequence from the linear detrending of the

logarithmic consumption data.

A close inspection of the periodogam of the data should indicate which of the
elements need to removed or to be attenuated in pursuit of the seasonal adjustment.
The effects of the irregularities of the calendar and the effects of strikes and holidays
etc. can induce irregularities in the seasonal fluctuations. Then, the fluctuations
are liable to comprise elements at frequencies that are adjacent to the seasonal
frequency and its harmonics. These can be removed easily by operating in the
frequency domain.

In the conventional methods of seasonal adjustment, such irregularities are
addressed directly by adjusting the data. Descriptions of the methods have been
provided recently by Attal-Toubert et al. (2018) and by Ladiray (2018). The
methods are complicated, and they require expertise. They can be avoided and the
irregularities can be accommodated by operating on the Fourier ordiantes in the
frequency domain

The relationships between the data sequence {yt; t = 0, 1, . . . , T − 1} and the
Fourier ordinates {ζj ; j = 0, 1, . . . , T − 1} is represented by

yt =
T−1∑
j=0

ζje
iωjt ←→ ζj =

1

T

T−1∑
t=0

yte
−iωjt, with ωj =

2πj

T
. (27)

The first of these equations, which depicts the inverse Fourier transform, represents
the Fourier synthesis of the data, whereas the second equation depicts the direct
Fourier transform of the data.

The data can also be expressed in terms of a set of mutually orthogonal trigono-
metric functions:

yt =

[T/2]∑
j=0

(αj cosωjt+ βj sinωjt), (28)

where [T/2] is the quotient (i.e. the integral part) of T/2. The coefficients of this
equation are

αj = ζj + ζT−j and iβj = ζT−j − ζj , (29)

15
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whereas, according to Euler’s equations, there are

cos θ =
eiθ + e−iθ

2
and sin θ =

−i

2
(eiθ − e−iθ) =

1

2i
(eiθ − e−iθ). (30)

The coefficients of equation (28) are obtained by projecting the data onto the
trigonometrical functions. In the case where T is an odd number, this gives

α0 =
1

T

∑
t

yt = ȳ, αj =
2

T

∑
t

yt cosωjt and βj =
2

T

∑
t

yt sinωjt, (31)

where j = 1, . . . , [T/2] = (T − 1)/2. In the case where T is an even number, the
formulae above are valid for j = 1, . . . , (T/2)− 1 and, for j = n = T/2, there are

βn = 0 and αn =
1

T

∑
t

(−1)tyt. (32)

In both cases, there is β0 = 0.
The Periodogram of the data is the graph of the function function I(ωj) =

(T/2)(α2
j + β2

j ). Figure 13 shows the periodogram of the consumption data that
are portrayed in Figures 5 and 12.

In this figure, the seasonal elements that it would be appropriate to remove
from the data correspond to the highlighted band in the vicinity of π/2. Apart
from the spectral structure that falls within the frequency interval [0, π/8], there
is little else in the data. Nevertheless, there is noise in the data that falls within
the deadspaces that occupy the remainder of the frequency axis. Therefore, it is
appropriate to represent the business cycle by a synthesis of the sinusoidal elements
that lie in the interval [0, π/8]. The result is represented in Figure 14.
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Figure 14. The residual sequence from fitting a linear trend to the logarithmic con-

sumption data with an interpolated line representing the business cycle, obtained by the

frequency-domain method.

This representation of the business cycle is liable to be preferred to that of
Figure 12 which has been produced by a time-domain method and which is affected
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by some of the noise from within the deadspaces and by some proportion of the
elements that are adjacent to the seasonal frequencies.

The difference between the smooth trajectory of Figure 14 and the rough sea-
sonally adjusted sequence of Figure 5 appears to be only noise that is devoid of any
economic information. Therefore, it can be argued that the estimated trend-cycle
sequence of Figure 14 should serve for the seasonally adjusted data.

Stop Bands and Transition Bands

The advantage of the frequency-domain method of seasonal adjustment is that
it allows complete flexibility in determining an appropriate frequency response for
eliminating the seasonal effects from the data. The simplest design is one in which
the stop bands, which eliminate the seasonal elements of the data, have zero gain
and in which the pass bands, which preserve all other elements, have unit gain.

The extent of the stop bands, which cover the seasonal frequency and its har-
monic frequencies, can be determined in the light of the periodogram of the de-
tended data. The elements adjacent to those of the seasonal frequencies, which
might be thought to contribute to the seasonal fluctuations, can also be covered by
the stop bands, albeit that, alternatively, they can be partially attenuated within
adjacent transition bands. In Figure 13, the clefts that surround the seasonal fre-
quencies are vertical shafts, and there are no transition bands.

It is possible to define transition bands that allow a gradual transition between
the pass bands and the stop bands. The trajectory of the frequency response within
these bands must make a monotonic transition from unity to zero and vice versa;
but, otherwise, its precise nature is a matter of choice. The SEASCAPE program
offers four choices. The first choice is not to have any transition bands and to allow
the frequency response to pass abruptly between unity and zero and vice versa.

R L

−q−1 q 10

r

1

0

L R

−q−1 q 10

0

1

1 − r

Figure 15. The cosine segments that give rise to the lower-half cosine transitions,
(left) and the lower-half cosine transitions, (right).

The second possibility is to govern the transitions by segments of a cosine
function restricted to the intervals L = [0, q ≤ π/2] and R = [−q ≥ −π/2, 0].
The transition on L (L for left) from the pass band to the stop band occurs when
x ∈ [0, q] and the transition R (R for right) from the stop band to the pass band
occurs when x ∈ [−q, 0]. Thus, the upper-half cosine transitions are generated by
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the function

1

1− r
{cos(xnπ/2)− r} with x ∈ [0, q] and x ∈ [−q, 0],

where r = cos(qnπ/2).
(33)

Here, q ∈ [0.5, 1] is a parameter that adjusts the shape of the transitions by abbre-
viating them. The integer n ∈ [1, 6] affects the curvature at the beginning of the
transitions, which become more gradual as n increases, whereas the descent, or the
ascent, which is delayed, becomes more rapid. The formulation of (33) is readily
intelligible when q = 1 and r = 0. When r 6= 0, the formulation can be understood
in the light of the left side Figure 15.

The third choice, which is described as the lower-half cosine transitions, em-
ploys the function

1

1− r
{1− cos(xnπ/2)} with x ∈ [−q, 0] and x ∈ [0, q],

where r = cos(qnπ/2).
(34)

Here, the transition L from pass band to stop band occur when x ∈ [−q, 0] and the
transition R from the stop band to the pass band occurs when x ∈ [0, q]. The right
side of Figure 15 elucidates this formulation.

To complete these specifications, there must be mappings from the frequency
index ω ∈ [0, π] to the variable x that governs frequency response within the clefts
that comprise the transition bands the stop bands. A sub-interval of [0, π] on which
a cleft is defined takes form of

[Ma,Mb,Mc,Md], (35)

where [Ma,Mb] and [Mc,Md] are left and right transition bands respectively and
[Mb,Mc] is the stop band. Then, in the case of the upper-half cosine transitions of
(33), there will be

L : x =
q{ω −Ma}
Mb −Ma

if ω ∈ [Ma,Mb] and

R : x =
q{ω −Mc}
Mc −Md

if ω ∈ [Mc,Md].

(36)

whereas, in the case of the lower-half cosine transition of (34), there are

L : x =
q{ω −Mb}
Mb −Ma

if ω ∈ [Ma,Mb] and

R : x =
q{ω −Mc}
Md −Mc

if ω ∈ [Mc,Md].

(37)

A fouth choice is to govern the transitions by a sigmoid or logistic function.
There are numerous functions that might be employed, were it not for the fact
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that they reach their asymptotes as x → ±∞. For present purposes, the sigmoid
functions must reach their upper and lower levels at the boundaries of the transition
regions. A flexible function that satisfies this requirement can be formed by joining
the upper an lower cosine transition functions.

The left-side composite sigmoid function is defined as a function of z = 0→ 2
comprising two segments as follows:

La(z) : {cos(xnπ/2) + 1}/2 with x = z when z ∈ [0, 1],

 Lb(z) : {1− cos(xnπ/2)1}/2 with x = 2− z when z ∈ [1, 2].
(38)

The segments join seamlessly when z = 1. The right-side function, is obtained
when z = 2→ 0 is run in reverse.

If there is a requirement to mimic the effects of one of the time-domain filters,
then it will be appropriate to employ the upper-half cosine transitions. An example
is provided by the triple time-domain filter of which the frequency response is
portrayed in Figure 8. The frequency response of a frequency-domain version of
the filter is shown in Figure 16.
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Figure 16. The frequency response function of a frequency-domain seasonal adjustment

filter for monthly data with stop bands of 6 degrees in width.

There are some manifest differences in the two frequency responses. The
frequency-domain filter shows no leakage in the stop bands. The gain of the fil-
ter in the regions between the stop bands reaches unity, with the effect that the
non-seasonal components are suffering from less attenuation than in the case of the
time-domain filter. These features can be counted as advantages. However, it is
unclear why this filter should be preferred to one that makes abrupt transitions
between the pass bands and the stop bands.
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Figure 17. The frequency response function of a low pass frequency-domain filter with a

transition in the interval [π/8, π/2] governed by a composite sigmoid function with n = 3.

The left-side composite function will serve for the transition band of a low
pass filter. The right-side function will serve for the transition band of a high pass
filter. Figure 17 shows, via the continuous line, the frequency response of a lowpass
filter. It shows, via the dashed line, the frequency response of the complementary
highpass filter. The sum of the two frequency responses is unity, which implies that
the complementary filters partition the data.

The low pass filter, of which the frequency response resembles that of the
Butterworth filter, will serve to isolate a trend-cycle function. The rate of transition
can be increased either by raising the value of n or by narrowing the transition band,
or by both. For an account of the finite-sample Butterworth filter, see Pollock
(2000).
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