
ENHANCED METHODS
OF SEASONAL ADJUSTMENT

1. Introduction

The effect of the conventional model-based methods of seasonal
adjustment is to nullify the elements of the data that reside at the
seasonal frequencies and to attenuate the elements at the adjacent
frequencies.

It may be desirable to nullify some of the adjacent elements instead
of merely attenuating them. For this purpose, two alternative pro-
cedures are presented that have been implemented in a computer
program.

In the first procedure, the basic seasonal-adjustment filter is
applied in series with additional filters that that are targeted at
the adjacent frequencies.

In the second procedure, a Fourier transform is deployed to reveal
the elements of the data at all the frequencies. This allows the ele-
ments in the vicinities of the seasonal frequencies to be eliminated
or attenuated at will.
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2. Comb Filters

Any time-domain procedure for seasonal adjustment must contain
a component that acts like a comb filter. This can be represented
as a ratio of two polynomials of which the argument is a complex
number z:

Σ(z)
P (z)

=
1 + z + z2 + · · · + zs−1

1 + ρz + (ρz)2 + · · · + (ρz)s−1
=

(1 − zs)(1 − ρz)
(1 − z)(1 − ρszs)

. (1)

Here, ρ ∈ (0, 1) and s = 4, 12 denotes either a quarterly or a monthly
frequency of observation.

The numerator polynomial contains zeros at the seasonal frequen-
cies ωj = 2πj/s; j = 1, 2, . . . , s− 1. which are amongst the roots of the
equation 1 − zs = 0,

The denominator polynomial contains the poles ρ exp(i2πj/s); j =
1, 2, . . . , s − 1, which lie on a circle in the complex plane of radius
ρ−1.

The seasonal elements are nullified by the zeros of the filter. The
effects of these zeros at other frequencies is limited by the poles.
At frequencies remote from the seasonal frequencies, the effects of
the poles and the zeros are largely cancelled.
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Figure 1. The pole-zero diagram of the unidirectional comb filter
for monthly data. The poles are marked by crosses and the zeros
are marked by circles.
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3. The Bidirectional Comb Filter

The filter of equation (1) is unidirectional and backward looking.
The filter will induce a phase shift or time lag in the filtered data.

To avoid this effect, the filter must reach equally forwards and
backwards in time, and it is appropriate adopt a bidirectional filter:

B(z) = µ
Σ(z−1)Σ(z)
P (z−1)P (z)

. (2)

The filter is applied in two pass running forwards an backwards
through the data:

P (z)q(z) = Σ(z)y(z) and P (z−1)x(z) = Σ(z−1)q(z), (3)

The frequency response function shows how the filter modifies the
amplitudes of the sinusoidal elements of which a stationary data
sequence is composed. It is obtained by setting z = exp{iω} and by
running ω from zero to the limiting frequency of π.
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Figure 2. The frequency response function of the bidirectional comb
filter for monthly data with ρ = 0.8, giving the lesser peaks, and
ρ = 0.9, giving the higher peaks.
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4. The Wiener–Kolmogorov Filter

The comb filter does not fully preserve non-seasonal elements of
the data. It offers little control over the width of the clefts that
surround the seasonal frequencies.

A Wiener–Kolmogorov filter offers a better solution:

Ψ(z) = µ
Σ(z−1)Σ(z)

Σ(z−1)Σ(z) + λP (z−1)P (z)
. (4)

The filter can derived from the following statistical model:

y(z) =
P (z)
Σ(z)

ν(z) + η(z)

= ξ(z) + η(z),
(5)

where y(z) is the z-transform of the data sequence and where ξ(z)
represents the seasonal fluctuations. Also, η(z) and ν(z) represent
mutually independent white-noise processes with variances of σ2

η

and σ2
ν, respectively.
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5. The Wiener–Kolmogorov Filter

The model does not provide a realistic description of the data
process. Instead, it is to be regarded solely as a means of deriving
an appropriate filter. Multiplying (5) by Σ(z) achieves stationarity:

g(z) = Σ(z)y(z) = P (z)ν(z) + Σ(z)η(z). (6)

The conditional expectation η(z) given g(z) is

E{η(z)|g(z)} = E{η(z)} +
C{η(z), g(z)}

V {g(z)} [g(z) − E{g(z)}]. (7)

Given that

V {g(z)} = σ2
νP (z−1)P (z) + σ2

ηΣ(z−1)Σ(z) and C{g(z), η(z)} = σ2
ηΣ(z),

(8)
and given that E{η(z)} = E{g(z)} = 0, it follows that

E{η(z)|g(z)} =
Σ(z−1)Σ(z)

Σ(z−1)Σ(z) + λP (z−1)P (z)
y(z), (9)

where λ = σ2
ν/σ2

η.
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Figure 3. The frequency response functions of the ordinary seasonal
adjustment filter for monthly data with λ = 0.5. and ρ = 0.8 (the
solid line) and with λ = 0.5. and ρ = 0.99 (the dashed line).
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6. The Finite-Sample Filter and the Matrix Lag Operator

To create a genuine finite-sample filter, appropriate to a vector of
T observations, we may replace z by the matrix lag operator LT =
[e1, e2, . . . , eT−1, 0] or by the circulant matrix KT = [e1, e2, . . . , eT−1, e0],
which are derived from the identity matrix IT = [e0, e1, e2, . . . , eT−1].

In the case of the matrix lag operator, the necessary presample
elements are provided by zeros. In the case of the circulant matrix,
they come from the end of the sample.

The presample problem can be avoided by deleteing the initial rows
of Σ(LT ) and P (LT ). Consider

Σ(L4) =





1 0 0 0
1 1 0 0

1 1 1 0
0 1 1 1




=

[
S∗
S′

]
, P (L4) =





1 0 0 0
ρ 1 0 0

ρ2 ρ 1 0
0 ρ2 ρ 1




=

[
P∗
P ′

]
.

Using S′ and P ′ in place of Σ(z) and P (z) in equations (4) and (9)
gives

h = Ψy = S(S′S + λR′R)−1S′y. (13)
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7. The Finite-Sample Wiener–Kolmogorov Filter

This equation can also be derived from a conditional expectation.
Applying S′ to the equation y = ξ + η, representing the seasonally
fluctuating data, gives

S′y = R′ν + S′η = g. (14)

The relevant expectations and the dispersion matrices are

E(g) = E(η) = 0, D(g) = σ2
νR′R, +σ2

ηS′S. (15)

The conditional expectation of η, given the transformed data g =
S′y, is provided by the formula

h = E(η|g) = E(η) + C(η, g)D−1(g){g − E(g)}

= S(S′S + λR′R)−1S′y.
(16)

A simple procedure for calculating h begins by solving the equation

(S′S + λR′R)b = S′y = g (19)

for the value of b. Thereafter, one can generate h = Sb.
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Figure 4. The residuals from a linear detrending of the logarithms
of an index of quarterly U.K. Consumption for the years 1955 to
1994, with a superimposed seasonally adjusted sequence.
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8. Widening the Seasonal Stopbands

To increase the attenuation of the elements of the data adjacent to
the seasonal frequencies, the poles can be retracted from the unit
circle by reducing value of ρ within P (z).

It may be required to impose a greater attenuation on the adjacent
elements than can be achieved by reductions in the value of ρ.

Then, it might be appropriate to apply the seasonal-adjustment
filter twice or more in succession and with poles and zeros that are
displaced from the seasonal frequencies by small angles.

A twofold filter with equal displacements on either side of the
seasonal frequencies could take the form of

Ψζ(ω) = Ψ(ω − ζ)Ψ(ω + ζ), (21)

where ζ is the angle of the displacement.

The lack of a central filter aimed at eliminating the elements at
the seasonal frequencies may the cause an unacceptable leakage.
Therefore, it may be desirable to apply a central filter in series
with two offset filters.
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Figure 5. The frequency response function of the double seasonal
adjustment filter for monthly data with offsets of 2 degrees.
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Figure 6. The frequency response function of the triple seasonal
adjustment filter for monthly data with offsets of 3 degrees.
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9. SEATS-TRAMO and the Trend-Extraction Filter

In the conventional models, the trend is represented by an
integrated random walk. We use a polynomial function to extract
the trend. When the residuals have been adjusted, they are added
back to the trend to create the seasonally-adjusted data.

The SEATS-TRAMO procedures are based on the airline passenger
model of Box and Jenkins:

y(z) =
(1 − φz)(1 − Θzs)
(1 − z)(1 − zs)

ε(z) =
(1 − φz)(1 − Θzs)

∇2(z)Σ(z)
ε(z). (23)

The model is decomposed via a princicpal of canonical decompo-
sition to create a meta model comprising a trend component, a sea-
sonal component and a residual component to which all of the white
noise, potentially residing in the other components, is assigned:

y(z) =
U(z)
∇2(z)

ε(z) +
V (z)
Σ(z)

ζ(z) + η(z). (24)

Here, ε(z), ζ(z) and η(z) represent mutually independent white-noise
processes.
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Figure 7. The gain of the seasonal-adjustment filter associated with
the monthly airline passenger model.
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Figure 8. The gain of the trend extraction filter associated with
the monthly airline passenger model.
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10. Mimicking the Trend-Extraction Filter

In order to mimic the trend extraction filter of Figure 8, a smooth-
ing filter based on a second-order moving average µ(z) = 1+µ1z+µ2z2

can be applied in series with the seasonal adjustment filter of (13).

The smoothing filter is represented by

M(z−1)M(z) =
(1 + µ1z−1 + µ2z−2)(1 + µ1z + µ2z2)

(1 + µ1 + µ2)2
. (26)

The purpose of the denominator is to ensure that the filter has a
unit gain at the zero frequency.

A parsimonious parametrisation of the smoothing filter is achieved
by adopting a second-order moving average of the form 1+(1+κ)z+
κz2, with κ ∈ [0, 1].

Figure 9 shows the frequency response function of a filter that com-
pounds the smoothing filter with the filter of which the frequency
response is depicted in Figure 3 by the unbroken line. In this case,
The smoothing parameter is κ = 0.6.
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Figure 9. The frequency response of a trend extraction filter that
mimics that of the monthly airline passenger model.
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Figure 10. The effect of applying the trend extraction filter to the
sequence depicted in Figure 4.
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11. Fourier Methods of Seasonal Adjustment
and Trend-Extraction

The Fourier ordinates of a detrended data sequence can be rescaled
in any way that is deemed to be appropriate, thereby altering
the amplitude of the sinusoidal elements of which the data are
composed.

An inspection of the periodogam of the data will indicate which of
the elements need to removed or to be attenuated in pursuit of the
seasonal adjustment.

The seasonal fluctuations are liable to comprise elements at
frequencies that are adjacent to the seasonal frequency and its
harmonics. These can be removed easily by operating in the
frequency domain.

Such elements may be due to strikes, holidays and calender
irregularities. Data irregularities are usually addressed directly by
adjusting the data. This can be avoided by operating on the Fourier
ordinates in the frequency domain.

The periodogram of Figure 11 indicates, via the highlighted bands,
the elements that should be removed in pursuit of seasonal adjust-
ment.

21



D.S.G. POLLOCK: Seasonal Adjustment

0

0.05

0.1

0 "/4 "/2 3"/4 "

Figure 11. The periodogram of the residual sequence from the
linear detrending of the logarithmic consumption data.
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Figure 12. The residual sequence from fitting a linear trend to the
logarithmic consumption data with an interpolated line represent-
ing the business cycle, obtained by the frequency-domain method.
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12. The Trend-Cycle Trajectory and
the Seasonally-Adjusted Data

Figure 12 shows the residual sequence from fitting a linear trend
to the logarithmic consumption data together with an interpolated
line representing the business cycle, synthesised from the Fourier
ordinates in the interval [0,π/8].

This representation of the business cycle is liable to be preferred
to that of Figure 10, which has been produced by a time-domain
method and which is affected by some of the noise from within
the deadspaces and by some proportion of the elements that are
adjacent to the seasonal frequencies.

The difference between the trajectory of Figure 12 and the
seasonally adjusted sequence of Figure 4 is noise that is devoid
of any economic information. Therefore, it can be argued that the
estimated trend-cycle sequence of Figure 12 should serve as the
seasonally adjusted data.
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Figure 14. The trend-cycle component derived by adding the inter-
polated polynomial to the low-frequency components of the residual
sequence
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13. Defining the Frequency-Response Function

Any frequency response function that can be plotted as a graph
can be imposed on the Fourier ordinates of the data.

In Figure 11, the clefts that surround the seasonal frequencies are
vertical shafts. More generally, the clefts can be defined on a
frequency interval

[M − a1, M − b1, M + b2, M + a2],

where M is a seasonal frequency, [M − a1, M − b1] and [M + b2, M + a2]
are transition bands and [M − b1, M + b2] is the stop band.

The transition function defined on the lower transition band
[M − a, M − b] might take the form of

1
1 − r

[
cos

(
x
π

2q

)
− r

]
where x =

ω − [M − a]
a − b

and r = cos(π/2q).

With q = 1 and r = 0, this function declines from unity to zero over
the interval [M −a, M −b]. If q < 1 it does likewise, but with a slower
initial rate of descent.

An alternative transition function based on 1−sin(x) will begin with
a rapid descent that slows as zero is approached as x −→ π/2.
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Figure 15. A frequency response function with a cosine transition
that might be applied to the Fourier ordinates of a de-trended
monthly data sequence.
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