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A wavelets analysis provides a means of analysing non-stationary time series of which
the underlying statistical structures are continually evolving. It is an analysis both in
the time domain and in the frequency domain.

The tutorial will begin by describing the effects of digital filtering in the time domain
and the frequency domain. It will proceed to provide the generalisation of the Shannon
sampling theorem that is appropriate to bandpass filtering.

This theorem establishes a relationship between continuous signals and their correspond-
ing sampled sequences that is essential to a wavelets analysis. Once this background has
been provided, the theories of dyadic and non-dyadic wavelets analysis can be described
in detail.
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The Frequency Domain

A sequence y(t) = {yt; t = 0, 1, . . . , T −1} can be projected onto a trigonometrical basis:

yt =
[T/2]∑
j=0

ρj cos(ωjt + θj) =
[T/2]∑
j=0

{αj cos(ωjt) + βj sin(ωjt)} .

Here, the Fourier frequencies ωj = 2πj/T ; j = 0, 1, . . . , [T/2] are evenly distributed in
the interval [0, π] and [T/2] is the integer quotient of the division of T by 2.

Euler’s equations enable us to express the trigonometrical functions in terms of complex
exponentials:

cos θ =
eiθ + e−iθ

2
and sin θ =

−i
2

(eiθ − e−iθ).

Define ζj = (αj − βj)/2 and ζ−j = (αj + βj)/2 = ζT−j . Then, we have

yt =
[T/2]∑

j=1−[T/1]

ζje
iωjt =

T−1∑
j=0

ζje
iωjt.
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Figure 1. The Argand Diagram showing a complex
number λ = α + iβ and its conjugate λ∗ = α − iβ.
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The Periodogram and the Spectrum

The periodogram is the sequence of the squared amplitude coefficients scaled by T . It
is also the Fourier transform of the empirical autocovariance function c(τ):

Tρ2
j =

T−1∑
τ=1−T

cτ cos(ωjτ)

A stationary stochastic process also has an expression in terms of trigonometrical
functions, described as its spectral representation:

y(t) =
∫ π

0

{
cos(ωt)dA(ω) + sin(ωt)dB(ω)

}
=

∫ ∞

−∞
eiωtdZ(ω).

Here, dZ(ω) = {A(ω)−B(ω)}/2, where A(ω), B(ω) are mutually uncorrelated stochastic
processes with infinitesimal increments dA(ω), dB(ω) such that

E{dA(ω)} = E{dB(ω)} = 0 and V {dA(ω)} = V {dB(ω)} = 2dF (ω) = 2f(ω)dω.

The analytic function f(ω) is the spectrum of the process, which is also the Fourier
transform of the theoretical autocovariance sequence γ(τ):

f(ω) =
1
2π

∞∑
τ=−∞

γτ cos(ωτ ) =
1
2π

∞∑
τ=−∞

γτeiωτ .
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A Requirement for Detrending

In a Fourier analysis, the data are treated as a single cycle of a periodic function defined
on the real line or on the circumference of a circle. A trended sequence will give rise to a
sawtooth function, which has a one-over-f periodogram, with a dominant low-frequency
component.

To assess the cyclical elements of the data, one must detrend the data. The
ordinates of a linear trend function are given by

x = y − Q(Q′Q)−1Q′y

= y − e,

where e is the vector of the residual sequence, and where

Q′ =


1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . −2 1


is the matrix version of the twofold difference operator.
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Figure 2. The quarterly sequence of the logarithms of household consumption expen-
diture in the U.K. for the years 1955 to 1994 with an interpolated linear trend.
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Figure 3. The periodogram of the logarithmic consumption data.
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Figure 4. The periodogram of the residual sequence from the linear detrending of the
logarithmic consumption data.
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z-Transforms and Linear Filters

If a sequence x(t) is absolutely summable, then it has a convergent z-transform:

x(z) =
∑

t

xtz
t with z = e−iω.

The linear filtering of x(t) entails successive linear combinations of it elements:

y(t) =
∑

j

ψjx(t − j).

By associating zt to each element of yt and by summing the sequence, we get

ytz
t =

∑
t

{ ∑
j

ψjxt−j

}
zt or y(z) = ψ(z)x(z),

where ψ(z) =
∑

j ψjz
t. The sequence {ψj} of the filter’s coefficients constitutes its

response on the output side to the input of a unit impulse. An infinite impulse response
(IIR) will commonly entail a recursive equation

p∑
j=0

φjyt−j =
q∑

j=0

θjxt−j with φ0 = 1,

of which the z-transform is
φ(z)y(z) = θ(z)x(z).
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Figure 5. The impulse response of the transfer function θ(z)/φ(z) with φ(z) =
1.0 − 1.2728z + 0.81z2 and θ(z)(z) = 1.0 + 0.75z.
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The Response of a Filter to a Sinusoidal Input

Consider mapping the perpetual signal sequence {xt = cos(ωt)} through the transfer
function with the coefficients {ψ0, ψ1, . . .}. The output is

y(t) =
∑

j

ψj cos
(
ω[t − j]

)
.

By virtue of the identity cos(A − B) = cos A cos B + sinA sin B, this becomes

y(t) =
{∑

j

ψj cos(ωj)
}

cos(ωt) +
{∑

j

ψj sin(ωj)
}

sin(ωt)

= α cos(ωt) + β sin(ωt) = ρ cos(ωt − θ).

The transfer function has a twofold effect upon the signal. There is a gain effect, whereby
the amplitude of the sinusoid is increased or diminished by the factor ρ.

There is a phase effect, whereby the peak of the sinusoid is displaced by a time delay of
θ/ω periods, where θ = tan−1 β/α.

The frequency of the output is the same as the frequency of the input, which is a
fundamental feature of all linear dynamic systems.

The frequency response of the filter is defined for all values of ω ∈ [−π, π].
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The Response of a Filter to a Complex-Exponential Input

The filter’s response to a complex exponential input exp{iωt} is represented by

y(t) =
∑

j

ψje
iω(t−j) = ψ(ω)eiωt.

The complex-valued function ψ(ω), which is the frequency response of the filter, can be
expressed as

ψ(ω) = |ψ(ω)|e−iθ(ω),

where |ψ(ω)| represents the gain effect and θ(ω) represents the phase effect. The squared
gain is evaluated via

|ψ(ω)|2 =
(∑

j

ψje
−iωj

)(∑
k

ψkeiωk

)

=
∑

τ

(∑
j

ψjψj−τ

)
e−iωτ ; τ = j − k.

This is liable to be written as

|ψ(z)|2 = ψ(z)ψ(z−1) with z = eiω.
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Figure 6. The path described in the complex plane by the frequency-response
function ψ(ω) of the differencing filter ψ(L) = L2 −L3 as ω increases from −π
to π. The trajectory originates in the point on the real axis marked by a dot.
It traverses the origin when ω = 0 and it returns to the dot when ω = π.
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Figure 7. The gain |ψ(ω)| of the differencing filter ψ(L) = L2 − L3.
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Figure 8. The phase −Arg{ψ(ω)} of the differencing filter ψ(L) = L2 − L3.

15



POLLOCK: Filters and Wavelets

Frequency Shifting by Cosine Modulation

Consider a function defined as follows in the frequency domain:

ψ(ω) =

{
1, if |ω| ∈ [α, β];

0, otherwise.

The corresponding time-domain function is

ψ(t) =
1
2π

∫ −α

−β

eiωtdω +
1
2π

∫ β

α

eiωtdω =
(

eiβt − e−iβt

2πit

)
−

(
eiαt − eiαt

2πit

)
=

1
πt

{sin(βt) − sin(αt)}.

The identity sin(A + B) − sin(A − B) = 2 cos A sin B can be used, with γ = (α + β)/2
and δ = (β − α)/2, in place of A and B, to show that

ψ(t) =
1
πt

{sin(βt) − sin(αt)} =
2
πt

cos{(α + β)t/2} sin{(β − α)t/2}

=
2
πt

cos(γt) sin(δt).

The centre of the pass band is γ, whereas δ is half its width. The cut-off points of the
pass band are α, β ∈ [0, π]. The lowpass prototype filter is 2 sin(δt)/(πt) whereas cos(γt)
effects the frequency shifting.
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Figure 9. The conversion of a lowpass filter to a bandpass filter by a cosine modulatiom,
which creates two copies of the lowpass filter.
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The Shannon–Nyquist Sampling Theorem

Let x(t) be a continuous function of time and let ξ(ω) be its Fourier transform, which is
assumed to be band-limited and supported on the interval [−π, π]. Then, ξ(ω), which
may be regarded as a periodic function, has a series expansion

ξ(ω) =
∞∑

k=−∞
xke−iωk with xk =

1
2π

∫ π

−π

ξ(ω)eiωkdω,

where {xk; k = 0,±1,±2, . . .} are sampled from x(t) at unit intervals. Substituting the
LHS into the RHS with the index k therein replaced by the continuous variable t gives

x(t) =
1
2π

∫ π

−π

{ ∞∑
k=−∞

xke−iωk

}
eiωtdω =

1
2π

∞∑
k=−∞

xk

{∫ π

−π

eiω(t−k)dω

}

=
1
π

∞∑
k=−∞

xk
sin{π(t − k)}

t − k
.

The final expression shows how the continuous function x(t) can be recovered from its
sampled ordinates {xk; k = 0,±1,±2, . . .}.
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Figure 10. The sinc function ψ(t) = sin(πt)/πt.
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Aliasing and the Shannon–Nyquist Sampling Theorem

In sampling a continuous function, signal frequencies in excess of π radians per sampling
interval are confounded with frequencies within the interval [0, π].

Consider a cosine wave of a frequency ω in the interval π < ω < 2π that is sampled at
unit intervals. Let ω∗ = 2π − ω. Then,

cos(ωt) = cos
{
(2π − ω∗)t

}
= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)
= cos(ω∗t);

which indicates that ω and ω∗ are observationally indistinguishable. Here, ω∗ ∈ [0, π] is
described as the alias of ω > π.

Let ξ(ω) be the transform of the continuous aperiodic function x(t), and let ξS(ω) be
the transform of the sampled sequence {xt; t = 0,±1,±2, . . .}. Then

xt =
1
2π

∫ ∞

−∞
ξ(ω)eiωtdω =

1
2π

∫ π

−π

ξS(ω)eiωtdω.

The equality of the two integrals implies that

ξS(ω) =
∞∑

j=−∞
ξ(ω + 2jπ).
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Figure 11. The values of the function cos{(11/8)πt} coincide with those of its alias
cos{(5/8)πt} at the integer points {t = 0,±1,±2, . . .}.
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Figure 12. A diagram to illustrate the aliasing of frequencies when the Nyquist fre-
quency is at π radians per sample interval. The arcs with the broken lines correspond
to negative frequencies.
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Figure 13. The figure illustrates the aliasing effect of regular sampling. The bell-
shaped function supported on the interval [−3π, 3π] is the spectrum of a continuous-
time process. The spectrum of the sampled process, represented by the heavy line, is a
periodic function of period 2π.
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Upsampling and Downsampling

Given that
y(z) = y0 + y1z + y2z

2 + y3z
3 + y4z

4 + · · · ,
y(−z) = y0 − y1z + y2z

2 − y3z
3 + y4z

4 − · · · ,
the z-transforms of the sequence of even-valued elements is obtained from

ye(z2) =
1
2
{y(z) + y(−z)} = y0 + y2z

2 + y4z
4 + y6z

6 + · · · .

Replacing the argument z2 by z gives the downsampled sequence

y(↓ 2)(z) =
1
2
{y(z1/2) + y(−z1/2)} = y0 + y2z + y4z

2 + y6z
3 + · · · .

The upsampling of a sequence is a matter of interpolating zeros between the elements.
Such zeros will not be visible within the z-transform, wherein they would be associated
with the odd-valued powers of z.

The elements of the original sequence will now be associated with even-valued powers.
Thus, the only effect of the upsampling will be to replace the argument z by z2 to
produce the following alternant series:

y{(↓ 2) ↑ 2}(z) = y0 + y2z
2 + y4z

4 + y6z
6 + · · · .
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The Spectral Effect of the Upsampling and Downsampling

In downsampling, the angular velocity ω is replaced by ω/2. The function is wrapped
twice around the circumference of the circle, and the overlying ordinates are added. The
effect is one of spectral aliasing.

In upsampling, the frequency argument is multiplied by 2 and the frequency function
evolves at twice the rate. The function undergoes two cycles as ω traverses an interval
of 2π radians, and two images of the spectrum are mapped into the interval.

The effect of downsampling is summarised by writing

p(t ↓ 2) ←→ 1
2
{p(ω/2) + p(π + ω/2)}.

Since exp{±iπ} = −1 and exp{−i(π +ω/2)} = − exp{−iω/2}, this can be expressed, in
terms of z = exp{−iω}, as

p(t ↓ 2) ←→ 1
2
{p(z1/2) + p(−z1/2)}.

The effect of the subsequent upsampling, which doubles the value of the frequency
argument, is summarised by p{(t ↓ 2) ↑ 2} ←→ 1

2{p(ω) + p(π + ω)}, which can also be
written as

p{(t ↓ 2) ↑ 2} ←→ 1
2
{p(z) + p(−z)}.
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Hysenberg’s Principle

Let ψ(t) ←→ ψ(ω) represent a function in the time domain and its Fourier transform
in the frequency domain. Let ψ(t) and ψ(ω) be centred on zero, and with unit integrals
in t and in f = ω/2π. Then, their dispersions are:

σ2
t =

∫
t2|ψ(t)|2dt and σ2

ω =
∫

ω2|ψ(ω)|2 dω

2π
.

If ψ(t) vanishes faster than 1/
√

t, then there is

σ2
t σ2

ω ≥ 1
4
.

The inequality is commonly described as Heisenberg’s uncertainty principle. The equal-
ity is attained by a Gaussian signal

ψ(t) =
1

σ
√

2π
e−t2/2,

of which the Fourier transform, described in statistics as the characteristic function, also
has a Gaussian form.
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f(t)=
sin(ωct)

ωct ←→ φ(ω)

−ωc ωc

The Fourier Transform of a time-domain sinc function is a rectangle in the frequency domain.

g(t) ←→ γ(ω)

The Fourier Transform of a time-domain rectangle is a sinc function in the frequency domain.

g(t)×f(t) ←→ γ(ω) ∗ φ(ω)

Truncating the time domain sinc function causes leakage in the frequency domain. The
time-domain truncation corresponds to a convolution in the frequency domain.
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