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The M -band filter bank is a generalisation the two-channel filter bank in which the
incoming signal is split into several components that lie in bands that cover the
Nyquist frequency range, which is the interval [0, π], measured in radians. (When
the trigonometric functions are replaced by complex exponential functions, this
becomes an interval of length 2π, which is usually taken to be (−π, π].)

The components are extracted by an array of bandpass filters including a low-
pass filter and a highpass filter at the top and at the bottom of the range. They
are downsampled and encoded and then they are transmitted separately. At the re-
ceiving end, the components of the signal are decoded and upsampled before being
smoothed by filters and recombined. The intention is that the recombined elements
should reproduce the original signal exactly or as closely as possible.

It is most effective, in constructing battery of filters, to derive the bandpass
filters and the highpass filter from a single lowpass prototype by the device of
frequency shifting. It is also required to subsample the output of the bandpass
filters. The next two sections prepare some of the groundwork by describing the
methods of frequency shifting and downsampling.

Frequency Shifting

Let x(t) = {xt; t = 0,±1,±2, . . .} and let ξ(ω) =
∑

xte
−iωt be the Fourier

transform of the sequence x(t). Then, the Fourier transform of the modulated
sequence x(t). exp{iγt} = {xte

iγt} is the function ξ(ω − γ) =
∑

xte
−i(ω−γ)t, which

is to say that the effect of the exponential modulation is to shift the centre of the
frequency-domain function from ω = 0 to ω = γ. Given that z = e−iωt, the z-
transform of the original sequence can be written as x(z) =

∑
t xtz

t and that of
the modulated sequence as x(zeiγ) =

∑
t xt(zeiγ)t

Given that cos(γt) = (eiγt + e−iγt)/2, it follows that the Fourier transform of
cos(γt).x(t) is ξ(ω − γ) + ξ(ω + γ), and the result can be represented by writing

cos(γt).x(t) ←→ ξ(ω − γ) + ξ(ω + γ). (1)

This result provides the means of frequency shifting that is employed in gen-
erating a battery of bandpass filters from a single lowpass prototype filter P (z).
The object is achieved by multiplying the impulse response function of the lowpass
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filter by sinusoids at the frequencies corresponding to the central frequencies of the
desired filters.

If it is desired to create a battery of M equally spaced filters covering the
frequency range [−π, π], then the central frequencies will be

γj = π(j + 1/2)/M ; j = 0, 1, . . . , M − 1. (2)

Given a prototype filter P (z) with a central frequency of zero and with a
nominal passband on the interval [−π/2M, π/2M ], the jth filter can be given the
form of

Hj(z) = αjP (zeiγj ) + α∗
jP (ze−iγj )

= αjP
+
j (z) + α∗

jP
−
j (z)

= H+
j (z) + H−

j (z),

(3)

where αj = exp{iθj} is a term that effects a phase adjustment. The corresponding
sequence of filter coefficients will be

hj(t) = 2p(t). cos
(

π

M

{
j +

1
2

}
t + θj

)
. (4)

Downsampling

Once the sequence y(t) has been subject to a bandpass filter, it will be neces-
sary to downsample the result in order to achieve a minimal representation of its
contents. The subsampled sequence requires to be represented both in the time
domain and in the frequency domain.

The time-domain representation is self-evident. Therefore, we may concentrate
on frequency-domain representation. For this purpose, it is helpful to consider the
case of downsampling by a factor of 3, before providing general formulae for the
case of downsampling by a factor of M .

Consider the z-transform of the sequence y(t), which is

y(z) =
∑

t

ytz
t = · · · + y0 + y1z + y2z

2 + y3z
3 + · · · . (5)

From this, the following three subseries can be derived:

y0(z) =
∑

t

y3tz
t = · · · + y0 + y3z + y6z

2 + y9z
3 + · · ·

y1(z) =
∑

t

y3t+1z
t = · · · + y1 + y4z + y7z

2 + y10z
3 + · · ·

y2(z) =
∑

t

y3t+2z
t = · · · + y2 + y5z + y8z

2 + y11z
3 + · · ·

. (6)

The original series is expressed as a sum of the subseries as follows:

y(z) = y0(z3) + zy1(z3) + z2y2(z3)

=
2∑

j=0

zjyj(z3)
. (7)
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We must also seek a way of expressing the downsampled subseries in terms original
series y(z). This can be achieved with the help of the delta function δ(t mod 3),
which serves to eliminate the terms for which the index t is not a multiple of 3.
Thus,

yj(z) =
∑

t

yt+jδ(t mod 3)zt/3; j = 0, 1, 2. (8)

The delta function can be expressed as a sum of complex exponentials. In the case
of M = 3, the essential complex exponential is W3 = exp{i2π/3}. Then

δ(t mod 3) =
1
3

2∑
k=0

W kt
3 =

1
3

2∑
k=0

ei2πkt/3, (9)

To demonstrate the properties of this function, consider

W 0
3 = cos(0) + sin(0) = 1,

W 1
3 = ei2π/3 = cos(2π/3) + i sin(2π/3)

= −1/2 + i
√

3/4,

W 2
3 = e−i2π/3 = cos(2π/3) − i sin(2π/3)

= −1/2 − i
√

3/4.

(10)

On taking account of the three-point periodicity of WQ
3 , it can be seen that

1
3
{(W 0

3 )0 + (W 1
3 )0 + (W 2

3 )0 = 1,

1
3
{(W 0

3 )1 + (W 1
3 )1 + (W 2

3 )1 = 0,

1
3
{(W 0

3 )2 + (W 1
3 )2 + (W 2

3 )2 = 0,

1
3
{(W 0

3 )3 + (W 1
3 )3 + (W 2

3 )3 = 1.

(11)

With increasing values of t, the cycle of
∑2

k=0(W
k
3 )t continues indefinitely to create

the sequence {1, 0, 0, 1, 0, 0, 1, . . .}.
Within the context of the z-transform, this sufficient to ensure that only the

terms in successive powers of z3 will be nonzero. Consider the addition of the power
series y(zW 0

3 ), y(zW 1
3 ), and y(zW 2

3 ), which may be arrayed as follows:

· · ·+
· · ·+
· · ·+

y0(zW 0
3 )0

y0(zW 1
3 )0

y0(zW 2
3 )0

+
+
+

 y1(zW 0
3 )1

y1(zW 1
3 )1

y1(zW 2
3 )1

 +
+
+

 y2(zW 0
3 )2

y2(zW 1
3 )2

y2(zW 2
3 )2

 +
+
+

y3(zW 0
3 )3

y3(zW 1
3 )3

y3(zW 2
3 )3

+
+
+ y4(zW 0

3 )4

y4(zW 1
3 )4

y4(zW 2
3 )4

 +
+
+

 y5(zW 0
3 )5

y5(zW 1
3 )5

y5(zW 2
3 )5

 +
+
+

y6(zW 0
3 )6

y6(zW 1
3 )6

y3(zW 2
3 )3

+ · · ·
+ · · ·
+ · · ·

(12)
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Here, the brackets surround the terms that will be eliminated in the addition of the
three series. It is clear from (12) that

y0(z3) =
1
3

2∑
k=0

∑
t

yt(W k
3 )tzt = · · · + y0 + y3z

3 + y6z
6 + y9z

9 + · · ·

=
1
3

2∑
k=0

y(zW k
3 ),

(13)

where the final expression employs a functional notation for the z-transform. Hence

y0(z) =
1
3

2∑
k=0

y(z1/3W k
3 ). (14)

More generally, when there is subsampling by a factor of M , we find that,
with WM = exp{i2π/M} and z = exp{−iω}, the z-transform of the subsampled
sequence can be written as

y0(z) =
1
M

M−1∑
k=0

y(z1/MW k
M ) =

1
M

M−1∑
k=0

y
{

e−i(ω−2πk/M)
}

. (15)

This shows that the discrete-time Fourier transform of the downsampled signal is
the sum of M replicas of the spectrum of the original signal, displaced one from
the next by 2π/M radians.

Polyphase Networks

An efficient implementation of an M -channel filter bank can be achieved by re-
sorting to a polyphase decomposition of the data and the filters. The polyphase de-
composition of a sequence indexed by t ∈ {0,±1,±2, . . .} creates M subsequences,
indexed by k = 0, 1, . . . , M − 1, of which the elements of the kth subsequence bear
the indices qM + k with q ∈ {0,±1,±2, . . .}

It will be helpful to consider a polyphase network that is devoid of data process-
ing filters. Figure 1 portrays a network of three channels, which entails successive
operations of time advances, downsampling, upsampling and time delays. Applied
to the sequence y(t) = {. . . , y0, y1, y2, . . .}, the operations of advancing and down-
sampling create the following three subsequences:

y(3t) = {. . . , y0, y3, y6, . . .},
y(3t + 1) = {. . . , y1, y4, y7, . . .},
y(3t + 2) = {. . . , y2, y5, y8, . . .}.

(16)

Then, the operations of upsampling and delaying or lagging produce the following
sequences:

y(3t ↑ 3) = {. . . , y0, 0, 0, y3, 0, 0, . . .},
y([{3t + 1} ↑ 3] − 1) = {. . . , 0, y1, 0, 0, y4, 0, . . .},
y([{3t + 2} ↑ 3] − 2) = {. . . , 0, 0, y2, 0, 0, y5, . . .}.

(17)
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3

z−1

3

y(t) y(t)y(3t)

y(3t+1)

y(3t+2)

3 +

3 +

z

z−1

3 3

z

Figure 1. A three-channel serial to parallel converter that separates the data into three

phases. On the input side, the operator z−1 advances the sequence, putting y(t + 1) in

place of y(t). On the output side the operator z imposes a delay.

By adding these three, the original data sequence can be recovered.
The presence of the time-advancing operations in this scheme implies either

that the processing is applied off line to recorded data or else that there is a buffer
on the input side that accumulates a sufficient number of elements and that entails
at least as many time delays as the advances. If the processing is to be conducted
in real time without an input buffer, then an alternative scheme is called for that
entails only time delays. Such a scheme is portrayed in Figure 2.

Applied to the sequence y(t+2), the operations of delaying and downsampling
in this scheme create the following three subsequences:

y(3t + 2) = {. . . , y2, y5, y8, . . .},
y(3t + 1) = {. . . , y1, y4, y7, . . .},

y(3t) = {. . . , y0, y3, y6, . . .}.
(18)

Then, the operations of upsampling and delaying or lagging produce the following
sequences:

y([{3t + 2} ↑ 3] − 2) = {. . . , 0, 0, y2, 0, 0, y5, . . .}
y([{3t + 1} ↑ 3] − 1) = {. . . , 0, y1, 0, 0, y4, 0, . . .},

y(3t ↑ 3) = {. . . , y0, 0, 0, y3, 0, 0, . . .}.
(19)

By adding them, the data sequence y(t) can be recovered, which has a lag of two
periods relative to the input sequence y(t + 2).

Filter Banks

Let the bandpass filters be denoted by Hj(z); j = 0, . . . , M −1, where bands of
increasing frequency are indexed by increasing values of j, and let the corresponding
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3

z

3

y(t+2)

y(t)y(3t)

y(3t+1)

y(3t+2) 3

3 +

z

z

3 3 +

z

Figure 2. An alternative version of the three-channel serial to parallel converter that

involves only time delays.

smoothing filters of the synthesis section be denoted by Fj(z); j = 0, . . . , M − 1.
Then, in the absence of the upsampling and downsampling, the recombined signal
would be denoted by

x(z) =
M−1∑
j=0

Fj(z)Hj(z)y(z). (20)

In that case, a perfect reconstruction of the input signal y(z) would be achieved if∑
j Fj(z)Hj(z) = I.

With downsampling by a factor of M , the outputs of the analysis section of
the jth channel of the filter bank become

1
M

M−1∑
k=0

Hj(z1/MW k
M )y(z1/MW k

M ); j = 0, . . . , M − 1, (21)

wherein WM = exp{−i2π/M}. Then, with upsampling by a factor of M and with
smoothing, the output of the jth channel becomes

xj(z) =
1
M

Fj(z)
M−1∑
k=0

Hj(zW k
M )y(zW k

M ); j = 0, . . . , M − 1. (22)

Hereafter, for notational convenience, we shall, on occasion, omit the subscript from
WM . The outputs of the M channels are added to create the eventual output of
the network:

x(z) =
M−1∑
j=0

xj(z) =
M−1∑
j=0

1
M

Fj(z)
M−1∑
k=0

Hj(zW k
M )y(zW k

M )

=
1
M


M−1∑
j=0

Fj(z)Hj(z)

 y(z) +
1
M

M−1∑
k=1

M−1∑
j=0

Fj(z)Hj(zW k)y(zW k).

(23)
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H1(z) 3 3 F1(z)

H2(z) 3 3 F2(z)

+

H0(z) 3 3 F0(z)

Figure 3. A depiction of the three-channel filter bank.

The second collection of the terms on the RHS is attributable to the effects of
aliasing and imaging that are the results of downsampling and upsampling; and the
objective is to minimise these effects, if not to eliminate them altogether. They will
be eliminated, regardless of the value of the input y(t), if

M−1∑
j=0

Fj(z)Hj(zW k) = 0, for k = 1, . . . , M − 1, (24)

in which case, the input signal will be reconstucted perfectly if

M−1∑
j=0

Fj(z)Hj(z) = M. (25)

It may be helpful to represent the network via a matrix equation. Then, its output
is represented by

x(z) =
1
M

[F0(z) F1(z) . . . FM−1(z) ]×
H0(z) H0(zW ) . . . H0(zWM−1)
H1(z) H1(zW ) . . . H1(zWM−1)

...
...

...
HM−1(z) HM−1(zW ) . . . HM−1(zWM−1)




y(z)
y(zW )

...
y(zWM−1)

 .
(26)

It will be recognised that equation (26) is an evident generalisation of the case
of M = 2 that has already been analysed in detail. In that case, WM becomes
exp{iπ} = −1 and equation (26) becomes

x(z) =
1
2

[F0(z) F1(z) ]
[

H0(z) H0(−z)
H1(z) H1(−z)

] [
y(z)

y(−z)

]
. (27)

In comparison with the former account, there has been a change of notation whereby
G(z) −→ H0(z), H(z) −→ H1(z), D(z) −→ F0(z) and E(z) −→ F1(z).
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The aliasing effects will be eliminated if

F0(z)H0(−z) + F1(z)H1(−z) = 0, (28)

whereafter the signal will be reconstructed perfectly if

F0(z)H0(z) + F1(z)H1(z) = 2, (29)

Pseudo Quadrature Mirror Filter Banks

If hj(t) ←→ Hj(z) are the sequence of the coefficients of the jth filter and their
Fourier transform, then the effects of downsampling and upsampling the sequence
by a factor of M can be represented by writing

hj{(t ↓ M) ↑ M} ←→ 1
M

M−1∑
k=0

{H+
j (zW k) + H−

j (zW k)}. (30)

In demonstrating the pseudo quadrature mirror filters, one can rely on the case
of M = 3. The generalisation to an arbitrary number of channels is straightforward.

In the case where M = 3 and where j = 1, which denotes the middle channel,
the effect of downsampling and upsampling is to generate the following terms, which
come from the RHS of (23):

−→ −→
H+

1 (zW ) H−
1 (z) H+

1 (zW 2) H−
1 (zW ) H+

1 (z) H−
1 (zW 2) (31)

These functions, each of which has a pass band with a nominal width of π/3 radians,
jointly span the frequency interval [−π, π].

The functions H−
1 (z) and H+

1 (z), which have nominal passbands on
[−2π/3,−π/3] and [π/3, 2π/3], respectively, are rotated successively and in con-
junction through angles of 2π/3 radians in an anticlockwise direction, which is the
direction of rising frequency, and which is indicated by the arrows.

The two succesive translations of H−
1 (z), which is in the negative frequency

range, will give rise to H−
1 (zW ) and H−

1 (zW 2) which fall into the positive frequency
range. The two succesive translations of H+

1 (z), will give rise to H+
1 zW ) and

H+
1 (zW 2) which, in consequence of the circularity of the rotations, will be found

in the negative frequency range.
An alternative procedure for generating the terms of (31) is to apply successive

cosine modulations to the filter H1(z) = H−
1 (z) + H+

1 (z) to produce the following
sequence:

←− −→
H+

1 (zW ) H−
1 (z) H+

1 (zW 2) H−
1 (zW−2) H+

1 (z) H−
1 (zW−1). (32)

The cosine modulations carry the positive-frequency and negative-frequency com-
ponents of the filter in opposite directions.

8



D.S.G. POLLOCK: Multichannel Filter Banks

−π −2π/3 −π/3 0 π/3 2π/3 π

H−
0 (zW−1 ) H+

0 (zW2 ) H−
0 (z) H+

0 (z) H−
0 (zW−2 ) H+

0 (zW)

−π −2π/3 −π/3 0 π/3 2π/3 π

H+
1 (zW) H−

1 (z) H+
1 (zW2 ) H−

1 (zW−2 ) H+
1 (z) H−

1 (zW−1 )

−π −2π/3 −π/3 0 π/3 2π/3 π

H−
2 (z) H+

2 (zW) H−
2 (zW−2 ) H+

2 (zW2 ) H−
2 (zW−1 ) H+

2 (z)

Figure 4. Aliasing cancellation is achieved by the interaction of the filters in adjacent

channels. The figure depicts the squared gains of the filters.

Finally, one might choose to rotate the positive and negative frequency com-
ponents of the filter in the clockwise and anticlockwise directions respectively:

−→ ←−
H+

1 (zW−2) H−
1 (z) H+

1 (zW−1) H−
1 (zW ) H+

1 (z) H−
1 (zW 2) . (33)

In fact, this is the most common choice in various expositions of the theory. (See,
for example, Rothweiler 1983 and Vaidyanathan 1993.)

The three schemes can be reconciled in view of the fact that

H±
1 (zW−1) = H±

1 (zW 2) and H±
1 (zW ) = H±

1 (zW−2), (34)

where, for example, W−1 effects a clockwise rotation of 2π/3 radians and W 2 effects
an equivalent anticlockwise rotation of 4π/3 radians, which carry the points on the
unit circle to the same locations.

The advantage of the arrangements of (32) and (33) is that the positive and
negative components of the filter images have a comparable notation, which enables
them to be associated more readily and which allows us to adopt the following
concise notation for the sum of associated components:

Aj(zW±k) = H−
j (zW−k) + H+

j (zW k) (35)

Figure 4 depicts the squared gains of the filters of the analysis stage together
with their displaced images. The notation of the displacements corresponds to the
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cosine modulation scheme of (32). The figure reflects the assumption that only the
frequency responses of adjacent filters are overlapping. This greatly reduces the
number of nonzero terms in the equations of (24), arising from the aliasing and
imaging, from a maximum of M(M − 1) to 2(M − 1).

Given that the filters have finite supports in the frequency domain, it follows
that the corresponding coefficients in the time domain must be infinite in number
or else they must constitute a circular sequence. In either case, we may assume, for
the present, that the sequences are symmetric about their central coefficients.

On setting M = 3, the equation of the network becomes

{F0(z)H0(z) + F1(z)H1(z) + F2(z)H2(z)}
+ F0(z){A0(zW±1) + A0(zW±2)}
+ F1(z){A1(zW±1) + A1(zW±2)}
+ F2(z){A2(zW±1) + A2(zW±2)}.

(36)

We may assume that the synthesis filters Fj(z) have same squared gain profiles as
the analysis filters, which are the profiles marked by the bold lines in Figure 4.
Then, it can be seen, in reference to the figure, that

F0(z)A0(zW±1) = 0 and F2(z)A2(zW±2) = 0. (37)

It follows that perfect reconstruction will be achieved if

F0(z)A0(zW±2) = −F1(z)A1(zW±2) and (38)

F1(z)A1zW±1) = −F2(z)A2(zW±1). (39)

In that case, to overcome the effects of upsampling and downsampling, the aliasing
effects in the vicinities of ±π/3 within the first tranche of Figure 4 will need to
be cancelled by those in the second tranche. The effects in the vicinities of ±2π/3
within the second tranche will will need to be cancelled by those is the third tranche.

The filters must be given sufficient flexibility to achieve the cancellations of
(38) and (39). To this end, we may specify that

Hj(z) = H−
j (z) + H+

j (z) = α∗
jP

−
j (z) + αjP

+
j (z), (40)

Fj(z) = F−
j (z) + F+

j (z) = αjP
−
j (z) + α∗

jP
+
j (z). (41)

Here, P−
j (z) = P0(z exp{−iγj}) and P+

j (z) = P0(exp{+iγj}) are the components of
the cosine modulated product of the symmetric prototype function P0(z) = P (z−1),
and αj = exp{+iθj} and α∗

j = exp{−iθj} are conjugate complex constants of
unit magnitude that induce a phase displacement. It will be recognised that the
symmetry of this specification ensures that the filter coefficients will be real-valued.

To determine the phase constants, it is sufficient to consider only the negative
frequency components of the filters. In that case, the condition (38) for cancellation
is that

0 =F−
0 (z)H+

0 (zW 2) + F−
1 (z)H+

1 (zW 2)

= α0P
−
0 (z)α0P

+
0 (zW 2) + α1P

−
1 (z)α1P

+
1 (zW 2).

(42)
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Here, we can set

P+
0 (zW 2) = P−

1 (z) and P+
1 (zW 2) = P−

0 (z), (43)

so the condition for alias cancellation becomes

(α2
0 + α2

1)P
−
0 (z)P−

1 (z) = 0, (44)

which is satisfied if
α2

1 = −α2
0 or a1 = ±ia0. (45)

By similar means, the condition of (39) can be rendered as

(α2
1 + α2

2)P
−
1 (z)P−

2 (z) = 0, (46)

which is satisfied if
α2

2 = −α2
1 or a2 = ±ia1. (47)

The sequence of phase constants will be determined if one of its elements is known.
Reference to equation (25) shows that, in the absence of aliasing effects, perfect
reconstruction will be achieved if

M =
M−1∑
j=0

Fj(z)Hj(z) =
M−1∑
j=0

{
|P−

j (z)|2 + |P+
j (z)|2

}
+ (α2

0 + α2∗
0 )P−

0 (z)P+
0 (z)

+ (α2
M−1 + α2∗

M−1)P
−
M−1(z)P+

M−1(z).

(48)

Here, the second and the third terms arise because the components P−
j (z), P+

j (z)
overlap when j = 0, M − 1. These terms can be eliminated by setting

α4
0 = α4

M−1 = −1. (49)

The solution is α0 = αM−1 = exp{iπ/4}. If we set

αj = exp{(−1j)iπ/4}, (50)

then the conditions of (45) and (47) are also satisfied. The solution to the equation
of (49) is represented in Figure 5.

The pseudo quadrature mirror filters are commonly implemented with a finite
number of coefficients. In that case, it is not possible to restrict the frequency
responses of the filters to limited interval within the frequency ranges. Therefore,
the elimination of aliasing can only be achieved approximately; and one of the
objectives in designing an appropriate prototype filter is to achieve a maximum
attenuation within the stop bands.

If the filters are to be applied to the data in real time without an input buffer,
then the sequences of their coefficients cannot be symmetric about a central ele-
ment. In that case, the coefficients of the prototype filter will constitute a one-sided
sequence p(t) = {p0, p1, . . . , pN−1}, with pt = pN−1−t.

11
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α 0

α 1

α 2
0

α 2
1

α 4
1, α

4
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− i

i

−1 1
Re

Im

Figure 5. The phase constant α0 = exp{iπ/4} is a solution to the equation α4
0 = −1.

With these restrictions, the coefficients of the jth filter of the analysis section
will be represented by

hj(t) = 2p(t). cos
(

π

M

{
j +

1
2

} {
t +

N − 1
2

}
+ θj

)
, (51)

whereas the coefficients of the jth filter of the synthesis section will be represented
by

fj(t) = 2p(t). cos
(

π

M

{
j +

1
2

} {
t +

N − 1
2

}
− θj

)
. (52)

The Polyphase Formulation

The problem of perfect reconstructions can be approached via a polyphase
analysis. The first stage is to expand each filter Hj(z) into its M -channel polyphase
representation:

Hj(z) =
M−1∑
k=0

zkEjk(zM ); j = 0, 1, . . . , M − 1. (53)

In matrix terms, this gives
H0(z)
H1(z)

...
HM−1(z)

 =


E0,0(zM ) E0,1(zM ) . . . E0,M−1(zM )
E1,0(zM ) E1,1(zM ) . . . E1,M−1(zM )

...
...

...
EM−1,0(zM ) EM−1,1(zM ) . . . EM−1,M−1(zM )




1
z
...

zM−1


(54)

or
H(z) = E(zM )e(z). (55)

12
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E(zM ) R′(zM )

3

z−1

3

3 +

3 +

z

z−1

3 3

z

Figure 6. A three-channel filter bank can be constructed that separates the data into

three phases. On the input side, the operator z−1 advances the sequence, putting y(t+1)
in place of y(t). On the output side the operator z imposes a delay.

The synthesis filters can also be expanded via a polyphase decomposition:

Fj(z) =
M−1∑
k=0

zM−k−1Rkj(zM ); j = 0, 1, . . . , M − 1. (56)

In matrix terms, this gives
F0(z)
F1(z)

...
FM−1(z)

 =


R0,0(zM ) R1,0(zM ) . . . RM−1,0(zM )
R0,1(zM ) R1,1(zM ) . . . RM−1,1(zM )

...
...

...
R0,M−1(zM ) R1,M−1(zM ) . . . RM−1,M−1(zM )




zM−1

zM−2

...
1

 ,

(57)
or

f(z) = R(zM )eJ(z). (58)

An illustration of the polyphase filter bank is provided in Figure 6 for the case
of M = 3. In will be seen that in the absence of the operators E(zM ) and R(zM )
the output would equal the input without any delay. It follows that, with the
operators in place, a perfect reconstruction of the input signal would be achieved if

R′(zM )E(zM ) = I. (59)

A relationship can be established between the matrix of (26) and the polyphase
matrix of (54). The polyphase expansion of the generic term within (26) is

Hj(zW k
M ) = Ej0({zW k

M}M ) + {zWM}Ej1({zW k
M}M )+

· · · + {zW k
M}M−1Ej(M−1)({zW k

M}M )

= Ej0(zM ) + {zW k
M}Ej1(zM )+

· · · + {zW k
M}M−1Ej(M−1)(zM ).

(60)

13
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This is a matter of replacing z in equation (53) by zWM The simplification of the
second equality arises from the fact that W jM

M = 1. Therefore,
H0(z) H0(zW ) . . . H0(zWM−1)
H1(z) H1(zW ) . . . H1(zWM−1)

...
...

...
HM−1(z) HM−1(zW ) . . . HM−1(zWM−1)



=


E0,0(zM ) E0,1(zM ) . . . E0,M−1(zM )
E1,0(zM ) E1,1(zM ) . . . E1,N−1(zM )

...
...

...
EN−1,0(zM ) EN−1,1(zM ) . . . EM−1,M−1(zM )



×


1 1 · · · 1
z zW · · · zWM−1

...
...

zM−1 zM−1WM−1 · · · zM−1W (M−1)2

 .

(61)

The matrix on the RHS may be factorised as the product of the matrix D(z) =
diag{1, z, . . . , zM−1} and the matrix of the Fourier transform W (z) of order M .
Thus, equation (40) may be written in summary notation as

H(z) = E(zM )D(z)W. (62)

The inverse mapping from H(z) to E(zM ) is E(zM ) = H(z)W̄D(z−1), which is a
generalisation of that of (5.27).
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