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The Shannon–Nyquist Sampling Theorem

According to the Shannon–Whittaker sampling theorem, any square inte-
grable piecewise continuous function x(t) ←→ ξ(ω) that is band-limited in the
frequency domain, with ξ(ω) = 0 for |ω| > π, has the series expansion

(1) x(t) =
∞∑

k=−∞
xk

sin{π(t − k)}
π(t − k)

=
∞∑

k=−∞
xkψ(0)(t − k),

where xk = x(k) is the value of the function x(t) at the point t = k. It follow
that the continuous function x(t) can be reconstituted from its sampled values
{xt, t ∈ I}.
Proof. Since x(t) is a square-integrable function, it is amenable to a Fourier
integral transform, which gives

(2) x(t) =
1
2π

∫ ∞

−∞
ξ(ω)eiωtdω, where ξ(ω) =

∫ ∞

−∞
x(t)e−iωtdt.

But ξ(ω) is a continuous function defined of the interval (−π, π] that may also be
regarded as a periodic function of a period of 2π. Therefore, ξ(ω) corresponds
to a discrete aperiodic function in the time domain—which is to say that the
relationship x(t) ←→ ξ(ω) entails the discrete-time Fourier transform—and
ξ(ω) may be expanded as

(3) ξ(ω) =
∞∑

k=−∞
cke−ikω, where ck =

1
2π

∫ π

−π

ξ(ω)eikωdω.

By comparing (2) with (3), we see that the coefficients ck are simply the or-
dinates of the function x(t) sampled at the integer points; and we may write
them as

(4) ck = xk = x(k).

1



D.S.G. POLLOCK: The Nyquist Sampling Theorem

0

−3π −π 0 π 3π

Figure 1. The figure illustrates the aliasing effect of regular sampling. The
bell-shaped function supported on the interval [−3π, 3π] is the spectrum of a
continuous-time process. The spectrum of the sampled process, represented by
the heavy line, is a periodic function of period 2π.

Next, we must show how the continuous function x(t) may be reconstituted
from its sampled values. Using (4) in (3) gives

(5) ξ(ω) =
∞∑

k=−∞
xke−ikω.

Putting this in (2), and taking the integral over (−π, π] in consequence of the
band-limited nature of the function x(t), gives

(6) x(t) =
1
2π

∫ π

−π

{ ∞∑
k=−∞

xke−ikω

}
eiωtdω =

1
2π

∞∑
k=−∞

xk

∫ π

−π

eiω(t−k)dω.

The integral on the RHS is evaluated as

(7)
∫ π

−π

eiω(t−k)dω = 2
sin{π(t − k)}

t − k
.

Putting this into the RHS of (5) gives the result of (1).

Imaging and Aliasing

Let ξs(ω) be the transform of the sampled sequence {xt; t = 0,±1,±2, . . .}.
Then, at an integer point t, there is xt = x(t) and, therefore,

(8) xt =
1
2π

∫ ∞

−∞
ξ(ω)eiωtdω =

1
2π

∫ π

−π

ξs(ω)eiωtdω.

The equation of the two integrals implies that

(9) ξs(ω) =
∞∑

j=−∞
ξ(ω + 2jπ).
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Figure 2. A diagram to illustrate the aliasing of frequencies when the Nyquist fre-

quency is at π radians per sample interval. The arcs with the broken lines correspond

to negative frequencies.

Thus, the periodic function ξs(ω) is obtained by wrapping ξ(ω) around a circle
of circumference of 2π and adding the coincident ordinates. Alternatively, the
periodic extension of ξs(ω) can be envisaged as the consequence of overlaying
repeated copies of the function ξ(ω), with each copy shifted an integral multiple
of 2π, which is the sampling frequency. This is illustrated in Figure 1. The
creation of succesively displaced copies of ξ(ω) is commonly described as a
process of imaging.

Unless ξ(ω) is band limited to the Nyquist frequency interval [−π, π], the
effect of wrapping and overlaying will be to create sample spectrum that differs
from and which misrepresents the spectrum of the underlying continuous signal.

The elements of the signal that lie outside the Nyquist range will be mis-
represented by elements that do lie within the range and which are described as
their aliases. Thus, in the process of sampling, all frequencies will be mapped
into the interval [−π, π] according to a conversion described by

(10) ω −→ ω′ =

{
{(ω + π) mod 2π} − π, if ω > 0;

{(ω − π) mod 2π} + π, if ω < 0.

This conversion can be illustrated by Figure 2, which show the effects of wrap-
ping.

In the diagram, the points on the inner circle correspond to frequency
values within the Nyquist interval [−π, π]. Those on the outer circles correspond
to frequencies in the intervals [−2π,−π] ∪ [π, 2π] and [−3π,−2π] ∪ [2π, 3π]
respectively. The values of the aliased frequencies ω′ are to be found at the
points where the radii that pass through the points ω on the outer circles
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intersect with the inner circle. Further concentric circles can be added to the
diagram to accomodate higher frequencies.

Sampling at an Arbitrary Rate

The sampling theorem shows that a band-limited continuous signal can be
perfectly reconstructed from a sequence of samples if the highest frequency of
the signal does not exceed half the rate of sampling.

In the statement of the theorem, the sampling interval has been taken as
fixed and it is defined to be the unit interval. It has been revealed that the
highest detectable frequency in the sampled data is the Nyquist frequency of π
radians per interval.

An alternative statement is appropriate if it is the maximum frequency in
the continuous signal that is fixed and if it is required to determine the minimum
rate of sampling necessary for capturing all of the information therein. This
is a circumstance that usually prevails in communications engineering; and it
leads to an alternative presentation of the sampling theorem.

Imagine that the maximum frequency of the signal ωc = 2πW , where W
is a number of hertz or cycles per second. Then, to capture the information,
the sampling must be at a rate of no less than 2W , which implies a sampling
interval of 1/(2W ) seconds. In this case, the signal is represented by

(11) x(t) =
1
2π

∫ ωc

−ωc

ξ(ω)eiωtdω

and the generic sampled value, taken at intervals of 1/(2W ) seconds and in-
dexed by k ∈ I is

(12) xk = x

(
k

2W

)
=

1
2π

∫ 2πW

−2πW

ξ(ω)eiωk/(2W )dω.

Then, the continuous signal can be represented by

(13) x(t) =
∞∑

k=−∞
xk

sin{π(2Wt − k)}
π(2Wt − k)

=
∞∑

k=−∞
xk

sin(ωct − kπ)
ωct − kπ

.

Impulses and Impulse Trains

An alternative proof of the sampling theorem is available which is based on
the idea that a sampled sequence can be generated by modulating a continuous
signal by an impulse train.

An impulse in continuous time, located at the point t = 0, is a generalised
function for which

(14) δ(t) = 0 for all t �= 0 and
∫ ∞

−∞
δ(t) = 1.
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An essential property of this so-called Dirac delta function is the sifting property
whereby

(15) f(τ) =
∫ ∞

−∞
f(t)δ(t − τ)dt.

The Fourier transform of the Dirac function is given by

(16) δ(t − τ) ←→ e−iωτ =
∫ ∞

−∞
e−iωtδ(t − τ)dt.

When τ = 0, this becomes a constant function that is dispersed over the entire
line, which shows that every frequency is needed in order to synthesise the
impulse.

It is also possible to define a Dirac function in the frequency domain as a
single impulse located at ω = ω0 with an area of 2π:

(17) 2πδ(ω − ω0) ←→ eiω1τ =
1
2π

∫ ∞

−∞
2πδ(ω − ω0)eiωtdω.

In describing the periodic sampling of a continuous-time signal, it is useful
consider a train of impulses separated by a time period of T . (Here, we are
using T to denote the length of time between the sample elements, as opposed
to the number of elements within a finite sample; and we are free to normalise
this length by setting T = 1.) The impulse train is represented by the function

(18) g(t) =
∞∑

j=−∞
δ(t − jT ),

which is both periodic and discrete. The periodic nature of this function indi-
cates that it can be expanded as a Fourier series

(19) g(t) =
∞∑

j−∞
γje

iω1jt.

The coefficients of this expansion may be determined by integrating over just
one cycle. Thus

(20) γj =
1
T

∫ T

0

δ(t)e−iω1jtdt =
1
T

,

wherein ω1 = 2π/T represents the fundamental frequency. On setting γj = T−1

for all j in the Fourier-series expression for g(t) and invoking the result under
(17), it is found that the Fourier transform of the continuous-time impulse train
g(t) is the function
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(21)

γ(ω) =
2π

T

∞∑
j=−∞

δ
(
ω − j

2π

T

)
= ω1

∞∑
j=−∞

δ
(
ω − jω1

)
.

Thus it transpires that a periodic impulse train g(t) in the time domain corre-
sponds to a periodic impulse train γ(ω) in the frequency domain. Notice that
there is an inverse relationship between the length T of the sampling interval
in the time domain and the length 2π/T of the corresponding interval between
the frequency-domain pulses.

An Alternative Proof of the Sampling Theorem

The mathematical representation of the sampling process depends upon
the periodic impulse train or sampling function g(t) defined under (18). The
period T is the sampling interval, whilst the fundamental frequency of this
function, which is ω1 = 2π/T , is the sampling frequency.

The activity of sampling may be depicted as a process of amplitude mod-
ulation wherein the impulse train g(t) is the carrier signal and the sampled
function x(t) is the modulating signal. In the time domain, the modulated
signal is described by the following multiplication of g(t) and x(t):

(22)

xs(t) = x(t)g(t)

=
∞∑

j=−∞
x(t)δ(t − jT ).

In most cases, one should be free to set T = 1, which is to say that the
sample interval can be regarded as a unit in time. Then, it is worthwhile to
observe that, unless we replace x(t) by xt, there is no distinction in notation
between the case, in continuous time, of a function modulated by a train of
Dirac impulses and the case, in discrete time, of a sequence of elements indexed
by t ∈ I = {0,±1,±2, . . .}, each multplied, redundantly, by a unit impulse.

The Fourier transform ξs(ω) of xs(t) is the convolution of the transforms
of x(t) and g(t), which are denoted by ξ(ω) and γ(ω) respectively. Thus,

(23)
ξs(ω) =

∫ ∞

−∞
xs(t)e−iωtdt

=
1
2π

∫ ∞

−∞
γ(λ)ξ(ω − λ)dλ.
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Substituting the expression for γ(λ) from (20), gives

(24)

ξs(ω) =
ω1

2π

∫ ∞

−∞
ξ(ω − λ)

{ ∞∑
j=−∞

δ
(
λ − jω1

)}
dλ

=
1
T

∞∑
j=−∞

{∫ ∞

−∞
ξ(ω − λ)δ

(
λ − jω1

)
dλ

}

=
1
T

∞∑
j=−∞

ξ
(
ω − jω1

)
.

The final expression indicates that ξs(ω), which is the Fourier transform of the
sampled signal xs(t), is a periodic function consisting repeated copies of the
transform ξ(ω) of the original continuous-time signal x(t). Each copy is shifted
by an integral multiple of the sampling frequency ω1 = 2π/T before being
superimposed. Observe that equation (9), which was the previous expression
of the result, is obtained is by setting T = 1.

A more explicit derivation of the result is obtained by setting g(t) =
T−1

∑
j eiω1jt within xs(t) = x(t)g(t) to give

(25)

ξs(ω) =
∫ ∞

−∞
x(t)g(t)e−iωtdt

=
1
T

∞∑
j=−∞

∫ ∞

−∞
x(t)e−i(ω−ω1j)tdt

Imagine that x(t) is a band-limited signal whose frequency components are
confined to the interval [0, ωc], which is to say that the function ξ(ω) is nonzero
only over the interval [−ωc, ωc]. If

(26)
2π

T
= ω1 > 2ωc,

then the successive copies of ξ(ω) will not overlap; and therefore the properties
of ξ(ω), and hence those of x(t), can be deduced from those displayed by ξs(ω)
over the interval [0, ω1]. In principle, the original signal could be recovered by
passing its sampled version through an ideal lowpass filter which transmits all
components of frequency less that ω1 and rejects all others.

If, on the contrary, the sampling frequency is such that ω1 < 2ωc, then
the resulting overlapping of the copies of ξ(ω) will imply that the spectrum of
the sampled signal is no longer simply related to that of the original; and no
linear filtering operation can be expected to recover the original signal from
its sampled version. The effect of the overlap is to confound the components
of the original process which have frequencies greater that π/T with those of
frequencies lower than π/T ; and this is described as the aliasing error.

The foregoing results are expressed in the famous sampling theorem which
is summarised as follows:
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Figure 3. A diagram showing the spectra of four continuous processes which produce

the same image when sampled at the rate of 2π.

(27) Let x(t) be a continuous-time signal with a transform ξ(ω) which
is zero-valued for all ω > ωc. Then x(t) can be recovered from its
samples provided that the sampling rate ω1 = 2π/T exceeds 2ωc.

An alternative way of expressing this result is to declare that the rate of
sampling sets an upper limit to the frequencies which can be detected in an
underlying process. Thus, when the sampling provides one observation in T
seconds, the highest frequency which can be detected has a value of π/T radians
per second. This is the so-called Nyquist frequency.

The Bandpass Sampling Theory

In some cases, a signal is supported on the frequency intervals (−fL,−fU )
and (fU , fL), with fU �= 0. Then, it may be possible to capture all of the
information in the signal by sampling it at a rate that is significantly lower
than 2fU , which is the rate that is indicated by the classical Shannon–Nyquist
sampling theorem.

To understand this possibility, one should consider Figure 3, which depicts
four spectral structures, on the intervals (−nπ, [1 − n]π) ∪ ([n − 1]π, nπ);n =
1, 2, 3, 4. When sampled at the Nyquist rate of 2π, the four processes gener-
ate identical sequences. This rate of sampling rate is appropriate to a signal
that is supported on the interval (−π, π), which is described as the base band.
Provided that the frequency location of the true spectrum is known, full infor-
mation on the underlying signal, which will permit its reconstruction, will be
obtained by sampling at the rate of 2π.
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Figure 4. The sampling rate increases gradually from fS = 2B1, depicted in (a), to

fS = 2B2, depicted in (b). Then, it jumps by 2∆ = fU − fL to become fS = 2B3,

depicted in (c).

Although, ostensibly, Figure 3 portrays the specta of four distinct signals,
these might be construed as components of a single signal that have been ex-
tracted by a process of filtering. (The diagram should then be modified to
indicate that the limiting frequency of the overall signal is π.) The bandwith
of this overall signal is equally divided among is components. A conclusion to
be drawn from the diagram is that, in these circumstances, the minimum rate
of sampling is proportional to the bandwidth of the component signals. It is
unrelated to the locations of their bands, which determine the frequencies of
the constituent elements.

In general, in order to exploit the possibilities of bandpass sampling, the
requirement is to determine a base band (−B, B), measured in hertz, such that
(fL, fU ) ∈ ([n − 1]B, nB), where n ∈ {0, 1, 2 . . .} has an integer value. The
condition that (fL, fU ) lies in such an interval implies that

fU ≤ nB, fL ≥ (n − 1)B with 1 ≥ n ≥ [f/(fU − fL)],

where [fU/W ] denotes the integer quotient of the division of fU by W . The
condition on the rate of sampling fS = 2B can be written concisely as

(28)
2fU

n
≤ fS ≤ 2fL

n − 1
.

The sampling rates that fulfil this condition vary in a discontinuous man-
ner. In Figure 4, the values of fU and fL are to be regarded as fixed, while the
width of the baseband or, equivalently, the sampling rate, increases from one
tranche to the next.

The figure illustrates the discontinuity that occurs with an increasing sam-
pling rate when the spectral structure on the interval (fU , fL) is crossed by the
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Figure 5. The band positions associated with various sampling rates. The vertical

axis measures the sampling rate normalised by the bandwidth W = fU − fL. The

horizontal axis measures the upper limit of the sampling band normalised by W . The

base of the vertical arrow corresponds to position (a) of Figure 4, the point in the

middle corresponds to position (b) and the tip corresponds to position (c).

lower bound of the band ([n − 1]Bj , nBj) which, up to this point, has been
increasing continuously in width. The discontinuity occurs in the transition
from (b) to (c).

At that point, the width of the band increases abruptly such that fU

becomes adjacent to the upper bound of the new band. If the width of the band
before the jump was Bj , then the width after the jump will be Bj+1 = Bj +∆,
with ∆ = (fU − fL)/(n − 1). Figure 5 shows the allowed rates of sampling,
which correspond to the white regions, and the disallowed rates of sampling,
which correspond to the shaded regions. The discrete jumps in the sample rates
correspond to the vertical distances within the shaded bands.
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