An Integrated Wiener Processes and its Discrete-Time Analogue

A Wiener process $Z(t)$ consists of an accumulation of independently distributed stochastic increments. The path of $Z(t)$ is continuous almost everywhere and differentiable almost nowhere. If $d Z(t)$ stands for the increment of the process in the infinitesimal interval $d t$, and if $Z(a)$ is the value of the function at time a, then the value at time $\tau>a$ is given by

$$
\begin{equation*}
Z(\tau)=Z(a)+\int_{a}^{\tau} d Z(t) \tag{1}
\end{equation*}
$$

Moreover, it is assumed that the change in the value of the function over any finite interval $(a, \tau]$ is a random variable with a zero expectation:

$$
\begin{equation*}
E\{Z(\tau)-Z(a)\}=0 \tag{2}
\end{equation*}
$$

Let us write $d s \cap d t=\emptyset$ whenever $d s$ and $d t$ represent non-overlapping intervals. Then the conditions affecting the increments may be expressed by writing

$$
E\{d Z(s) d Z(t)\}= \begin{cases}0, & \text { if } d s \cap d t=\emptyset \tag{3}\\ \sigma^{2} d t, & \text { if } d s=d t\end{cases}
$$

These conditions imply that the variance of the change over the interval ($a, \tau]$ is proportional to the length of the interval. Thus

$$
\begin{align*}
V\{Z(\tau)-Z(a)\} & =\int_{s=a}^{\tau} \int_{t=a}^{\tau} E\{d Z(s) d Z(t)\} \tag{4}\\
& =\int_{t=a}^{\tau} \sigma^{2} d t=\sigma^{2}(\tau-a)
\end{align*}
$$

The definite integrals of the Wiener process may be defined also in terms of the increments. The value of the first integral at time τ is given by

$$
\begin{align*}
Z^{(1)}(\tau) & =Z^{(1)}(a)+\int_{a}^{\tau} Z(t) d t \tag{5}\\
& =Z^{(1)}(a)+Z(a)(\tau-a)+\int_{a}^{\tau}(\tau-t) d Z(t)
\end{align*}
$$

where the second equality comes via (85). The m th integral is

$$
\begin{equation*}
Z^{(m)}(\tau)=\sum_{k=0}^{m} Z^{(m-k)}(a) \frac{(\tau-a)^{k}}{k!}+\int_{a}^{\tau} \frac{(\tau-t)^{m}}{m!} d Z(t) \tag{6}
\end{equation*}
$$

The covariance of the changes $Z^{(j)}(\tau)-Z^{(j)}(a)$ and $Z^{(k)}(\tau)-Z^{(k)}(a)$ of the j th and the k th integrated processes derived from $Z(t)$ is given by

$$
\begin{align*}
C_{(a, \tau)}\left\{z^{(j)}, z^{(k)}\right\} & =\int_{s=a}^{\tau} \int_{t=a}^{\tau} \frac{(\tau-s)^{j}(\tau-t)^{k}}{j!k!} E\{d Z(s) d Z(t)\} \\
& =\sigma^{2} \int_{a}^{\tau} \frac{(\tau-t)^{j}(\tau-t)^{k}}{j!k!} d t=\sigma^{2} \frac{(\tau-a)^{j+k+1}}{(j+k+1) j!k!} \tag{7}
\end{align*}
$$

The object of our exercise is to find the form of a discrete-time model which will represent a sequence of observations $y_{0}, y_{1}, \ldots, y_{n}$ taken of an integrated Wiener process at the times $t_{0}, t_{1}, \ldots, t_{n}$. The interval between t_{i} and t_{i-1} is $h_{i}=t_{i}-t_{i-1}$ which, for the sake of generality, will be allowed to vary in the first instance, albeit that, ultimately, we shall set $h_{i}=1$ for all i.

In order to conform to the existing notation, we define

$$
\begin{equation*}
\zeta_{i}=Z\left(t_{i}\right) \quad \text { and } \quad \xi_{i}=Z^{(1)}\left(t_{i}\right) \tag{8}
\end{equation*}
$$

to be, respectively, the slope of the trend component and its level at time t_{i}, where $Z\left(t_{i}\right)$ and $Z^{(1)}\left(t_{i}\right)$ are described by equations (1) and (5). Also we define

$$
\begin{equation*}
\varepsilon_{i}=\int_{t_{i-1}}^{t_{i}} d Z(t) \quad \text { and } \quad \nu_{i}=\int_{t_{i-1}}^{t_{i}}\left(t_{i}-t\right) d Z(t) \tag{9}
\end{equation*}
$$

Then the equation for the slope, which was

$$
\begin{equation*}
Z\left(t_{i}\right)=Z\left(t_{i-1}\right)+\int_{t_{i-1}}^{t_{i}} d Z(t) \tag{10}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\zeta_{i}=\zeta_{i-1}+\varepsilon_{i} \tag{11}
\end{equation*}
$$

and the equation for the level, which was

$$
\begin{equation*}
Z^{(1)}\left(t_{i}\right)=Z^{(1)}\left(t_{i-1}\right)+Z\left(t_{i}\right) h_{i}+\int_{t_{i-1}}^{t_{i}}\left(t_{i}-t_{i-1}\right) d Z(t) \tag{12}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\xi_{i}=\xi_{i-1}+\zeta_{i-1} h_{i}+\nu_{i} \tag{13}
\end{equation*}
$$

The model of the underlying trend can now be written is state-space form as follows:

$$
\left[\begin{array}{c}
\xi_{i} \tag{14}\\
\zeta_{i}
\end{array}\right]=\left[\begin{array}{cc}
1 & h_{i} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\xi_{i-1} \\
\zeta_{i-1}
\end{array}\right]+\left[\begin{array}{l}
\nu_{i} \\
\varepsilon_{i}
\end{array}\right]
$$

whilst a corresponding observation which associates an error η_{i} with the i th observation would be written as

$$
y_{i}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
\xi_{i} \tag{15}\\
\zeta_{i}
\end{array}\right]+\eta_{i}
$$

Using the result under (7), we find that the dispersion matrix for the state disturbances is

$$
D\left[\begin{array}{c}
\nu_{i} \tag{16}\\
\varepsilon_{i}
\end{array}\right]=\sigma_{\varepsilon}^{2}\left[\begin{array}{cc}
\frac{1}{3} h_{i}^{3} & \frac{1}{2} h_{i}^{2} \\
\frac{1}{2} h_{i}^{2} & h_{i}
\end{array}\right]
$$

where σ_{ε}^{2} is the variance of the Wiener process.
To simplify matters we may assume that the time intervals between observations are constant with $h_{i}=1$ for all i. The the processes generating the sequences $\left\{\zeta_{t}\right\}$ and $\left\{\xi_{t}\right\}$ can be written as

$$
\begin{align*}
& \xi(t)=\xi(t-1)+\zeta(t-1)+\nu(t), \tag{17}\\
& (I-L) \xi(t)=\zeta(t-1)+\nu(t),
\end{align*}
$$

and

$$
\begin{align*}
& \zeta(t)=\zeta(t-1)+\varepsilon(t), \quad \text { or } \\
& (I-L) \zeta(t)=\varepsilon(t) . \tag{18}
\end{align*}
$$

Combining the two equations gives

$$
\begin{align*}
\xi(t) & =\frac{\zeta(t-1)}{I-L}+\frac{\nu(t)}{I-L} \\
& =\frac{\varepsilon(t-1)}{(I-L)^{2}}+\frac{\nu(t)}{I-L} . \tag{19}
\end{align*}
$$

or equivalently

$$
\begin{align*}
(I-L)^{2} \xi(t) & =\varepsilon(t-1)+(I-L) \nu(t) \tag{20}\\
& =\nu(t)-\nu(t-1)+\varepsilon(t-1) .
\end{align*}
$$

On the RHS of this equation is a sum of stationary stochastic process which can be expressed as an ordinary first-order moving-average process. The parameters of the latter process may be inferred from it autocovariances which arise from a combination of the autocovariances of $\varepsilon(t)$ and $\nu(t)$. The variance γ_{0} of the MA process is given by the sum of the elements of the matrix

$$
E\left[\begin{array}{ccc}
\nu_{t}^{2} & -\nu_{t} \nu_{t-1} & \nu_{t} \varepsilon_{t-1} \tag{21}\\
-\nu_{t-1} \nu_{t} & \nu_{t-1}^{2} & -\nu_{t-1} \varepsilon_{t-1} \\
\varepsilon_{t-1} \nu_{t} & -\varepsilon_{t-1} \nu_{t-1} & \varepsilon_{t-1}^{2}
\end{array}\right]=\sigma_{\varepsilon}\left[\begin{array}{ccc}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & -\frac{1}{2} \\
0 & -\frac{1}{2} & 1
\end{array}\right] .
$$

Thus it is found that $\gamma_{0}=4 \sigma_{\varepsilon} / 6$ The first autocovariance γ_{1} of the MA process is given by the sum of the elements of the matrix

$$
E\left[\begin{array}{ccc}
\nu_{t} \nu_{t-1} & -\nu_{t} \nu_{t-2} & \nu_{t} \varepsilon_{t-2} \tag{22}\\
-\nu_{t-1}^{2} & \nu_{t-1} \nu_{t-2} & -\nu_{t-1} \varepsilon_{t-2} \\
\varepsilon_{t-1} \nu_{t-1} & -\varepsilon_{t-1} \nu_{t-2} & \varepsilon_{t-1} \varepsilon_{t-2}
\end{array}\right]=\sigma_{\varepsilon}\left[\begin{array}{ccc}
0 & 0 & 0 \\
-\frac{1}{3} & 0 & 0 \\
\frac{1}{2} & 0 & 0
\end{array}\right] .
$$

Thus $\gamma_{1}=\sigma_{\varepsilon} / 6$.

