Signal Extraction in the Case of a Random Walk Observed with Error

Consider an observable random vector

$$
\begin{equation*}
y=\xi+\eta \tag{1}
\end{equation*}
$$

where ξ contains the values of an unobserved signal sequence and where η contains the values of a noise corruption. Imagine that ξ and η have a know covariance structure. Then the simple theory of conditional expectations indicates that an optimal estimate of the signal would be provided by the formula

$$
\begin{equation*}
E(\xi \mid y)=E(\xi)+C(\xi, y) D^{-1}(y)\{y-E(y)\} \tag{2}
\end{equation*}
$$

where $D(y)$ stands for the variance-covariance matrix of y and $C(\xi, y)$ stands for the matrix of the covariances of y and ξ. We shall assume that ξ is generated by a random walk such that

$$
\begin{equation*}
\xi=S \varepsilon+i \xi_{0} \tag{3}
\end{equation*}
$$

where S is a summation matrix whose t th row has t units as its leading elements and $T-t$ zeros in the following positions and where i is the summation vector comprising T units. The vector ε contains a sequence of independently and identically distributed elements from a zero-mean white-noise sequence with variance σ_{ε}^{2}, whilst ξ_{0} is a presample element from the process generating ξ. Then

$$
\begin{equation*}
E(\xi)=i E\left(\xi_{0}\right) \quad \text { and } \quad D(\xi)=\sigma_{\varepsilon}^{2} S S^{\prime}+p_{0} i i^{\prime} \tag{4}
\end{equation*}
$$

where $p_{0}=V\left(\xi_{0}\right)$. We assume that the elements of the noise vector η are generated by a zero-mean white-noise sequence with has a variance of σ_{η}^{2}. Therefore, the vector y has the same expected value as the vector ξ, which is $E(y)=E(\xi)=i E\left(\xi_{0}\right)$. From these assumptions, it follows that

$$
\begin{equation*}
D(y)=D(\xi)+\sigma_{\eta}^{2} I \quad \text { and } \quad C(\xi, y)=D(\xi) \tag{5}
\end{equation*}
$$

Now the inverse of the summation matrix S is the differencing matrix $\nabla=S^{-1}$ which has units on the diagonal, negative units on the first subdiagonal and zeros elsewhere. It follows that

$$
\begin{align*}
C(\xi, y) & =S\left(\sigma_{\varepsilon}^{2} I+p_{0} e_{1} e_{1}^{\prime}\right) S^{\prime} \quad \text { and } \\
D(y) & =S\left(\sigma_{\varepsilon}^{2} I+p_{0} e_{1} e_{1}^{\prime}+\sigma_{\eta}^{2} \nabla \nabla^{\prime}\right) S^{\prime} \tag{6}
\end{align*}
$$

where $e_{1} e_{1}^{\prime}=\nabla i i^{\prime} \nabla^{\prime}$ is a matrix with a unit in the leading position and with zeros elsewhere. On substituting these details into equation (2), we find that (7)
$E(\xi \mid y)=i E\left(\xi_{0}\right)+S\left(\sigma_{\varepsilon}^{2} I+p_{0} e_{1} e_{1}^{\prime}\right)\left(\sigma_{\varepsilon}^{2} I+p_{0} e_{1} e_{1}^{\prime}+\sigma_{\eta}^{2} \nabla \nabla^{\prime}\right)^{-1}\left\{\nabla y-e_{1} E\left(\xi_{0}\right)\right\}$,

