Signal Extraction in the Case of a Random Walk Observed with Error

Consider an observable random vector

(1)
$$y = \xi + \eta$$

where ξ contains the values of an unobserved signal sequence and where η contains the values of a noise corruption. Imagine that ξ and η have a know covariance structure. Then the simple theory of conditional expectations indicates that an optimal estimate of the signal would be provided by the formula

(2)
$$E(\xi|y) = E(\xi) + C(\xi, y)D^{-1}(y)\{y - E(y)\},\$$

where D(y) stands for the variance–covariance matrix of y and $C(\xi, y)$ stands for the matrix of the covariances of y and ξ . We shall assume that ξ is generated by a random walk such that

(3)
$$\xi = S\varepsilon + i\xi_0,$$

where S is a summation matrix whose tth row has t units as its leading elements and T - t zeros in the following positions and where i is the summation vector comprising T units. The vector ε contains a sequence of independently and identically distributed elements from a zero-mean white-noise sequence with variance σ_{ε}^2 , whilst ξ_0 is a presample element from the process generating ξ . Then

(4)
$$E(\xi) = iE(\xi_0)$$
 and $D(\xi) = \sigma_{\varepsilon}^2 SS' + p_0 ii',$

where $p_0 = V(\xi_0)$. We assume that the elements of the noise vector η are generated by a zero-mean white-noise sequence with has a variance of σ_{η}^2 . Therefore, the vector y has the same expected value as the vector ξ , which is $E(y) = E(\xi) = iE(\xi_0)$. From these assumptions, it follows that

(5)
$$D(y) = D(\xi) + \sigma_{\eta}^2 I$$
 and $C(\xi, y) = D(\xi).$

Now the inverse of the summation matrix S is the differencing matrix $\nabla = S^{-1}$ which has units on the diagonal, negative units on the first subdiagonal and zeros elsewhere. It follows that

(6)
$$C(\xi, y) = S(\sigma_{\varepsilon}^{2}I + p_{0}e_{1}e_{1}')S' \text{ and}$$
$$D(y) = S(\sigma_{\varepsilon}^{2}I + p_{0}e_{1}e_{1}' + \sigma_{\eta}^{2}\nabla\nabla')S'$$

where $e_1 e'_1 = \nabla i i' \nabla'$ is a matrix with a unit in the leading position and with zeros elsewhere. On substituting these details into equation (2), we find that (7)

$$E(\xi|y) = iE(\xi_0) + S(\sigma_{\varepsilon}^2 I + p_0 e_1 e_1')(\sigma_{\varepsilon}^2 I + p_0 e_1 e_1' + \sigma_{\eta}^2 \nabla \nabla')^{-1} \{\nabla y - e_1 E(\xi_0)\},\$$