FILTERING SHORT SEQUENCES

Filtering Stationary Sequences

Imagine that a short sequence of observations has been sampled from a process

(1)
$$y(t) = \xi(t) + \eta(t),$$

where $\xi(t)$ is a signal and $\eta(t)$ is a noise process which tends to obscure the signal. It is assumed that the processes $\xi(t)$ and $\eta(t)$ are stationary and mutually independent and that their statistical properties may be summarised by their first and second moments.

The set of observations can be are gathered in a vector

$$(2) y = \xi + \eta$$

It is assumed that

(3)
$$E(\xi) = 0$$
 and $D(\xi) = \sigma_{\nu}^2 \Omega_S$,

and that

(4)
$$E(\eta) = 0$$
 and $D(\eta) = \sigma_{\varepsilon}^2 \Omega_N$.

Hence, in view of the statistical independence of $\xi(t)$ and $\eta(t)$, it follows

(5)
$$E(y) = 0$$
 and $D(y) = \sigma_{\nu}^2 \Omega_S + \sigma_{\varepsilon}^2 \Omega_N.$

If both ξ and η are generated by moving-average processes, then Ω_S and Ω_N will be symmetric Toeplitz matrices with a limited number of nonzero diagonal bands.

The optimal predictor x of the vector ξ is given by the following conditional expectation:

(6)
$$E(\xi|y) = E(\xi) + C(\xi, y)D^{-1}(y)\{y - E(y)\} \\ = \Omega_S(\Omega_S + \lambda\Omega_N)^{-1}y = x,$$

where $\lambda = \sigma_{\varepsilon}^2 / \sigma_{\nu}^2$. The optimal predictor h of η is given, likewise, by

(7)
$$E(\eta|y) = E(\eta) + C(\eta, y)D^{-1}(y)\{y - E(y)\}$$
$$= \lambda \Omega_N (\Omega_S + \lambda \Omega_N)^{-1}y = h.$$

It may be confirmed that x + h = y.

The estimates are calculated, first, by solving the equation

(8)
$$(\Omega_S + \lambda \Omega_N)b = y$$

for the value of b and, thereafter, by finding

(9)
$$x = \Omega_S b$$
 and $h = \lambda \Omega_N b$.

The solution of equation (8) is found via a Cholesky factorisation which sets $\Omega_S + \lambda \Omega_N = GG'$, where G is a lower-triangular matrix. The system GG'b = y may be cast in the form of Gp = y and solved for p. Then G'b = p can be solved for b.

Filtering Nonstationary Sequences

Now consider the case where $y(t) = \xi(t) + \eta(t)$ is a nonstationary sequence comprising a nonstationary signal $\xi(t)$ and a stationary noise component $\eta(t)$. Imagine that d differences are sufficient to reduce $\xi(t)$ to stationarity, and let Q' be the matrix counterpart of the operator $(I - L)^d$ which produces $\zeta(t) = (I - L)^d \xi(t)$ and $\kappa(t) = (I - L)^d \eta(t)$, which are statistically independent processes. Then

(10)
$$Q'y = Q'\xi + Q'\eta = \zeta + \kappa = g.$$

It is assumed that

(11)
$$E(\zeta) = 0$$
 and $D(\zeta) = \sigma_{\nu}^2 \Omega_S$,

and that

(12)
$$E(\kappa) = 0 \quad \text{and} \quad D(\kappa) = Q'D(\eta)Q \\ = \sigma_{\varepsilon}^2 Q' \Sigma Q = \sigma_{\varepsilon}^2 \Omega_N.$$

The estimator z of the differenced signal is therefore

(13)
$$E(\zeta|g) = E(\zeta) + C(\zeta,g)D^{-1}(g)\{g - E(g)\}$$
$$= \Omega_S(\Omega_S + \lambda\Omega_N)^{-1}g = z,$$

where $\lambda = \sigma_{\varepsilon}^2 / \sigma_{\nu}^2$. The estimator k of the differenced noise vector κ is

(14)
$$E(\kappa|g) = E(\kappa) + C(\kappa, g)D^{-1}(g)\{g - E(g)\}$$
$$= \lambda\Omega_N(\Omega_S + \lambda\Omega_N)^{-1}g = k.$$

The estimates are calculated, first, by solving the equation

(15)
$$(\Omega_S + \lambda \Omega_N)b = g$$

for the value of b and, thereafter, by finding

(16)
$$z = \Omega_S b$$
 and $k = \lambda \Omega_N b$.

In order to recover and estimate x of the trend ξ from the estimate z of the differenced vector $\zeta = Q'\xi$, we adopt the following criterion:

(17) Minimise
$$(y-x)'\Sigma^{-1}(y-x)$$
 subject to $Q'x = z$.

This is a matter of finding an estimated trend vector which is closely aligned to the data and which has a differenced value equal to the filtered value zgenerated by equation (13). Therefore, we consider the Lagrangean function

(18)
$$L(x,\mu) = (y-x)'\Sigma^{-1}(y-x) + 2\mu'(Q'x-z).$$

By differentiating the function with respect to x and setting the result to zero, we obtain the condition

(19)
$$\Sigma^{-1}(y-x) - Q\mu = 0.$$

Premultiplying by $Q'\Sigma$ gives

(20)
$$Q'(y-x) = Q'\Sigma Q\mu.$$

But, from (15) and (16), it follows that

(21)
$$Q'(y-x) = g - z = \lambda \Omega_R b = \lambda Q' \Sigma Q b,$$

whence, from (20), we get

(22)
$$\mu = (Q'\Sigma Q)^{-1}Q'(y-x)$$
$$= \lambda b.$$

Putting the final expression for μ into (19) gives

(23)
$$x = y - \lambda \Sigma Q b,$$

which is the equation for estimating the trend.