
D.S.G. POLLOCK : BRIEF NOTES ON TIME SERIES

FILTERING SHORT SEQUENCES

Filtering Stationary Sequences

Imagine that a short sequence of observations has been sampled from a process

(1) y(t) = ξ(t) + η(t),

where ξ(t) is a signal and η(t) is a noise process which tends to obscure the sig-
nal. It is assumed that the processes ξ(t) and η(t) are stationary and mutually
independent and that their statistical properties may be summarised by their
first and second moments.

The set of observations can be are gathered in a vector

(2) y = ξ + η.

It is assumed that

(3) E(ξ) = 0 and D(ξ) = σ2
νΩS ,

and that

(4) E(η) = 0 and D(η) = σ2
εΩN .

Hence, in view of the statisitical independence of ξ(t) and η(t), it follows

(5) E(y) = 0 and D(y) = σ2
νΩS + σ2

εΩN .

If both ξ and η are generated by moving-average processes, then ΩS and ΩN

will be symmetric Toeplitz matrices with a limited number of nonzero diagonal
bands.

The optimal predictor x of the vector ξ is given by the following conditional
expectation:

(6)
E(ξ|y) = E(ξ) + C(ξ, y)D−1(y)

{
y − E(y)

}

= ΩS(ΩS + λΩN )−1y = x,

where λ = σ2
ε/σ2

ν . The optimal predictor h of η is given, likewise, by

(7)
E(η|y) = E(η) + C(η, y)D−1(y)

{
y − E(y)

}

= λΩN (ΩS + λΩN )−1y = h.

It may be confirmed that x + h = y.
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The estimates are calculated, first, by solving the equation

(8) (ΩS + λΩN )b = y

for the value of b and, thereafter, by finding

(9) x = ΩSb and h = λΩNb.

The solution of equation (8) is found via a Cholesky factorisation which sets
ΩS +λΩN = GG′, where G is a lower-triangular matrix. The system GG′b = y
may be cast in the form of Gp = y and solved for p. Then G′b = p can be
solved for b.

Filtering Nonstationary Sequences

Now consider the case where y(t) = ξ(t)+η(t) is a nonstationary sequence
comprising a nonstationary signal ξ(t) and a stationary noise component η(t).
Imagine that d differences are sufficient to reduce ξ(t) to stationarity, and
let Q′ be the matrix counterpart of the operator (I − L)d which produces
ζ(t) = (I −L)dξ(t) and κ(t) = (I −L)dη(t), which are statistically independent
processes. Then

(10)
Q′y = Q′ξ + Q′η

= ζ + κ = g.

It is assumed that

(11) E(ζ) = 0 and D(ζ) = σ2
νΩS ,

and that

(12)
E(κ) = 0 and D(κ) = Q′D(η)Q

= σ2
εQ′ΣQ = σ2

εΩN .

The estimator z of the differenced signal is therefore

(13)
E(ζ|g) = E(ζ) + C(ζ, g)D−1(g)

{
g − E(g)

}

= ΩS(ΩS + λΩN )−1g = z,

where λ = σ2
ε/σ2

ν . The estimator k of the differenced noise vector κ is

(14)
E(κ|g) = E(κ) + C(κ, g)D−1(g)

{
g − E(g)

}

= λΩN (ΩS + λΩN )−1g = k.
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The estimates are calculated, first, by solving the equation

(15) (ΩS + λΩN )b = g

for the value of b and, thereafter, by finding

(16) z = ΩSb and k = λΩNb.

In order to recover and estimate x of the trend ξ from the estimate z of
the differenced vector ζ = Q′ξ, we adopt the following criterion:

(17) Minimise (y − x)′Σ−1(y − x) subject to Q′x = z.

This is a matter of finding an estimated trend vector which is closely aligned
to the data and which has a differenced value equal to the filtered value z
generated by equation (13). Therefore, we consider the Lagrangean function

(18) L(x, μ) = (y − x)′Σ−1(y − x) + 2μ′(Q′x − z).

By differentiating the function with respect to x and setting the result to
zero, we obtain the condition

(19) Σ−1(y − x) − Qμ = 0.

Premultiplying by Q′Σ gives

(20) Q′(y − x) = Q′ΣQμ.

But, from (15) and (16), it follows that

(21)
Q′(y − x) = g − z

= λΩRb = λQ′ΣQb,

whence, from (20), we get

(22)
μ = (Q′ΣQ)−1Q′(y − x)

= λb.

Putting the final expression for μ into (19) gives

(23) x = y − λΣQb,

which is the equation for estimating the trend.
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