THE EQUATIONS OF THE KALMAN FILTER

The state-space model, which underlies the Kalman filter, consists of two equations

$$y_t = H_t \xi_t + \eta_t, \qquad Observation \ Equation$$
(1)

$$\xi_t = \Phi_t \xi_{t-1} + \nu_t, \qquad Transition \ Equation \tag{2}$$

where y_t is the observation on the system and ξ_t is the state vector. The observation error η_t and the state disturbance ν_t are mutually uncorrelated random vectors of zero mean with dispersion matrices

$$D(\eta_t) = \Omega_t$$
 and $D(\nu_t) = \Psi_t$. (3)

It is assumed that the matrices H_t , Φ_t , Ω_t and Ψ_t are known for all $t = 1, \ldots, n$ and that an initial estimate x_0 is available for the state vector ξ_0 at time t = 0together with a dispersion matrix $D(\xi_0) = P_0$. The empirical information available at time t is the set of observations $\mathcal{I}_t = \{y_1, \ldots, y_t\}.$

The Kalman-filter equations determine the state-vector estimates $x_{t|t-1} =$ $E(\xi_t|\mathcal{I}_{t-1})$ and $x_t = E(\xi_t|\mathcal{I}_t)$ and their associated dispersion matrices $P_{t|t-1}$ and P_t . From $x_{t|t-1}$, the prediction $\hat{y}_{t|t-1} = H_t x_{t|t-1}$ is formed which has a dispersion matrix F_t . A summary of these equations is as follows:

$$x_{t|t-1} = \Phi_t x_{t-1}, \qquad State \ Prediction \qquad (4)$$

$$P_{t|t-1} = \Phi_t P_{t-1} \Phi'_t + \Psi_t, \qquad Prediction \ Dispersion \tag{5}$$

$$e_{t} = y_{t} - H_{t}x_{t|t-1}, \qquad Prediction \ Error \qquad (6)$$

$$F_{t} = H_{t}P_{t|t-1}H'_{t} + \Omega_{t}, \qquad Error \ Dispersion \qquad (7)$$

$$K_{t} = P_{t|t-1}H'_{t}F_{t}^{-1} \qquad Kalman \ Gain \qquad (8)$$

$$F_{t} = H_{t}P_{t|t-1}H_{t}' + \Omega_{t}, \qquad \text{Error Dispersion} \tag{7}$$

$$K_t = P_{t|t-1}H'_t F_t^{-1}, \qquad Kalman \ Gain \qquad (8)$$

$$x_t = x_{t|t-1} + K_t e_t, \qquad State \ Estimate \qquad (9)$$

$$P_t = (I - K_t H_t) P_{t|t-1}.$$
 Estimate Dispersion (10)

Alternative expressions are available for P_t and K_t are available on the assumption that Ω_t is nonsingular:

$$P_t = (P_{t|t-1}^{-1} + H_t' \Omega_t^{-1} H_t)^{-1},$$
(11)

$$K_t = P_t H_t' \Omega_t^{-1}. \tag{12}$$

By applying the well-known matrix inversion lemma to the expression on the RHS of (11), we obtain the original expression for P_t given under (10). To verify the identity $P_{t|t-1}H'_tF_t^{-1} = P_tH'_t\Omega_t^{-1}$ which equates (8) and (12), we write it as $P_t^{-1}P_{t|t-1}H_t' = H_t'\Omega_t^{-1}F_t$. The latter is readily confirmed using the expression for P_t from (11) and the expression for F_t from (7).

Derivation of the Kalman Filter. The equations of the Kalman filter may be derived using the ordinary algebra of conditional expectations which

THE KALMAN FILTER

indicates that, if x, y are jointly distributed variables which bear the linear relationship $E(y|x) = \alpha + B\{x - E(x)\}$, then

$$E(y|x) = E(y) + C(y,x)D^{-1}(x)\{x - E(x)\},$$
(13)

$$D(y|x) = D(y) - C(y, x)D^{-1}(x)C(x, y),$$
(14)

$$E\{E(y|x)\} = E(y), \tag{15}$$

$$D\{E(y|x)\} = C(y,x)D^{-1}(x)C(x,y),$$
(16)

$$D(y) = D(y|x) + D\{E(y|x)\},$$
(17)

$$C\{y - E(y|x), x\} = 0.$$
(18)

Of the equations listed under (4)—(10), those under (6) and (8) are merely definitions.

To demonstrate equation (4), we use (15) to show that

$$E(\xi_t | \mathcal{I}_{t-1}) = E\{E(\xi_t | \xi_{t-1}) | \mathcal{I}_{t-1}\}$$

= $E\{\Phi_t \xi_{t-1} | \mathcal{I}_{t-1}\}$
= $\Phi_t x_{t-1}.$ (19)

We use (17) to demonstrate equation (5):

$$D(\xi_t | \mathcal{I}_{t-1}) = D(\xi_t | \xi_{t-1}) + D\{E(\xi_t | \xi_{t-1}) | \mathcal{I}_{t-1}\}$$

= $\Psi_t + D\{\Phi_t \xi_{t-1} | \mathcal{I}_{t-1}\}$ (20)
= $\Psi_t + \Phi_t P_{t-1} \Phi'_t.$

To obtain equation (7), we substitute (1) into (6) to give $e_t = H_t(\xi_t - x_{t|t-1}) + \eta_t$. Then, in view of the statistical independence of the terms on the RHS, we have

$$D(e_t) = D\{H_t(\xi_t - x_{t|t-1})\} + D(\eta_t)$$

= $H_t P_{t|t-1} H'_t + \Omega_t = D(y_t | \mathcal{I}_{t-1}).$ (21)

To demonstrate the updating equation (9), we begin by noting that

$$C(\xi_t, y_t | \mathcal{I}_{t-1}) = E\{(\xi_t - x_{t|t-1})y'_t\}$$

= $E\{(\xi_t - x_{t|t-1})(H_t\xi_t + \eta_t)'\}$
= $P_{t|t-1}H'_t.$ (22)

It follows from (13) that

$$E(\xi_t | \mathcal{I}_t) = E(\xi_t | \mathcal{I}_{t-1}) + C(\xi_t, y_t | \mathcal{I}_{t-1}) D^{-1}(y_t | \mathcal{I}_{t-1}) \{ y_t - E(y_t | \mathcal{I}_{t-1}) \}$$

= $x_{t|t-1} + P_{t|t-1} H'_t F_t^{-1} e_t.$ (23)

The dispersion matrix under (10) for the updated estimate is obtained via equation (14):

$$D(\xi_t | \mathcal{I}_t) = D(\xi_t | \mathcal{I}_{t-1}) - C(\xi_t, y_t | \mathcal{I}_{t-1}) D^{-1}(y_t | \mathcal{I}_{t-1}) C(y_t, \xi_t | \mathcal{I}_{t-1})$$

= $P_{t|t-1} - P_{t|t-1} H'_t F_t^{-1} H_t P_{t|t-1}.$ (24)