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THE EQUATIONS OF THE KALMAN FILTER

The state-space model, which underlies the Kalman filter, consists of two equa-
tions

yt = Htξt + ηt, Observation Equation (1)

ξt = Φtξt−1 + νt, Transition Equation (2)

where yt is the observation on the system and ξt is the state vector. The
observation error ηt and the state disturbance νt are mutually uncorrelated
random vectors of zero mean with dispersion matrices

D(ηt) = Ωt and D(νt) = Ψt. (3)

It is assumed that the matrices Ht, Φt, Ωt and Ψt are known for all t = 1, . . . , n
and that an initial estimate x0 is available for the state vector ξ0 at time t = 0
together with a dispersion matrix D(ξ0) = P0. The empirical information
available at time t is the set of observations It = {y1, . . . , yt}.

The Kalman-filter equations determine the state-vector estimates xt|t−1 =
E(ξt|It−1) and xt = E(ξt|It) and their associated dispersion matrices Pt|t−1

and Pt. From xt|t−1, the prediction ŷt|t−1 = Htxt|t−1 is formed which has a
dispersion matrix Ft. A summary of these equations is as follows:

xt|t−1 = Φtxt−1, State Prediction (4)
Pt|t−1 = ΦtPt−1Φ′t + Ψt, Prediction Dispersion (5)

et = yt −Htxt|t−1, Prediction Error (6)
Ft = HtPt|t−1H

′
t + Ωt, Error Dispersion (7)

Kt = Pt|t−1H
′
tF
−1
t , Kalman Gain (8)

xt = xt|t−1 +Ktet, State Estimate (9)
Pt = (I −KtHt)Pt|t−1. Estimate Dispersion (10)

Alternative expressions are available for Pt and Kt are available on the
assumption that Ωt is nonsingular:

Pt = (P−1
t|t−1 +H ′tΩ

−1
t Ht)−1, (11)

Kt = PtH
′
tΩ
−1
t . (12)

By applying the well-known matrix inversion lemma to the expression on the
RHS of (11), we obtain the original expression for Pt given under (10). To
verify the identity Pt|t−1H

′
tF
−1
t = PtH

′
tΩ
−1
t which equates (8) and (12), we

write it as P−1
t Pt|t−1H

′
t = H ′tΩ

−1
t Ft. The latter is readily confirmed using the

expression for Pt from (11) and the expression for Ft from (7).

Derivation of the Kalman Filter. The equations of the Kalman filter
may be derived using the ordinary algebra of conditional expectations which
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indicates that, if x, y are jointly distributed variables which bear the linear
relationship E(y|x) = α+B{x− E(x)}, then

E(y|x) = E(y) + C(y, x)D−1(x)
{
x− E(x)

}
, (13)

D(y|x) = D(y)− C(y, x)D−1(x)C(x, y), (14)
E
{
E(y|x)

}
= E(y), (15)

D
{
E(y|x)

}
= C(y, x)D−1(x)C(x, y), (16)

D(y) = D(y|x) +D
{
E(y|x)

}
, (17)

C
{
y − E(y|x), x

}
= 0. (18)

Of the equations listed under (4)—(10), those under (6) and (8) are merely
definitions.

To demonstrate equation (4), we use (15) to show that

E(ξt|It−1) = E
{
E(ξt|ξt−1)|It−1

}
= E

{
Φtξt−1|It−1

}
= Φtxt−1.

(19)

We use (17) to demonstrate equation (5):

D(ξt|It−1) = D(ξt|ξt−1) +D
{
E(ξt|ξt−1)|It−1

}
= Ψt +D

{
Φtξt−1|It−1

}
= Ψt + ΦtPt−1Φ′t.

(20)

To obtain equation (7), we substitute (1) into (6) to give et = Ht(ξt −
xt|t−1) + ηt. Then, in view of the statistical independence of the terms on the
RHS, we have

D(et) = D
{
Ht(ξt − xt|t−1)

}
+D(ηt)

= HtPt|t−1H
′
t + Ωt = D(yt|It−1).

(21)

To demonstrate the updating equation (9), we begin by noting that

C(ξt, yt|It−1) = E
{

(ξt − xt|t−1)y′t
}

= E
{

(ξt − xt|t−1)(Htξt + ηt)′
}

= Pt|t−1H
′
t.

(22)

It follows from (13) that

E(ξt|It) = E(ξt|It−1) + C(ξt, yt|It−1)D−1(yt|It−1)
{
yt − E(yt|It−1)

}
= xt|t−1 + Pt|t−1H

′
tF
−1
t et.

(23)

The dispersion matrix under (10) for the updated estimate is obtained via
equation (14):

D(ξt|It) = D(ξt|It−1)− C(ξt, yt|It−1)D−1(yt|It−1)C(yt, ξt|It−1)

= Pt|t−1 − Pt|t−1H
′
tF
−1
t HtPt|t−1.

(24)
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