D.S.G. POLLOCK : BRIEF NOTES ON TIME SERIES

THE EQUATIONS OF THE KALMAN FILTER

The state-space model, which underlies the Kalman filter, consists of two equations

$$
\begin{array}{lr}
y_{t}=H_{t} \xi_{t}+\eta_{t}, \quad \text { Observation Equation } \\
\xi_{t}=\Phi_{t} \xi_{t-1}+\nu_{t}, \quad \text { Transition Equation } \tag{2}
\end{array}
$$

where y_{t} is the observation on the system and ξ_{t} is the state vector. The observation error η_{t} and the state disturbance ν_{t} are mutually uncorrelated random vectors of zero mean with dispersion matrices

$$
\begin{equation*}
D\left(\eta_{t}\right)=\Omega_{t} \quad \text { and } \quad D\left(\nu_{t}\right)=\Psi_{t} . \tag{3}
\end{equation*}
$$

It is assumed that the matrices $H_{t}, \Phi_{t}, \Omega_{t}$ and Ψ_{t} are known for all $t=1, \ldots, n$ and that an initial estimate x_{0} is available for the state vector ξ_{0} at time $t=0$ together with a dispersion matrix $D\left(\xi_{0}\right)=P_{0}$. The empirical information available at time t is the set of observations $\mathcal{I}_{t}=\left\{y_{1}, \ldots, y_{t}\right\}$.

The Kalman-filter equations determine the state-vector estimates $x_{t \mid t-1}=$ $E\left(\xi_{t} \mid \mathcal{I}_{t-1}\right)$ and $x_{t}=E\left(\xi_{t} \mid \mathcal{I}_{t}\right)$ and their associated dispersion matrices $P_{t \mid t-1}$ and P_{t}. From $x_{t \mid t-1}$, the prediction $\hat{y}_{t \mid t-1}=H_{t} x_{t \mid t-1}$ is formed which has a dispersion matrix F_{t}. A summary of these equations is as follows:

$$
\begin{align*}
x_{t \mid t-1} & =\Phi_{t} x_{t-1}, & & \text { State Prediction } \tag{4}\\
P_{t \mid t-1} & =\Phi_{t} P_{t-1} \Phi_{t}^{\prime}+\Psi_{t}, & & \text { Prediction Dispersion } \tag{5}\\
e_{t} & =y_{t}-H_{t} x_{t \mid t-1}, & & \text { Prediction Error } \tag{6}\\
F_{t} & =H_{t} P_{t \mid t-1} H_{t}^{\prime}+\Omega_{t}, & & \text { Error Dispersion } \tag{7}\\
K_{t} & =P_{t \mid t-1} H_{t}^{\prime} F_{t}^{-1}, & & \text { Kalman Gain } \tag{8}\\
x_{t} & =x_{t \mid t-1}+K_{t} e_{t}, & & \text { State Estimate } \tag{9}\\
P_{t} & =\left(I-K_{t} H_{t}\right) P_{t \mid t-1} . & & \text { Estimate Dispersion } \tag{10}
\end{align*}
$$

Alternative expressions are available for P_{t} and K_{t} are available on the assumption that Ω_{t} is nonsingular:

$$
\begin{align*}
& P_{t}=\left(P_{t \mid t-1}^{-1}+H_{t}^{\prime} \Omega_{t}^{-1} H_{t}\right)^{-1}, \tag{11}\\
& K_{t}=P_{t} H_{t}^{\prime} \Omega_{t}^{-1} . \tag{12}
\end{align*}
$$

By applying the well-known matrix inversion lemma to the expression on the RHS of (11), we obtain the original expression for P_{t} given under (10). To verify the identity $P_{t \mid t-1} H_{t}^{\prime} F_{t}^{-1}=P_{t} H_{t}^{\prime} \Omega_{t}^{-1}$ which equates (8) and (12), we write it as $P_{t}^{-1} P_{t \mid t-1} H_{t}^{\prime}=H_{t}^{\prime} \Omega_{t}^{-1} F_{t}$. The latter is readily confirmed using the expression for P_{t} from (11) and the expression for F_{t} from (7).

Derivation of the Kalman Filter. The equations of the Kalman filter may be derived using the ordinary algebra of conditional expectations which

THE KALMAN FILTER

indicates that, if x, y are jointly distributed variables which bear the linear relationship $E(y \mid x)=\alpha+B\{x-E(x)\}$, then

$$
\begin{align*}
& E(y \mid x)=E(y)+C(y, x) D^{-1}(x)\{x-E(x)\} \tag{13}\\
& D(y \mid x)=D(y)-C(y, x) D^{-1}(x) C(x, y) \tag{14}\\
& E\{E(y \mid x)\}=E(y) \tag{15}\\
& D\{E(y \mid x)\}=C(y, x) D^{-1}(x) C(x, y) \tag{16}\\
& D(y)=D(y \mid x)+D\{E(y \mid x)\} \tag{17}\\
& C\{y-E(y \mid x), x\}=0 \tag{18}
\end{align*}
$$

Of the equations listed under (4)-(10), those under (6) and (8) are merely definitions.

To demonstrate equation (4), we use (15) to show that

$$
\begin{align*}
E\left(\xi_{t} \mid \mathcal{I}_{t-1}\right) & =E\left\{E\left(\xi_{t} \mid \xi_{t-1}\right) \mid \mathcal{I}_{t-1}\right\} \\
& =E\left\{\Phi_{t} \xi_{t-1} \mid \mathcal{I}_{t-1}\right\} \tag{19}\\
& =\Phi_{t} x_{t-1}
\end{align*}
$$

We use (17) to demonstrate equation (5):

$$
\begin{align*}
D\left(\xi_{t} \mid \mathcal{I}_{t-1}\right) & =D\left(\xi_{t} \mid \xi_{t-1}\right)+D\left\{E\left(\xi_{t} \mid \xi_{t-1}\right) \mid \mathcal{I}_{t-1}\right\} \\
& =\Psi_{t}+D\left\{\Phi_{t} \xi_{t-1} \mid \mathcal{I}_{t-1}\right\} \tag{20}\\
& =\Psi_{t}+\Phi_{t} P_{t-1} \Phi_{t}^{\prime}
\end{align*}
$$

To obtain equation (7), we substitute (1) into (6) to give $e_{t}=H_{t}\left(\xi_{t}-\right.$ $\left.x_{t \mid t-1}\right)+\eta_{t}$. Then, in view of the statistical independence of the terms on the RHS, we have

$$
\begin{align*}
D\left(e_{t}\right) & =D\left\{H_{t}\left(\xi_{t}-x_{t \mid t-1}\right)\right\}+D\left(\eta_{t}\right) \tag{21}\\
& =H_{t} P_{t \mid t-1} H_{t}^{\prime}+\Omega_{t}=D\left(y_{t} \mid \mathcal{I}_{t-1}\right) .
\end{align*}
$$

To demonstrate the updating equation (9), we begin by noting that

$$
\begin{align*}
C\left(\xi_{t}, y_{t} \mid \mathcal{I}_{t-1}\right) & =E\left\{\left(\xi_{t}-x_{t \mid t-1}\right) y_{t}^{\prime}\right\} \\
& =E\left\{\left(\xi_{t}-x_{t \mid t-1}\right)\left(H_{t} \xi_{t}+\eta_{t}\right)^{\prime}\right\} \tag{22}\\
& =P_{t \mid t-1} H_{t}^{\prime}
\end{align*}
$$

It follows from (13) that

$$
\begin{align*}
E\left(\xi_{t} \mid \mathcal{I}_{t}\right) & =E\left(\xi_{t} \mid \mathcal{I}_{t-1}\right)+C\left(\xi_{t}, y_{t} \mid \mathcal{I}_{t-1}\right) D^{-1}\left(y_{t} \mid \mathcal{I}_{t-1}\right)\left\{y_{t}-E\left(y_{t} \mid \mathcal{I}_{t-1}\right)\right\} \\
& =x_{t \mid t-1}+P_{t \mid t-1} H_{t}^{\prime} F_{t}^{-1} e_{t} \tag{23}
\end{align*}
$$

The dispersion matrix under (10) for the updated estimate is obtained via equation (14):

$$
\begin{align*}
D\left(\xi_{t} \mid \mathcal{I}_{t}\right) & =D\left(\xi_{t} \mid \mathcal{I}_{t-1}\right)-C\left(\xi_{t}, y_{t} \mid \mathcal{I}_{t-1}\right) D^{-1}\left(y_{t} \mid \mathcal{I}_{t-1}\right) C\left(y_{t}, \xi_{t} \mid \mathcal{I}_{t-1}\right) \\
& =P_{t \mid t-1}-P_{t \mid t-1} H_{t}^{\prime} F_{t}^{-1} H_{t} P_{t \mid t-1} \tag{24}
\end{align*}
$$

