D.S.G. POLLOCK : BRIEF NOTES ON TIME SERIES

THE INTEGRATED MOVING-AVERAGE MODEL IMA(1, 1)

Consider the case of a first-order random walk of which the observations are subject to an additive white-noise error. The equation of the random walk is

$$
\begin{equation*}
\xi(t)=\xi(t-1)+\nu(t), \tag{1}
\end{equation*}
$$

and the equation of the observations is

$$
\begin{equation*}
y(t)=\xi(t)+\eta(t) . \tag{2}
\end{equation*}
$$

It is assumed that the white-noise processes $\nu(t)$ and $\eta(t)$ are mutually independent. The random walk may also be expressed as

$$
\begin{equation*}
(1-L) \xi(t)=\nu(t) . \tag{3}
\end{equation*}
$$

Combining this with the observation equation (2) gives

$$
\begin{equation*}
(1-L) y(t)=\nu(t)+(1-L) \eta(t) . \tag{4}
\end{equation*}
$$

It is straightforward to show that the terms of the final expression combine to give rise to a first-order moving-average process. Let this expression be denoted by

$$
\begin{equation*}
q(t)=\nu(t)+\eta(t)-\eta(t-1) . \tag{5}
\end{equation*}
$$

Then the variance and the first autocovariance of this sequence are given by

$$
\begin{align*}
& V\left(q_{t}\right)=\sigma_{\nu}^{2}+2 \sigma_{\eta}^{2}=\gamma_{0}, \tag{6}\\
& C\left(q_{t}, q_{t-1}\right)=-\sigma_{\eta}^{2}=\gamma_{1} .
\end{align*}
$$

The autocovariances at higher lags are all zero-valued. Now consider the equation which relates the autocovariances γ_{0}, γ_{1} of the MA(1) process $q(t)=$ $(I-\theta L) \varepsilon(t)$ to its parameters θ and $\sigma_{\varepsilon}^{2}=V\left\{\varepsilon_{t}\right\}$:

$$
\begin{align*}
\gamma_{0} & =\sigma_{\varepsilon}^{2}\left(1+\theta^{2}\right), \tag{7}\\
\gamma_{1} & =-\sigma_{\varepsilon}^{2} \theta .
\end{align*}
$$

The ratio of these equations gives the following expression for the autocorrelation coefficient:

$$
\begin{equation*}
\rho=\frac{\gamma_{1}}{\gamma_{0}}=\frac{-\theta}{1+\theta^{2}} . \tag{8}
\end{equation*}
$$

This leads to a quadratic equation in the form of $\theta^{2} \rho+\theta+\rho=0$ of which the solution is

$$
\begin{equation*}
\theta=\frac{-1 \pm \sqrt{1-4 \rho^{2}}}{2 \rho} . \tag{9}
\end{equation*}
$$

The solution is real-valued if and only if $|\rho| \leq \frac{1}{2}$. The latter condition is manifestly satisfied by the value of $\rho=\gamma_{1} / \gamma_{0}$ which is formed from the elements under (6). Thus it follows that the composite process $q(t)$ depicted in equation (5) can be expressed as

$$
\begin{equation*}
q(t)=(I-\theta L) \varepsilon(t) \tag{10}
\end{equation*}
$$

Therefore the combination of equations (1) and (2) is an integrated movingaverage $\operatorname{IMA}(1,1)$ in the form of

$$
\begin{equation*}
(I-L) y(t)=(I-\theta L) \varepsilon(t) \tag{11}
\end{equation*}
$$

FORECASTING THE IMA $(1,1)$ PROCESS
 VIA EXPONENTIAL SMOOTHING

Equation (11) can be written as

$$
\begin{equation*}
y(t)=y(t-1)+\varepsilon(t)-\theta \varepsilon(t-1) . \tag{12}
\end{equation*}
$$

It is easy to see that the forecasts of the process made at time t are as follows:

$$
\begin{align*}
\hat{y}_{t+1 \mid t} & =y_{t}-\theta \varepsilon_{t} \\
\hat{y}_{t+2 \mid t} & =\hat{y}_{t+1 \mid t} \tag{13}\\
& \vdots \\
\hat{y}_{t+h \mid t} & =\hat{y}_{t+h-1 \mid t} .
\end{align*}
$$

Thus, the forecasting rule is to extrapolate the value of the one-step-ahead forecast into the indefinite future.

It remains to find an expression for the one-step-ahead forecast which is in terms of previous values of the observable sequence $y(t)$. Therefore consider rearranging equation (11) to give

$$
\begin{align*}
\varepsilon(t) & =\frac{1-L}{1-\theta L} y(t) \\
& =(1-L)\left\{1+\theta L+\theta^{2} L^{2}+\cdots\right\} y(t) \tag{14}\\
& =\left[1-(1-\theta)\left\{L+\theta L^{2}+\theta^{2} L^{3}+\cdots\right\}\right] y(t) .
\end{align*}
$$

This gives

$$
\begin{equation*}
y(t)=(1-\theta)\left\{y(t-1)+\theta y(t-2)+\theta^{2} y(t-3)+\cdots\right\}+\varepsilon(t) \tag{15}
\end{equation*}
$$

It follows that the expression for the one-step-ahead forecast is

$$
\begin{equation*}
\hat{y}_{t+1 \mid t}=(1-\theta)\left\{y_{t}+\theta y_{t-1}+\theta^{2} y_{t-2}+\cdots\right\} ; \tag{16}
\end{equation*}
$$

and this is just the formula for exponential smoothing.

