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Figure 1. A histogram and an estimated density function based on 107 observations.

Density Function Estimation

The object of density-function estimation is create an accurate representation of a parent
distribution on the basis of a random sample ξ1, . . . , ξn. A random sample, taken from a
continuous probability distribution, can be represented by a set of points scattered along
the real line. The task is to erect a smooth canopy over these points which has the essential
characteristics of a density function.

Often, the first step in density-function estimation is to create a discrete version of
the random sample. This entails replacing each of the sample points by the nearest point
on a grid which is marked out at equal intervals. The grid points can be denoted by
{xj = δ × j; j = 0± 1,±2, . . .}. A sample point ξi will be replaced by the grid point xj if
it falls in the interval (xj − 0.5δ, xj + 0.5δ], which is the extent of one of a finite number
of adjacent bins in which the random sample is collected.

If the number of sample elements which fall into the jth bin is denoted by nj , then the
value xj will have a relative frequency of rj = nj/n, where n =

∑
j nj . Since

∑
j rj = 1,

the relative frequencies resemble the probability masses of a discrete distribution, and the
assemblage of points {(xj , rj)} gives rise to a so-called bar chart which has a spike erected
on each grid point xj of a height that is proportional to rj .

Closely related to the bar char is a so-called histogram in which the spike at xj is
replaced by a rectangle of area rj erected of the interval (xj − 0.5δ, xj + 0.5δ], which is the
domain of the jth bin. If the height of the rectangle is rj/δ, then the area of the histogram
will be unity, as it should be if it is to represent a probability density function. However,
the rectangles will combine to give the profile of the histogram a stepped appearance,
which is liable to be at variance with the smooth profile of the parent distribution.

To derive a superior representation of the parent density function, we can replace
each of the mass points (xj , rj) by a kernel function rjK(x− xj , σ), which is centered on
xj . The kernel function, which also replaces the rectangles of the histogram, commonly
takes the form of a probability density function scaled by the relative frequency. The
parameter σ, which determines the width of the kernel, is akin to the standard deviation
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of probability density function. Indeed, a common choice is to use the normal density
function N(x, µ = xj , σ

2) = K(x− xj , σ) as a kernel.
In effect, the kernel function disperses the mass rj smoothly over an interval centered

on xj or over the entire real line. The function

f(x) =
∑
j

rjK(x− xj , σ),

which is the estimate of the probability density function, will inherit some of the charac-
teristics of the constituent kernel functions. In particular, if the kernel functions integrate
to unity, then so will the density estimate. Likewise, the continuity properties of the kernel
functions will be inherited by the density estimate.

By increasing the width of the kernels via the dispersion parameter σ, the irregular-
ities of the random sample can be smoothed out. However, as the degree of smoothing
increases, there is an increasing danger that some genuine features of the parent distribu-
tion will be obscured. Although ways are available for determining the degree of smoothing
automatically, it is judgment based on prior beliefs that must often be relied upon.

It should be noted that an estimate of the density function with desirable character-
istics can be obtained, in principle, by associating a kernel function n−1K(x− ξi, σi) with
each of the original data points ξ1, . . . , ξn which are distributed over the real line. Also, it
might be reasonable to vary the dispersion parameter σi of the kernels amongst the sample
points, by increasing it where the points are sparse. However, as we shall see, the purpose
of replacing the data points by points on a grid, and of using a kernels of constant width,
is to facilitate some of the computations.

For computational purposes, it is usually appropriate to replace the kernel function
by a discrete sequence of weights which represent the ordinates of the function at the grid
points. Let ki−j = K(xi − xj , σ). Then

f(xi) =
∑
j

rjki−j

will be the value of the density estimate at the grid point xi; and this sum represents
a simple convolution of the weighting sequence and the sequence of relative frequencies.
Thus, the density function can be estimated via a weighted moving average of the relative
frequencies.

There is an efficient method of computing the values fi = f(xi) which depends upon
the Fourier transform. Let {ρi} and {κi} be the sequences obtained by applying a discrete
Fourier transform to {ri} and {ki} respectively. According to a well-known theory, the
Fourier transform of a convolution of two sequences is the product of the transforms of
the individual sequences. Thus, if {φi} is the transform of {fi}, then

{φj} = {ρjκj}.
The prescription for finding the values of {fi} is as follows. First transform the sequence of
the weights {ki} and the sequence of the relative frequencies {ri}. Then form the products
{φj} of the elements of the transforms. Finally, apply an inverse transform to the product
sequence to obtain the sequence of density estimates {fi}.

Matters are further simplified if the sequence of the weights has a know Fourier trans-
form, as in the case of a kernel function based on the normal distribution. Then, there is
no need to transform the weight sequence, and only two applications of the Fourier trans-
form are required—the direct transformation of the relative frequencies and the inverse
transformation of the product sequence which leads to the density values.
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