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SEEMINGLY-UNRELATED REGRESSIONS

The Algebra of the Kronecker Product. Consider the matrix equation Y = AXB′

where

(1)

Y = [ykl]; k = 1, . . . , r, l = 1, . . . , s,

X = [xij ]; i = 1, . . . ,m, j = 1, . . . , n,

A = [aki]; k = 1, . . . , r, i = 1, . . . ,m,

B = [blj ]; l = 1, . . . , s, j = 1, . . . , n.

The object is to reformulate this matrix equation so that it can be treated as an ordinary
vector equation. Amongst the advantages which this will bring is the possibility of solving
the equation by the methods which are commonly applied in finding the solutions to vector
equations.

Therefore consider writing Y = AXB′ more explicitly as

(2)
[y.1, y.2, . . . , y.s] = A[x.1, x.2, . . . , x.n][b′1., b

′
2., . . . , b

′
s.]

= [Ax.1, Ax.2, . . . , Ax.n][b′1., b
′
2., . . . , b

′
s.].

In this notation, the expression x.j stands for the jth column of the matrix X whilst the no-
tation bl. stands for the lth row of B. Therefore the transposed vector b′l. = [bl1, bl2, . . . , bln]′

is a column vector of n elements—as it must be if the multiplication of the two expressions
on the RHS of (2) is to be properly defined. By performing that multiplication, we find
that

(3)

[y.1, y.2, . . . , y.s] =
[
{b11Ax.1 + b12Ax.2 + · · ·+ b1nAx.n},

{b21Ax.1 + b22Ax.2 + · · ·+ b2nAx.n}, . . . ,

{bs1Ax.1 + bs2Ax.2 + · · ·+ bsnAx.n}
]

Here, each of the expressions on the RHS within braces {, } stands for one of the vectors
y.1, y.2, . . . , y.s on the LHS. These LHS vectors may be stacked vertically one below the
other to form a long vector. When the RHS of the equation is rearranged likewise, a system
is derived which takes the form of

(4)


y.1
y.2
...
y.s

 =


b11A b12A . . . b1nA
b21A b22A . . . b2nA

...
...

...
bs1A bs2A . . . bsnA



x.1
x.2
...
x.n

 .
The system can be written is a summary notation as

(5) Y c = (AXB′)c = (B ⊗A)Xc.
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Here the long vectors Y c and Xc are derived simply by slicing the matrices and rearranging
the columns in the manner which we have described. The matrix B ⊗ A = [bljA], whose
(lj)th partition contains the matrix bljA, is described as the Kronecker product of B and
A.

The following rules govern the use of the Kronecker product:

(6)

(i) (A⊗B)(C ⊗D) = AC ⊗BD,

(ii) (A⊗B)′ = A′ ⊗B′,

(iii) A⊗ (B + C) = (A⊗B) + (A⊗ C),

(iv) λ(A⊗B) = λA⊗B = A⊗ λB,

(v) (A⊗B)−1 = (A−1 ⊗B−1).

The Kronecker product is non-commutative, which is to say that A⊗B 6= B⊗A. However,
observe that

(7) A⊗B = (A⊗ I)(I ⊗B) = (I ⊗B)(A⊗ I).

Systems with Multiple Outputs. The typical regression equation describes a system
which transforms k observable inputs and a stochastic disturbance into a single output.
We now wish to consider a system which produces M outputs. Consider, therefore, the
equations

(8)
[yt1, yt2, . . . , ytM ] = [xt.β.1, xt.β.2, . . . , xt.β.M ] + [εt1, εt2, . . . , εtM ]

= xt.[β.1, β.2, . . . , β.M ] + [εt1, εt2, . . . , εtM ].

Here the generic equation is

(9) ytm = xt.β.m + εtm;

and this has the form of a single regression equation. In a notation which mixes matrices
and vectors, the system under (8) may be written as

(10) yt. = xt.B + εt.,

where B = [β.1, β.2, . . . , β.M ]; and T realisations of the latter may be compiled to give the
equation

(11) Y = XB + E ,

or

(12) [y.1, y.2, . . . , y.M ] = [x.1, x.2, . . . , x.k]B + [ε.1, ε.2, . . . , ε.M ].
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When the latter equation is vectorised in the manner of equation (5), we have

(13) Y c = (XBI)c + Ec = (I ⊗X)Bc + Ec,
which can be written more explicitly as

(14)


y.1
y.2
...

y.M

 =


X 0 . . . 0
0 X . . . 0
...

...
...

0 0 . . . X



β.1
β.2
...

β.M

+


ε.1
ε.2
...

ε.M

 =


Xβ.1
Xβ.2

...
Xβ.M

+


ε.1
ε.2
...

ε.M

 .
Some assumptions must now be made regarding the disturbance terms of the model.

We shall assume that the M equations y.mXβ.m + ε.m; m = 1, . . . ,M , taken separately,
have the stochastic structure of the classical linear model; which is to say that their distur-
bances are independently and identically distributed with an expected value of zero and a
common variance. However, we shall assume that the M contemporaneous disturbances
in the vector εt. = [εt1, . . . , εtM ] have nonzero covariances such that

(15) D(εt.) = E(ε′t.εt.) = Σ = [σml] for all t.

Thus, if ε.m and ε.l are vectors of T disturbances from the equations y.m = Xβ.m + ε.m
and y.l = Xβ.l + ε.l respectively, then we should have

(16)

E(ε.m) = E(ε.l) = 0 and

D(ε.m) = σmmIT , D(ε.l) = σllIT ,

C(ε.m, ε.l) = σmlIT ,

where C(ε.m, ε.l) = E(ε.mε′.l) is the covariance matrix of the two vectors. Putting these
assumptions together, we get

(17) E(Ec) = 0 and D(Ec) = E(EcE ′c) = Σ⊗ IT .
It may be appropriate to write these in a manner which makes them more explicit. First
there is the assumption concerning the expected value of the long vector of disturbances.
Writing this vector in transposed form gives

(18) E(Ec)′ = E[ε′.1, ε
′
.2, . . . , ε

′
.M ] = [ 0, 0, . . . , 0 ].

The assumptions concerning the dispersion matrix of this vector can be written as

(19)

D


ε.1
ε.2
...

ε.M

 = E


ε.1ε

′
.1 ε.1ε

′
.2 . . . ε.1ε

′
.M

ε.2ε
′
.1 ε.2ε

′
.2 . . . ε.2ε

′
.M

...
...

...
ε.Mε

′
.1 ε.Mε

′
.2 . . . ε.Mε

′
.M



=


σ11IT σ12IT . . . σ1MIT
σ21IT σ22IT . . . σ2MIT

...
...

...
σM1IT σM2IT . . . σMMIT

 .
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It is common to denote the regression model y = Xβ + ε, in which E(ε) = 0 and
E(ε) = σ2Q, by the triplet (y;Xβ, σ2Q). Using the same device, we may now denote the
vectorised version of the model with M outputs as (Y c, (I ⊗X)Bc,Σ⊗ I). It is apparent
that the two models are isomorphic, which is to say that they share the same structure.
Therefore it is possible to estimate the parameters of the M -output model, once it has
been cast in the appropriate form, by using methods which have been developed in the
context of a single-equation model.

The appropriate method is generalised least-squares regression. When it is applied
to the model (y;Xβ, σ2Q), this method delivers the estimate β̂ = (X ′Q−1X)−1X ′Q−1y.
When it is applied to the M -equation model, the method delivers the estimate

(20) B̂ =
{

(I ⊗X)′(Σ⊗ I)−1(I ⊗X)
}−1

(I ⊗X)′(Σ⊗ I)−1Y c.

The algebraic rules under (6) can now be invoked to simplify this result. It can be see that

(21)

B̂ = (Σ−1 ⊗X ′X)−1(Σ−1 ⊗X ′)Y c

=
{
I ⊗ (X ′X)−1X ′

}
Y c

=
{

(X ′X)−1X ′Y
}c
.

Thus it transpires that the efficient system-wide estimator amounts to nothing more than
the repeated application of the ordinary least-squares procedure to generate the regression
estimates β̂.m = (X ′X)−1X ′y.m;m = 1, . . . ,M .

We can use the residual vectors e.m = y.m−Xβ̂.m from these M estimations to derive
estimates of the elements of Σ = [σml]. Thus an unbiased estimator of σml is

(22)
σ̂ml =

e′.me.l
T − k =

(y.m −Xβ̂.m)′(y.l −Xβ̂.l)
T − k

=
y′.m{I −X(X ′X)−1X ′}y.l

T − k .

The reduction of the system-wide estimator to an M -fold application of ordinary
least-square regression occurs only when all the variables in X are present in each of
the M equations and when no other variables are present in any of them. If some of
the variables are missing, or if we have a priori information relating to the parameter
vectors β.m;m = 1, . . . ,M , then, to obtain efficient estimates, we must use the available
information on Σ. For example, let Xm be the submatrix containing only those variables
which are present in the mth equation. Then the system of equations assumes the following
form:

(23)


y.1
y.2
...

y.M

 =


X1 0 . . . 0
0 X2 . . . 0
...

...
...

0 0 . . . XM



β1

β2
...
βM

+


ε.1
ε.2
...

ε.M

 .
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This can be written in summary notation as

(24) Y c = Wδ + Ec.

Now the block-diagonal or “staircase” matrix X no longer has the structure of a Kronecker
product. Nor can the subvectors of δ′ = [β′1, β2, . . . , β

′
M ] be stacked together in a matrix

B, for the reason that they are liable to be of different lengths. The efficient generalised
least-squares estimator of the parameters now takes the form of

(25) δ̂ =
{
W ′(Σ−1 ⊗ I)W

}−1
W ′(Σ−1 ⊗ I)Y c;

and there in no longer any possibility of simplifying or reducing the expression.
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