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ORDINARY LEAST-SQUARES REGRESSION
AND NON SPHERICAL DISTURBANCES

In cases where the structure of the dispersion matrix of the regression dis-
turbances is known to depend on a small set of parameters, it will be pos-
sible to estimate the regression parameter β in the model (y;Xβ,σ2Ω) via a
method of feasible generalised least squares. The method uses an estimate
Ω∗ of the dispersion matrix of the disturbances within the formula β∗ =
(X 0Ω∗−1X)−1X 0Ω∗−1y. In other cases, where there is no knowledge of the
structure of the dispersion matrix, we may have to use the ordinary least-
squares (OLS) estimator β̂ = (X 0X)−1X 0y.

The OLS estimator will be unbiased and, subject to certain restrictions
limiting the serial dependence of the disturbances, it will also be consistent.
However, the dispersion matrix of the estimator will differ from that which ob-
tains in the case of the OLS estimator of the classical model (y;Xβ,σ2I), which
is D(β̂) = σ2(X 0X)−1. In fact, the dispersion matrix of the OLS estimator of
β in the model (y;Xβ,σ2Ω) is given by

D(β̂) = (X 0X)−1X 0D(y)X(X 0X)−1

= (X 0X)−1{σ2X 0ΩX}(X 0X)−1,
(1)

which is commonly referred to as the sandwich formula. Here, D(y) = E(εε0) =
σ2Ω = Σ is a symmetric matrix of order T , which cannot be estimated on the
basis of a sample of size T , unless there are sufficient restrictions on its structure.
However, in order to implement the sandwich formula, it is required only to
estimate of the matrix W = σ2X 0ΩX = X 0ΣX, which is of the order k that
corresponds to the number of explanatory variables in X.

For the purpose of deriving an asymptotic theory, we must consider the
dispersion matrix of

√
T β̂, which is

D(
√

T β̂) =
µ

X 0X

T

∂−1 Ω
X 0ΣX

T

æµ
X 0X

T

∂−1

. (2)

It is presumed that, as T → ∞, X 0X/T tends to a limit that is a positive
definite matrix with finite elements. The task is to demonstrate that, under
certain weak assumptions, W = X 0ΣX/T will also tend to a finite limit.

To reveal the structure of this matrix, let us consider the elements of
W = [wij ], X = [xtj ], X 0 = [xsi]0 and Σ = [σst]. Then, there is

wij =
X

t

X

s

xisσstxtj

=
X

t

X

s

xisE(εsεt)xtj ;
(3)
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and the matrix as a whole is given by W =
P

t

P
s x0s•E(εsεt)xt•, in a more

summary notation that denotes the t-th row of X by xt•. For this to be
estimable, some further restrictions are necessary. The restriction that removes
the serial dependence from the disturbances, but which allows them to be
heteroskedastic, sets

E(εsεt) =

(
σ2

t , if t = s,

0, if t 6= s.
(4)

Then, there is
wij =

X

t

σ2
t xitxtj (5)

and
W = [wij ] =

X

t

σ2
t x0t•xt•. (6)

Here, x0t•xt•; t = 1, . . . , T is a sequence of matrices of rank 1, each formed as
the outer product of a row of X and its column transpose. Each of the matrices
is associated with an element of the diagonal matrix Σ = diag{σ2

1 , . . . ,σ
2
T }. A

visual analogy leads us to to describe (6) as the herringbone formula.
There are still as many parameters within the matrix Σ = diag{σ2

1 , . . . ,σ
2
T }

as there are observations. Therefore, it cannot be estimated consistently. Nev-
ertheless the product T−1W = T−1X 0ΣX can be estimated consistently via

1
T

ŵij =
1
T

X

t

e2
t xitxtj , (7)

which is obtained by replacing σ2
t = E(ε2

t ) in (5) by the squared residual e2
t .

This is the heteroskedasticity-consistent estimator of White (1982).
To demonstrate the consistency, we note that, if β̂ → β as T → ∞, then

e2
t → ε2

t . Therefore, it is sufficient to consider the limiting behaviour of

1
T

TX

t=1

ε2
t xitxtj =

1
T

TX

t=1

(σ2
t + νt)xitxtj

=
1
T

TX

t=1

σ2
t xitxtj +

1
T

TX

t=1

νtxitxtj .

(8)

In the second term on the LHS, there is a random variable νt, representing the
deviation of ε2

t from its expected value E(ε2
t ) = σ2

t , which has E(νt) = 0 and
which is independent of the elements xit and xtj . We can expect the second
term to converge to zero. Then, since e2

t → ε2
t , it follows that T−1ŵij =

T−1
P

t e2
t xitxtj converges to T−1wij .
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The restriction that eliminates the serial dependence of the disturbances is
much stronger than it need be. Given that the matrix W is of a constant order
k, whereas the sample size T may grow indefinitely, there is hope of estimating
W consistently in circumstances where the disturbances are generated by a
stationary stochastic process. Then, the matrix Σ = [σts] = [σ|t−s|] has a
Toeplitz form with elements that are repeated along each of the N.W.–S.W.
diagonals.

Consider the writing the matrix T−1W = T−1X 0E(εε)X as

1
T

W =
TX

s=1

TX

t=1

1
T

x0s•E(εsεt)xt•

=
T−1X

j=1−T

n 1
T

TX

t=j+1

x0[t−j]•E(εt−jεt)xt•

o
.

(9)

Whereas in (6) there were T rank-1 matrices of the form σ2
t x0t•xt•, associated

with the non-zero elements of the diagonal matrix Σ = diag{σ2
1 , . . . ,σ

2
T }, there

are now T 2 rank-1 matrices of the form σtsx0s•xt•, each of which is associated
with an element of a positive definite matrix Σ, which is subject only to the
restrictions of symmetry.

In the first expression of (9), the summations over s and t run thoughout
the rows and columns of Σ. The second expression is derived by defining
j = t − s and setting s = t − j. Each value of j indexes one of the diagonals,
beginning in the bottom left corner, where s = T , t = 1 and j = t− s = 1− T ,
and rising through the principal diagonal to the top right corner where j = T−1.

The dispersion matrix of a stationary stochastic process has constant val-
ues along these diagonals. Therefore, the second expression is appropriate to
cases where both the data and the disturbances are generated by stationary
processes.

Under such circumstances, the second equality of (9) can be written as

1
T

W =
T−1X

j=1−T

Γj = Γ0 +
T−1X

j=1

(Γj + Γ0
j), (10)

where Γj is the expression within the braces. The second equality reflects the
symmetry of W . The empirical counterpart of Γj is

Gj =
1
T

TX

t=j+1

x0[t−j]•et−jetxt•. (11)

If the number j is small in comparison with T , then we can expect Gj to be
an adequate estimate of Γj . Moreover, for a fixed j, we can expect Gj → Γj as
T →∞.
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Replacing Γj by Gj in (10) for all j results in the matrix T−1X 0ee0X, which
does not constitute a viable estimator. The difficulty lies in the estimates Gj

when j is close to T . In that case, the estimate will comprise a limited amount
of information from T − j sample points. Various recourses for avoiding the
problem are available. The simplest of these is to limit the range of the index
j so that its absolute value does not exceed some threshold value p. Then, we
obtain the estimator of Hansen (1982), which is

WH =
pX

j=p

Gj = G0 +
pX

j=1

(Gj + G0
j). (12)

An alternative estimator, which is due to Newey and West (1987), applies
a gradual discount to the matrices Gj as j increases. It takes the form of

WN = G0 +
pX

j=1

≥
1− j

p + 1

¥
(Gj + G0

j). (13)
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