
D.S.G. POLLOCK: TOPICS IN ECONOMETRICS

RESTRICTED LEAST-SQUARES REGRESSION

Sometimes, we find that there is a set of a priori restrictions on the el-
ements of the vector β of the regression coefficients which can be taken into
account in the process of estimation. A set of j linear restrictions on the vector
β can be written as Rβ = r, where r is a j × k matrix of linearly independent
rows, such that Rank(R) = j, and r is a vector of j elements.

To combine this a priori information with the sample information, we
adopt the criterion of minimising the sum of squares (y−Xβ)′(y−Xβ) subject
to the condition that Rβ = r. This leads to the Lagrangean function

(1)
L = (y − Xβ)′(y − Xβ) + 2λ′(Rβ − r)

= y′y − 2y′Xβ + β′X ′Xβ + 2λ′Rβ − 2λ′r.

On differentiating L with respect to β and setting the result to zero, we get the
following first-order condition ∂L/∂β = 0:

(2) 2β′X ′X − 2y′X + 2λ′R = 0,

whence, after transposing the expression, eliminating the factor 2 and rearrang-
ing, we have

(3) X ′Xβ + R′λ = X ′y.

When these equations are compounded with the equations of the restrictions,
which are supplied by the condition ∂L/∂λ = 0, we get the following system:

(4)
[

X ′X R′

R 0

] [
β
λ

]
=

[
X ′y
r

]
.

For the system to have a unique solution, that is to say, for the existence of an
estimate of β, it is not necessary that the matrix X ′X should be invertible—it
is enough that the condition

(5) Rank
[

X
R

]
= k

should hold, which means that the matrix should have full column rank. The
nature of this condition can be understood by considering the possibility of
estimating β by applying ordinary least-squares regression to the equation

(6)
[

y
r

]
=

[
X
R

]
β +

[
ε
0

]
,

which puts the equations of the observations and the equations of the restric-
tions on an equal footing. It is clear that an estimator exits on the condition
that (X ′X + R′R)−1 exists, for which the satisfaction of the rank condition is
necessary and sufficient.
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Let us simplify matters by assuming that (X ′X)−1 does exist. Then equa-
tion (3) gives an expression for β in the form of

(7)
β∗ = (X ′X)−1X ′y − (X ′X)−1R′λ

= β̂ − (X ′X)−1R′λ,

where β̂ is the unrestricted ordinary least-squares estimator. Since Rβ∗ = r,
premultiplying the equation by R gives

(8) r = Rβ̂ − R(X ′X)−1R′λ,

from which

(9) λ = {R(X ′X)−1R′}−1(Rβ̂ − r).

On substituting this expression back into equation (7), we get

(10) β∗ = β̂ − (X ′X)−1R′{R(X ′X)−1R′}−1(Rβ̂ − r).

This formula is more intelligible than it might appear to be at first, for it
is simply an instance of the prediction-error algorithm whereby the estimate
of β is updated in the light of the information provided by the restrictions.
The error, in this instance, is the divergence between Rβ̂ and E(Rβ̂) = r.
Also included in the formula are the terms D(Rβ̂) = σ2R(X ′X)−1R′ and
C(β̂, Rβ̂) = σ2(X ′X)−1R′.

The sampling properties of the restricted least-squares estimator are easily
established. Given that E(β̂ − β) = 0, which is to say that β̂ is an unbiased
estimator, it follows that E(β∗ − β) = 0, so that β∗ is also unbiased.

Next consider the expression

(11)
β∗ − β = [I − (X ′X)−1R′{R(X ′X)−1R′}−1R](β̂ − β)

= (I − PR)(β̂ − β),

where

(12) PR = (X ′X)−1R′{R(X ′X)−1R′}−1R.

The expression comes from taking β from both sides of (10) and from recognis-
ing that Rβ̂− r = R(β̂−β). We may observe that PR is an idempotent matrix
which is subject to the conditions that

(13) PR = P 2
R, PR(I − PR) = 0 and P ′

RX ′X(I − PR) = 0.

From equation (11), we deduce that

(14)

D(β∗) = (I − PR)E{(β̂ − β)(β̂ − β)′}(I − PR)

= σ2(I − PR)(X ′X)−1(I − PR)

= σ2[(X ′X)−1 − (X ′X)−1R′{R(X ′X)−1R′}−1R(X ′X)−1].
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