RESTRICTED LEAST-SQUARES REGRESSION

Sometimes, we find that there is a set of *a priori* restrictions on the elements of the vector β of the regression coefficients which can be taken into account in the process of estimation. A set of *j* linear restrictions on the vector β can be written as $R\beta = r$, where *r* is a $j \times k$ matrix of linearly independent rows, such that $\operatorname{Rank}(R) = j$, and *r* is a vector of *j* elements.

To combine this a priori information with the sample information, we adopt the criterion of minimising the sum of squares $(y - X\beta)'(y - X\beta)$ subject to the condition that $R\beta = r$. This leads to the Lagrangean function

(1)
$$L = (y - X\beta)'(y - X\beta) + 2\lambda'(R\beta - r)$$
$$= y'y - 2y'X\beta + \beta'X'X\beta + 2\lambda'R\beta - 2\lambda'r.$$

On differentiating L with respect to β and setting the result to zero, we get the following first-order condition $\partial L/\partial \beta = 0$:

(2)
$$2\beta' X' X - 2y' X + 2\lambda' R = 0,$$

whence, after transposing the expression, eliminating the factor 2 and rearranging, we have

(3)
$$X'X\beta + R'\lambda = X'y.$$

When these equations are compounded with the equations of the restrictions, which are supplied by the condition $\partial L/\partial \lambda = 0$, we get the following system:

(4)
$$\begin{bmatrix} X'X & R' \\ R & 0 \end{bmatrix} \begin{bmatrix} \beta \\ \lambda \end{bmatrix} = \begin{bmatrix} X'y \\ r \end{bmatrix}.$$

For the system to have a unique solution, that is to say, for the existence of an estimate of β , it is not necessary that the matrix X'X should be invertible—it is enough that the condition

(5)
$$\operatorname{Rank} \begin{bmatrix} X \\ R \end{bmatrix} = k$$

should hold, which means that the matrix should have full column rank. The nature of this condition can be understood by considering the possibility of estimating β by applying ordinary least-squares regression to the equation

(6)
$$\begin{bmatrix} y \\ r \end{bmatrix} = \begin{bmatrix} X \\ R \end{bmatrix} \beta + \begin{bmatrix} \varepsilon \\ 0 \end{bmatrix},$$

which puts the equations of the observations and the equations of the restrictions on an equal footing. It is clear that an estimator exits on the condition that $(X'X + R'R)^{-1}$ exists, for which the satisfaction of the rank condition is necessary and sufficient.

RESTRICTED LEAST-SQUARES REGRESSION

Let us simplify matters by assuming that $(X'X)^{-1}$ does exist. Then equation (3) gives an expression for β in the form of

(7)
$$\beta^* = (X'X)^{-1}X'y - (X'X)^{-1}R'\lambda = \hat{\beta} - (X'X)^{-1}R'\lambda,$$

where $\hat{\beta}$ is the unrestricted ordinary least-squares estimator. Since $R\beta^* = r$, premultiplying the equation by R gives

(8)
$$r = R\hat{\beta} - R(X'X)^{-1}R'\lambda,$$

from which

(9)
$$\lambda = \{R(X'X)^{-1}R'\}^{-1}(R\hat{\beta} - r).$$

On substituting this expression back into equation (7), we get

(10)
$$\beta^* = \hat{\beta} - (X'X)^{-1}R'\{R(X'X)^{-1}R'\}^{-1}(R\hat{\beta} - r).$$

This formula is more intelligible than it might appear to be at first, for it is simply an instance of the prediction-error algorithm whereby the estimate of β is updated in the light of the information provided by the restrictions. The error, in this instance, is the divergence between $R\hat{\beta}$ and $E(R\hat{\beta}) = r$. Also included in the formula are the terms $D(R\hat{\beta}) = \sigma^2 R(X'X)^{-1}R'$ and $C(\hat{\beta}, R\hat{\beta}) = \sigma^2 (X'X)^{-1}R'$.

The sampling properties of the restricted least-squares estimator are easily established. Given that $E(\hat{\beta} - \beta) = 0$, which is to say that $\hat{\beta}$ is an unbiased estimator, it follows that $E(\beta^* - \beta) = 0$, so that β^* is also unbiased.

Next consider the expression

(11)
$$\beta^* - \beta = [I - (X'X)^{-1}R'\{R(X'X)^{-1}R'\}^{-1}R](\hat{\beta} - \beta) = (I - P_R)(\hat{\beta} - \beta),$$

where

(12)
$$P_R = (X'X)^{-1}R' \{R(X'X)^{-1}R'\}^{-1}R.$$

The expression comes from taking β from both sides of (10) and from recognising that $R\hat{\beta} - r = R(\hat{\beta} - \beta)$. We may observe that P_R is an idempotent matrix which is subject to the conditions that

(13)
$$P_R = P_R^2$$
, $P_R(I - P_R) = 0$ and $P'_R X' X(I - P_R) = 0$.

From equation (11), we deduce that

(14)

$$D(\beta^*) = (I - P_R)E\{(\hat{\beta} - \beta)(\hat{\beta} - \beta)'\}(I - P_R)$$

$$= \sigma^2(I - P_R)(X'X)^{-1}(I - P_R)$$

$$= \sigma^2[(X'X)^{-1} - (X'X)^{-1}R'\{R(X'X)^{-1}R'\}^{-1}R(X'X)^{-1}].$$