D.S.G. POLLOCK: TOPICS IN ECONOMETRICS

RECURSIVE REGRESSION ESTIMATION

Conditional Ecxpectations. Let x and y be random vectors whose joint distribution is
characterised by well-defined first and second-order moments. In particular, let us define
the following second-order moments of x and y

(1) D(y)=F

Also, let us postulate that the conditional expectation of y given x is a simple linear
function of x:

(2) E(y|r) = a + B'z.

Then the object is to find expressions for the vector a and the matrix B which are in terms
of the moments listed under (1).

We begin by multiplying E(y|z) by the marginal density function of x and by inte-
grating with respect to x. This converts the conditional expectation into an unconditional
expectation. The general result may be expressed by writing

(3) E{E(ylz)} = E(y).
On applying the latter to equation (2), we find that
(4) E(y) = a+ B'E(z), or  «a=FE(y)— B'E(z).

Next, by multiplying E(y|z) by 2’ and by the marginal marginal density function of
x, and by integrating with respect to x, we obtain the joint moment E(zy’). Thus, from
equation (2), we get

(5) E(yz') = aE(x) + B'E(zx’).

But, postmultiplying the first equation under (4) by E(z’) gives

(6) E()E() = aB(') + B'E@)E(),

and, when this is subtracted from (5), the result, in view of the definitions under (1), is

C(y,») = E(yz') — E(y)E(2")
(7) = B'{E(z2') — E(z)E(z')}
= B'D(x).

The result from (7) is that
(8) B =D~ (z)C(z,y).
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This expression for B and the expression for o under (4) can be substituted into equation
(2) to give

E(ylz) = a+ B'x

(9) :E( )— B'E(x )+Ba:
( ) + C y: {x B }
In the usual presentation of the theory of the classical regression model, the observa-
tions on x and y for t = 1,...,T are accumulated in the matrices X and Y as successions

of row vectors, each arrayed below its predecessor. If the matrices X and Y contain the
mean-adjusted observations, then the products T-'X’X and T-'X'Y become the empir-
ical counterparts of the moment matrices D(x) and C(z,y) respectively. The estimator of
B derived from the principle of the method of moments is B = (X'X)"1X'Y.

Several additional results in the algebra of conditional expectations which we shall
invoke in the next section can also be derived with ease. To avoid burdening this account
with unnecessary developments, let us simply declare in summary that, if x,y are jointly
distributed variables which bear the linear relationship E(y|z) = o + B’z, then

E(ylz) = E(y) + C(y,z) D™ (x){z — E(x)},
D(ylz) = D(y) — C(y, I)D”(l‘)C(w, y),
E{E(ylz)} = E(y)

)
)
)
13) D{E(y|x)} = C(y,x)D~ " (z)C(z,y),
) D(y) = D(ylz) + D{E(y|z)},
) C’{y—E(y|x),x} =0.

Recursive Least-Square Regression. Consider the equation of the linear regression
model. The tth instance of the regression relationship is represented by

(16) ye = 2,0+ €.

Here 3, is a scalar element and z} is a row vector. It is assumed that the disturbances &;
are serially independent with

(17) E(g,)=0 and V(g) =02 forall ¢t
We may regard (3 as a random variable and we attribute to it a prior distribution with

The empirical information available at time ¢ is the set of observations Z; = {y1,...,9:}-

The Bayesian Derivation. The object is to derive the estimates by = E((|Z;) and
P, = D(B|Z;) from the information available at time ¢ in a manner which makes best use
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of by_1 = E(B|Zi—1) and P,_1 = D(B|Z¢—1) which are the previous estimates. The essential
task is to evaluate the expression

(19) EB|Ty) = E(B|Zt-1) + C(ﬁ»yt‘It—l)D_l(yt|It—l){yt - E(yt|It—1)},

which is derived directly from (39). There are three elements on the RHS which need to
be evaluated. The first is the term

vy — E(ye|Ti—1) = yr — 24bia

(20) ~ by

This is the error from predicting y; from the information available at time t — 1. Next is
the dispersion matrix of associated with this prediction. This is

D(ys|Zi—1) = D{xy(8 — bee—1) } + D(es)

21
( ) :$;Pt_1l’t+0'2 :D(ht)

Finally there is the covariance

C(B,yelZi—1) = E{(ﬁ - bt—l)yzlt}
(22) = E{(B = bi—1)(x18 + )"}
= Pt,lact.
On putting these elements together, we get

(23) bt = bt—l + Pt_lxt(I;Pt_lxt + 0'2)71(yt — w;bt_l).

There must also be a means of deriving the dispersion matrix D(5|Z;) = P; from its
predecessor D((|Z;—1) = P;—1. Equation (13) indicates that

D(ﬂ\ft) = D(mzt—l) - 0(57yt|It—1)D_1(yt|It—1)C(yt75|It—1).
It follows from (20) and (21) that this is

(24) Pt = Pt—l — Pt_l.’lft(JI;Pt_ll‘t —+ 0'2)_1332Pt_1.

Extensions of the Recursive Least-Squares Algorithm

The algorithm which we have presented in the previous section represents little more
than an alternative means of computing the ordinary least-squares regression estimates. If
the parameters of the underlying process which generates the data are stable, then we can
expect the estimate b; to converge also to a stable value as the number of observations ¢
increases At the same time, the elements of the dispersion matrix P; will decrease in value.

A further consequence of the growth of the number of observations is that the filter gain
k¢ will diminish at ¢t increases. This implies that the impact of successive prediction errors
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upon the estimate of 3 will diminish as the amount of information already incorporated
in the estimate increases.

If there is doubt about the constancy of the regression parameter, then it may be
desirable to give greater weight to the more recent data; and it might even be appropriate
to discard data which has reached a certain age and has passed its date of expiry.

One way of accommodating parametric variability is to base the estimate on only the
most recent portion of the data. As each new observation is acquired another observation
may be removed so that, at any instant, the estimator comprises only n points. Such an
estimator has been described as a rolling regression. Implementations are available in the
recent versions of the more popular econometric computer packages such as Microfit 3.0
and PCGive.

It is a simple matter to extend the algorithm of the previous section to produce a
rolling regression. The additional task is to remove the data which was acquired at time
t —n. The first step is to adjust the moment matrix to give o2P; ™! = R S T A
The matrix inversion formula indicates that

b= (Pt_—ll — 0 mp )T

/ 2\—1 ./
=P — Pamin(@_ Pt —07) my_ P,

(25)

Next, an intermediate estimate b, which is based upon the reduced information, is ob-
tained from b;_; via the formula

(26) bi =bi1— 0 2P e (Yem — T be1)
=b1— Po1my (T Pr1Ti—py — 02) T (Yp—n — Ty bi—1).

This formula can be understood by considering the inverse problem of obtaining b;_1 from
b} by the addition of the information from time ¢t — n. A rearrangement of the resulting
expression for b;_; gives the initial expression for b; under (26). Finally, the estimate by,
which is based on the n data points xy,...,x;—pn41, is obtained from the formula under
(23) by replacing b;_; with b) and P,_; with P/.

Discarding observations which have passed a date of expiry is an appropriate procedure
when the processes generating the data are liable, from time to time, to undergo sudden
structural changes. For it ensures that any misinformation which is conveyed by the data
which predate the structural change will not be kept on record permanently. However, if
the processes are expected to change gradually in a more or less systematic fashion, then
a gradual discounting of old data may be more appropriate. An exponential weighting
scheme applied to the data might serve this purpose.

Let the rate at which the data is discounted be given by a parameter A € (0,1]. Then,
in place of the expression for P; under (24), we should have

P, = (/\Pt__l1 + U*tha:;)*l
(27) 1

= X{Pt_l — Pt_let(,T;Pt_lxt + )\0'2)—11'75Pt_1}.

The formula for the parameter estimate would be

(28) bt = bt—l + Pt_ll't(ZE;:Pt_llEt + )\0'2)_1(:(/ — l’;bt_l).
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It is curious that econometric packages mentioned above have implemented rolling regres-
sion but not exponentially-weighted regression.

A wide variety of techniques for shaping the memory of the recursive least-square
algorithm may be devised. However, it is clear that such formulations are essentially
pragmatic, and one might wish for a theoretical basis from which to develop the algorithms.
The basis is provided by the fully-fledged Kalman filter.

The elaboration of the recursive least-square model which is required in order to
achieve the generality of the Kalman filter is the addition of a process which describes the
variation of the parameter vector 3. Such a process might be described by the equation

(29) By = ®B—1 + 14,

which represents a Markov scheme.



