THE STATISTICAL PROPERTIES OF THE OLS ESIMATOR: UNBIASEDNESS AND EFFICIENCY

Some Statistical Properties of the Estimator

The expectation or mean vector of $\hat{\beta}$, and its dispersion matrix as well, may be found from the expression

(1)
$$\hat{\beta} = (X'X)^{-1}X'(X\beta + \varepsilon)$$
$$= \beta + (X'X)^{-1}X'\varepsilon.$$

The expectation is

(2)
$$E(\hat{\beta}) = \beta + (X'X)^{-1}X'E(\varepsilon) = \beta.$$

Thus $\hat{\beta}$ is an unbiased estimator. The deviation of $\hat{\beta}$ from its expected value is $\hat{\beta} - E(\hat{\beta}) = (X'X)^{-1}X'\varepsilon$. Therefore the dispersion matrix, which contains the variances and covariances of the elements of $\hat{\beta}$, is

(3)

$$D(\hat{\beta}) = E\left[\{\hat{\beta} - E(\hat{\beta})\}\{\hat{\beta} - E(\hat{\beta})\}'\right]$$

$$= (X'X)^{-1}X'E(\varepsilon\varepsilon')X(X'X)^{-1}$$

$$= \sigma^2(X'X)^{-1}.$$

The Gauss–Markov theorem asserts that $\hat{\beta}$ is the unbiased linear estimator of least dispersion. This dispersion is usually characterised in terms of the variance of an arbitrary linear combination of the elements of $\hat{\beta}$, although it may also be characterised in terms of the determinant of the dispersion matrix $D(\hat{\beta})$. Thus

(4) If $\hat{\beta}$ is the ordinary least-squares estimator of β in the classical linear regression model, and if β^* is any other linear unbiased estimator of β , then $V(q'\beta^*) \geq V(q'\hat{\beta})$ where q is any constant vector of the appropriate order.

Proof. Since $\beta^* = Ay$ is an unbiased estimator, it follows that $E(\beta^*) = AE(y) = AX\beta = \beta$ which implies that AX = I. Now let us write $A = (X'X)^{-1}X' + G$. Then AX = I implies that GX = 0. It follows that

(5)
$$D(\beta^*) = AD(y)A' = \sigma^2 \{ (X'X)^{-1}X' + G \} \{ X(X'X)^{-1} + G' \} = \sigma^2 (X'X)^{-1} + \sigma^2 GG' = D(\hat{\beta}) + \sigma^2 GG'.$$

PROPERTIES OF THE OLS ESIMATOR

Therefore, for any constant vector q of order k, there is the identity

(6)
$$V(q'\beta^*) = q'D(\hat{\beta})q + \sigma^2 q'GG'q$$
$$\geq q'D(\hat{\beta})q = V(q'\hat{\beta});$$

and thus the inequality $V(q'\beta^*) \ge V(q'\hat{\beta})$ is established.

Estimating the Variance of the Disturbance

The principle of least squares does not, of its own, suggest a means of estimating the disturbance variance $\sigma^2 = V(\varepsilon_t)$. However it is natural to estimate the moments of a probability distribution by their empirical counterparts. Given that $e_t = y_t - x_t \hat{\beta}$ is an estimate of ε_t , it follows that $T^{-1} \sum_t e_t^2$ may be used to estimate σ^2 . However, it transpires that this is biased. An unbiased estimate is provided by

(7)
$$\hat{\sigma}^{2} = \frac{1}{T-k} \sum_{t=1}^{T} e_{t}^{2}$$
$$= \frac{1}{T-k} (y - X\hat{\beta})' (y - X\hat{\beta}).$$

The unbiasedness of this estimate may be demonstrated by finding the expected value of $(y - X\hat{\beta})'(y - X\hat{\beta}) = y'(I - P)y$. Given that $(I - P)y = (I - P)(X\beta + \varepsilon) = (I - P)\varepsilon$ in consequence of the condition (I - P)X = 0, it follows that

(8)
$$E\{(y-X\hat{\beta})'(y-X\hat{\beta})\} = E(\varepsilon'\varepsilon) - E(\varepsilon'P\varepsilon).$$

The value of the first term on the RHS is given by

(9)
$$E(\varepsilon'\varepsilon) = \sum_{t=1}^{T} E(e_t^2) = T\sigma^2.$$

The value of the second term on the RHS is given by

(10)

$$E(\varepsilon'P\varepsilon) = \operatorname{Trace} \{ E(\varepsilon'P\varepsilon) \} = E \{ \operatorname{Trace}(\varepsilon'P\varepsilon) \} = E \{ \operatorname{Trace}(\varepsilon\varepsilon'P) \}$$

$$= \operatorname{Trace} \{ E(\varepsilon\varepsilon')P \} = \operatorname{Trace} \{ \sigma^2 P \} = \sigma^2 \operatorname{Trace}(P)$$

$$= \sigma^2 k.$$

The final equality follows from the fact that $\operatorname{Trace}(P) = \operatorname{Trace}(I_k) = k$. Putting the results of (9) and (10) into (8), gives

(11)
$$E\{(y - X\hat{\beta})'(y - X\hat{\beta})\} = \sigma^2 (T - k);$$

and, from this, the unbiasedness of the estimator in (7) follows directly.