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MAXIMUM-LIKELIHOOD AND THE CLASSICAL LINEAR MODEL

Consider the classical regression model

(1) yt = xt1β1 + xt2β2 + · · ·+ xtkβk + εt,

where t = 1, . . . , T is the index for T successive observations. Let us assume
that the disturbances εt are distributed normally, independently and identically
with E(εt) = 0 and V (εt) = σ2 for all t. The equation above can be written in
summary form as

(2)
yt = xt.β + εt,

where xt. = [xt1, xt1 . . . xt1],
and β = [β1, β2, · · · , βk]′;

and the set of T such equations can be compiled as

(3) y = Xβ + ε.

Let us assume that the disturbances εt, which are the elements of the vector
ε = [ε1, ε2, . . . , εt]′, are distributed independently and identically according to
a normal distribution

(4) N(εt; 0, σ2) =
1√

2πσ2
exp

{ −1
2σ2

(yt − xt.β)2

}
.

Then, if the the vectors xt. are taken as data, the observations yt; t = 1, . . . , T
have density functions N(yt;xt.β, σ2) which are of the same form as those of
the disturbances, and the likelihood function of β and σ2, based on the sample,
is

(5) L =
T∏
T=1

N(yt;xt.β, σ2) = (2πσ2)−T/2 exp
{ −1

2σ2
(y −Xβ)′(y −Xβ)

}
.

The logarithm of this function

(6) L∗(β, σ) = −T
2

ln(2π)− T

2
ln(σ2)− 1

2σ2
(y −Xβ)′(y −Xβ);

and, in order to pursue the theory of maximum-likelihood estimation, we need
to find the first and second-order derivatives of L∗ with respect to its arguments
which are the unknown parameters. The requisite derivatives are as follows:
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∂L∗

∂β
=

1
σ2

(y −Xβ)′X,(7)

∂L∗

∂σ2
= − T

2σ2
+

1
2σ4

(y −Xβ)′(y −Xβ),(8)

∂(∂L∗/∂β)′

∂β
= − 1

σ2
X ′X,(9)

∂(∂L∗/σ2)′

∂σ2
=

T

2σ4
− 1
σ6

(y −Xβ)′(y −Xβ),(10)

∂(∂L∗/β)′

∂σ2
= − 1

σ4
X ′(y −Xβ).(11)

To find the maximum-likelihood estimator of β, we set the derivative of equation
(7) to zero. This gives a first-order condition for the maximisation of the log-
likelihood function; and the solution of the equation is the estimator

(12) β̃ = (X ′X)−1X ′y.

This is nothing but the ordinary least-squares estimator of β which is usually
denoted by β̂.

To find the maximum-likelihood estimator of σ2, we set the derivative of
equation (8) to zero. Then we multiply the resulting first-order condition by a
factor of 2σ4/T . Rearranging the result gives a maximum-likelihood estimating
equation in the form of

(13) σ2(β) =
1
T

(y −Xβ)′(y −Xβ).

Setting β = β̃ gives an estimator for σ2 which differs from the usual unbiased
estimator which is

(14) σ̂2 =
1

T − k (y −Xβ̂)′(y −Xβ̂).

However, the differences between σ̃2 and σ̂2 vanish as T →∞.
The theory of maximum-likelihood estimation indicates that, if θ̃ is the

maximum-likelihood estimator, which is obtained by evaluating the first-order
condition ∂L∗/∂θ for the maximisation of the log-likelihood function L∗(θ) =
lnL(θ), then

√
T (θ̃ − θ) has the limiting normal distribution N(0,M), where

(15) M = −plim
{

1
T

∂(∂L∗/∂θ)′

∂θ

}−1

.
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Here the derivatives may be evaluated at the point of the maximum-likelihood
estimates which is know to tend in probability to the true parameter value θ
as the size of the sample increases.

In the present case, we need to find the limits derivatives under (9) (10)
and (11) scaled by the factor T−1. With β = β̂ = (X ′X)−1X ′y, the numerator
of equation (11) becomes X ′(y−Xβ̂) = X ′e = 0; and so the term can be set to
zero. When the LHS of equation (10) is divided by T and β is set to β̃, it will be
recognised that the equation incorporates the expression (y−Xβ̃)′(y−Xβ̃)/T =
σ̃2 which stands from the consistent maximum-likelihood estimator of σ2. The
latter is subject to the condition that plim(T → ∞)σ̃2 = σ2. Finally, it will
be recognised that, under standard assumptions, plim(T−1X ′X) = Mxx is a
matrix of finite-valued constants. The conclusion is that

plim
1
T

∂(∂L∗/∂β)′

∂β
= − 1

σ2
M,(16)

plim
1
T

∂(∂L∗/σ2)′

∂σ2
=

1
2σ4
− 1
σ4
,(17)

plim
1
T

∂(∂L∗/β)′

∂σ2
= 0.(18)

It follows that, in the case of the classical linear regression model, we have

(19) M =

[
Mββ Mβσ

Mσβ Mσσ

]
=

[
Mxx/σ

2 0

0 1/(2σ4)

]−1

.

This gives the asymptotic dispersion matrix for
√
T β̃ and

√
T σ̃2. In finite

samples, the dispersion matrix for β̃ and σ̃2 may be approximated by

(20) D

(
β̃
σ̃2

)
=

[
σ2(X ′X)−1 0

0 2σ4/T

]
.

This may be compared with the dispersion matrix of the ordinary least-squares
estimates under conditions of normality, which is given by

(21) D

(
β̂
σ̂2

)
=

[
σ2(X ′X)−1 0

0 2σ4/(T − k)

]
.
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