D.S.G. POLLOCK: TOPICS IN ECONOMETRICS

LAGGED DEPENDENT VARIABLES AND
AUTOREGRESSIVE DISTURBANCES

Models with Lagged-Dependent Variables

The reactions of economic agents, such as consumers or investors, to changes in their envi-
ronment resulting, for example, from changes in prices or incomes, are never instantaneous.
The changes are likely to be distributed over time; and positions of equilibrium, if they
are ever attained, are likely to be approached gradually.

The slowness to respond may be due to two factors. In the first place, there will be
time delays in the transmission and the reception of the information upon which the agents
base their actions. In the second place, costs will be entailed in the process of adapting
to the new circumstances; and these costs are liable to be positively related to the speed
and to the extent of the adjustments. For these reasons, it is appropriate to make some
provision in econometric equations for dynamic responses which are distributed over time.

The easiest way of setting an econometric equation in motion is to introduce an
element of feedback. This is done by including one or more lagged values of the dependent
variable on the right-hand side of the equation to stand in the company of the other
explanatory variables. It transpires that, if the current disturbance is unrelated to the
lagged dependent variables, then the standard results concerning the consistency of the
ordinary least-squares regression procedure retain their validity. This is despite the fact
that we can no longer assert that the ordinary least-square estimates of the parameters
are unbiased in finite samples.

If the current disturbances and the lagged-dependent variables which are included on
the RHS of a dynamic regression equation are not unrelated, then the resulting parameter
estimates are liable to suffer from considerable biases. The biases are worst when the
variance of the disturbance process is large relative to the variances of the explanatory
variables.

The essential nature of the problem can be illustrated via a simple model which
includes only a lagged dependent variable and which has no other explanatory variables.
Imagine that the disturbances follow a first-order autoregressive process. Then there are
two equations to be considered. The first of these is the regression equation

(1) y(t) =y(t—1)B+n(t),  where |§] <1,
and the second is the equation
(2) n(t) =pn(t —1)+e(t),  where |p| <1,

which describes the autoregressive disturbance process. Here ¢(t) stands for an unob-
servable white-noise process which generates a sequence of independently and identically
distributed random variables which are assumed to be independent of the elements of y(t)
which precede them in time. The conditions on the parameters § and p are necessary to
ensure the stability of the model. That is to say, they are necessary conditions for the
attainment of a long-run equilibrium in the dynamic response.
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Equations (1) and (2), it will be observed, have the same mathematical form. Using
the lag operator L, we may rewrite them, in slightly different forms, as

(3) (I =BL)y(t) =n(t) and n(t) = — L
Combining the latter gives

(4) (I —pL)(I = BL)y(t) = {I = (p+ B)L + pBL*}y(t) = &(t).
This is a special case of the equation

(5) (I — BLL — BaL?)y(t) = e(t)

which relates to the regression of the sequence y(t) on itself lagged by one and by two
periods. The only restriction which is entailed by writing the equation in the form of
(4) derives from the implication that p and [ are real-valued coefficients. In the case of
equation (5), the corresponding values A1 and A2, which would be obtained by factorising
the the polynomial

(6) 1+ Bz + oz = (1 — Mi2)(1 — A22),

might be complex numbers. In that case, the two equations (4) and (5) would have different
implications regarding their dynamic responses to the disturbances in &(t).

Now consider the effect of fitting a model with a single lagged value from the sequence
y(t) in the role of the explanatory variable. This can be described as the endeavour to
estimate the parameter ( of equation (1) by applying ordinary least-squares regression to
the equation whilst overlooking the serially correlated nature of the disturbance sequence
n(t).

Both y(t) and n(t) are serially correlated sequences which are linked to each other
via equation (1). Therefore the current elements of 7(t) will be correlated with both past,
current and future values of y(¢). This means that the essential condition on which the
consistency of the ordinary least-squares estimator depends is violated.

On substituting the expression y; = (p + B)yt—1 — pBY+—2 + & from (4) into the
regression formula, we derive the following expression for the estimate:
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It is straightforward to take limits in the expression as the sample size T' increases. Let
B8 — 6 as T — oo. Then the equation above becomes the equation

b=
(7)

(8) 5= (B+ p) — Bpd.
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The final term on the RHS of (7) vanishes since, according to the assumptions, the elements
of £(t) are uncorrelated with elements of y(¢) which precede them in time. Rearranging
equation (8) gives the result that

5— p+ 5
1+pB

(9)

Notice that the expression for ¢ is symmetric with respect of p and . However,
we have tended to regard (3 as the regression parameter and p as the parameter of an
autoregressive disturbance process. This distinction now appears to be false. However, if
y(t — 1) on the RHS of equation (1) were standing in the company of another explanatory
variable, say z(t), then the distinction would be a valid one.

Now let us imagine, for the sake of argument, that p — 0. Then it is clear that § — (.
Since the variance of the process 1(t) is related positively to the value of p, it can be said
that the bias in 3 is directly related to the variance of the serially-correlated disturbance
process. Exactly the same result obtains when y(¢ — 1) is accompanied in the regression
equation by other explanatory variables.



