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THE GAUSS–MARKOV THEOREM

The Gauss–Markov theorem asserts that the ordinary least-squares estimator
β̂ = (X ′X)−1X ′y of the parameter β in the classical linear regression model (y;Xβ, σ2I)
is the unbiased linear estimator of least dispersion. This dispersion is usually characterised
in terms of the variance of an arbitrary linear combination of the elements of β̂, although
it may also be characterised in terms of the determinant of the dispersion matrix D(β̂).
Thus,

The Gauss-Markov Theorem. If β̂ is the ordinary least-squares estimator of β in
the classical linear regression model (y;Xβ, σ2I), and if β∗ is any other linear unbiased
estimator of β, then V (p′β∗) ≥ V (p′β̂), where p is any constant vector of the appropriate
order.

Proof. Since β∗ = By is an unbiased estimator, it follows that E(β∗) = BE(y) = BXβ =
β, which implies that BX = I. Now let us write B = (X ′X)−1X ′ + G. Then BX = I
implies that GX = 0. It follows that

(1)

D(β∗) = BD(y)B′

= σ2
{

(X ′X)−1X ′ +G
}{
X(X ′X)−1 +G′

}
= σ2(X ′X)−1 + σ2GG′

= D(β̂) + σ2GG′.

Therefore, for any constant vector p of order k, there is the identity

(2)
V (p′β∗) = p′D(β̂)p+ σ2p′GG′p

≥ p′D(β̂)q = V (p′β̂);

and thus the inequality V (p′β∗) ≥ V (p′β̂) is established.

The tactic of taking arbitrary linear combinations of the elements of β̂ is to avoid the
difficulty inherent in the fact that β̂ is a vector quantity for which there is no uniquely
defined measure of dispersion. An alternative approach, which is not much favoured, is to
use the generalised variance that is provided by the determinant of the D(β). A version
of the Gauss–Markov Theorem that uses this measure can also be proved.

It is worthwhile to consider an alternative statement and proof of the theorem, which
also considers the variance of an arbitrary linear combination of the elements of β̂.

The Gauss–Markov Theorem. (An Alternative Statement). Let q′y be a linear
estimator of the scalar function p′β of the regression parameters in the model (y;Xβ, σ2I).
Then q′y is an unbiased estimator, such that E(q′y) = q′E(y) = q′Xβ = p′β for all β, if
and only if q′X = p′. Moreover, q′y has the minimum variance in the class of all unbiased
linear estimators if and only if

(3) q′y = q′X(X ′X)−1X ′y = p′(X ′X)−1X ′y.
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Therefore, since p is arbitrary, it can be said that β̂ = (X ′X)−1X ′y is the minimum
variance unbiased linear estimator of β.

Proof. It is obvious that q′X = p′ is the necessary and sufficient condition for q′y to be an
unbiased estimator of p′β. To find the unbiased estimator of minimum variance, consider
the following criterion:

(4)
Minimise V (q′y) = q′D(y)q = σ2q′q

Subject to E(q′y) = p′β or, equivalently X ′q = p.

To evaluate the criterion, we form the following Lagrangean expression:

(5) L = q′q − 2λ′(X ′q − p).

Differentiating with respect to q and setting the results to zero gives, after some rearrange-
ment, the condition

(6) q′ = λ′X ′.

Postmultiplying by X gives q′X = p′ = λ′X ′X, whence

(7) λ′ = q′X(X ′X)−1 = p′(X ′X)−1.

On postmultiplying (6) by y and on substituting the expression for λ′, we get

(8)
q′y = q′X(X ′X)−1X ′y

= p′(X ′X)−1X ′y = p′β̂,

which proves the second part of the theorem.
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