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THE CONDITIONAL AND UNCONDITIONAL MODELS
OF FACTOR ANALYSIS AND THE NUMERICAL

SOLUTION OF THEIR ESTIMATING EQUATIONS

The purpose of this note is to compare and to contrast the estimating equations
of the conditional and the unconditional models of factor analysis.

The Models

The basic equation underlying both of the models of factor analysis can be
written as

(1) yt. = µt. + ηt.; t = 1, . . . , T.

Here, yt. is a row vector of observations on G variables, µt. is vector of unob-
served systematic variables and ηt. is a vector of disturbances. It is assumed
that successive disturbance vectors are uncorrelated and that

(2) E(ηt.) = 0 and D(ηt.) = Ω,

where Ω = diag{ω1, . . . , ωM} is a diagonal matrix. It is assumed that the
systematic vector µt. is generated by K = G− J latent factors such that

(3) µt. = ξt.B
′; t = 1, . . . , T,

where ξt. is a row vector of K factors and B is a matrix of order G × K of
Rank(B) = K comprising the factor loadings.

In the conditional model, the unobserved factors ξt. are regarded s fixed
quantities. In the unconditional model, they have a statistical distribution such
that

(4) E(ξt.) = 0 and D(ξt.) = Φ.

It is common practice, when dealing with the unconditional model, to set Φ = I.
However, we shall assume that both Ω and Φ are diagonal matrices with G
elements which have positive values.

For ease of notation, the T realisations of the relationships of (1) and (3)
are compiled to give the following matrix equations:

(5) Y = M +H, M = ΞB′.

Here Y , M and H are matrices of order T ×G which comprise, respectively, the
realisations of yt., µt. and ηt., whilst Ξ is a matrix of order T ×K comprising
the values of the factors ξt.
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The Estimating Equations of the Conditional Model

On the assumption that the disturbance vector is normally distributed, we may
write the likelihood function of the conditional model as

(6) L(B,Ω) = (2π)−GT/2|Ω|T/2 exp{1
2

Trace(Y −M)′(Y −M)Ω−1}.

The criterion for estimating B is to find the value which minimises

(7) Trace{(Y − ΞB′)′(Y − ΞB′)Ω−1} = (Y − ΞB′)c
′
(Ω−1 ⊗ I)(Y − ΞB′)c,

The first step towards minimising the function is to find an expression for the
minimising value of M = ΞB′ when B is given. The value is

(8) ΞB′ = Y Ω−1B(B′Ω−1B)−1)B′.

Putting this into (7) indicates that the criterion function takes the form of

(9)
Trace{[I −B(B′Ω−1B)−1B′Ω−1]Y ′Y [I − Ω−1B(B′Ω−1B)−1B′]Ω−1}
= Trace{Y ′Y Ω−1 − Y ′Y Ω−1B(B′Ω−1B)−1)B′Ω−1}

In order to identify a unique estimate of B, it is necessary to specify some fur-
ther aspects of this matrix. Therefore, the following normalisation is imposed:

(10) B′Ω−1B = I.

In that case, the criterion function for estimating B, which is derivable from
(9), takes the form of

(11) L(B) = Trace{B′Ω−1Y ′Y ′Ω−1B} − Trace{ΛB′Ω−1B},

where Λ is a diagonal matrix of Lagrangean multipliers. Differentiating the
function with respect to Bc—the long vector formed from B—gives

(12)
∂L

∂Bc
= (B′Ω−1Y ′Y ′Ω−1)r + (Ω−1Y ′Y ′Ω−1B)rK

+ (ΛB′Ω−1)r + (Ω−1BΛ)rK,

where the symbol r denotes the operation of forming a row vector from the rows
of a matrix and K stands for the tensor commutator defined by ArK = A′r.

On setting the derivative to zero, we obtain, via some minor manipulations,
the equation

(13) Y ′Y Ω−1B = BΛ,

which is the estimating equation for B.
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In order to find an estimate of Ω, we must consider the criterion function

(14) L(Ω) = −T log |Ω| − Trace{(Y −M)′(Y −M)Ω−1},

which is derivable from (6) by taking logarithms. Let ω = [ω11, ω22, . . . , ωMM ]
be the vector of the diagonal elements of Ω = Ω(ω). Then, by using a chain
rule to differentiate the function in respect of ω, we get

(15)
∂L

∂ω
−−TΩr

∂(Ω−1)c

∂ω
+ {(Y −M)′(Y −M)}r ∂(Ω−1)c

∂ω
.

By setting this derivative to zero, we can obtain an equation which can be
written as

(16) TΩ(ω) = diag{(Y −M)′(Y −M)}.

By using the condition B′Ω−1B = I , we can obtain from (8) the expression

(17) M = ΞB′ = Y Ω−1BB′.

Substituting the latter into (16) gives

(17)

TΩ(ω) = diag{Y ′Y − Y ′Y Ω−1BB′ −BB′Ω−1Y ′Y

+BB′Ω−1Y ′Y Ω−1BB′}
= diag{Y ′Y −BΛB′},

where the second equality follows from using the condition under (13) which
also implies that Λ = B′Ω−1Y ′Y Ω−1B.

Thus, by gathering equations (13) and (17), it can be seen that the esti-
mating equations of the conditional model of factor analysis are given by

(19)
Y ′Y Ω−1B = BΛ, Λ = B′Ω−1Y ′Y Ω−1B

TΩ = diag{Y ′Y −BΛB′}.

The Estimating Equations of the Unconditional Model

The basic equation of the model can be written as

(20) yt. = ξt.B
′ + ηt.; t = 1, . . . , T.

Under the assumptions of the unconditional model, the dispersion matrix of yt.
becomes

(21)
D(yt.) = B(ξt.)B′ +D(ηt.)

= BΦB′ + Ω.
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Under the assumption that ξt. and ηt. are normally distributed, the likelihood
function of the unconditional model can be written as

(22) L(B,Φ,Ω) = (2π)MT/2|BΦB′|T/2 exp{1
2

Trace[Y ′Y (BΦB′ + Ω)−1]}.

The parameters can be estimated by finding the values which minimise the
function

(23) L = −T log |BΦB′| − Trace[Y ′Y (BΦB′ + Ω)−1.

Differentiating with respect to Bc gives

(24)
∂L

∂Bc
= −2T{ΦB′(NΦB′)−1}r + 2{ΦB′(BΦB′)−1Y ′Y ΦB′(NΦB′)−1}r.

Setting this to zero and rearranging gives the first-order condition

(25) T−1Y ′Y (BΦB′ + Ω)−1B = B.

Now consider the identity

(26) (BΦB′ + Ω)−1 = Ω−1 − Ω−1B(B′Ω−1B + Φ−1)−1B′Ω−1.

By using the condition B′Ω−1B = I and the fact that

(27) {Φ(I − Φ−1)}{I − (I − Φ−1)−1} = I,

it can be see that

(28)

(BΦB′ + Ω)−1B = Ω−1B{I − (B′Ω−1B + Φ−1)B′Ω−1B}
= Ω−1B{I − (I + Φ−1)−1}
= Ω−1B(I − Φ)−1.

On substituting this result in (25), we get

(29) T−1Y ′Y Ω−1B(I − Φ)−1 = B,

or simply

(30) T−1Y ′Y Ω−1B = B(I − Φ),

which represents the estimating equation for B.
Now consider differentiating the criterion of (23) in respect of Ωc. This

gives
(31)

∂L

∂Ωc
= −T (BΦB′ + Ω)−1r − Y ′Y ∂(BΦB′ + Ω)−1c

∂Ωc

= −T (BΦB′ + Ω)−1r − (Y ′Y )r{(BΦB′ + Ω)−1c ⊗ (BΦB′ + Ω)−1c}
= −T (BΦB′ + Ω)−1r − {(BΦB′ + Ω)−1Y ′Y (BΦB′ + Ω)−1}r.
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Using this derivative in the condition

(32)
∂L

ω
=
∂L

Ωc
∂Ωc

ω
= 0

results in the following estimating equation:

(33) TΩ = diag{Y ′Y − TBΦB′}.

Now consider differentiating the criterion function in respect of Φ. This
gives

(34)

∂L

∂Φc
= −T (BΦB′ + Ω)−1r(B ⊗B)

+ (Y ′Y )r{(BΦB′ + Ω)−1 ⊗ (BΦB′ + Ω)−1}(B ⊗B)

= −T{B′(BΦB′ + Ω)−1B}r

+ T{B′(BΦB′ + Ω)−1Y ′Y (BΦB′ + Ω)−1B}r.

The estimating equation for Φ is derived from the condition that

(35) diag{T B′(BΦB′+Ω)−1B−B′(BΦB′+Ω)−1Y ′Y (BΦB′+Ω)−1B} = 0.

Using the identity of (28) and the condition that B′Ω−1B = I, this can be
written as

(36) diag{T (I+ Φ)−1 + Ω)−1B− (I+ Φ)−1B′Ω)−1Y ′Y Ω)−1B(I+ Φ)−1} = 0.

Since I + Φ is diagonal if Φ is diagonal, this is simply

(37) T (I + Φ) = B′Ω−1Y ′Y Ω−1B = Λ.

By gathering the equations (30), (33) and (37), it can be seen that the esti-
mating equations of the unconditional model of factor analysis are given by

(19)
Y ′Y Ω−1B = TB(I + Φ) = B′Λ, Λ = B′Ω−1Y ′Y Ω−1B,

TΩ = diag{Y ′Y − TBΦB′}.

Comparison with the equations under (19) shows that the estimating equations
for the conditional model and the unconditional model differ only in respect of
the estimator of the dispersion matrix Ω of the disturbances.
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