
D.S.G. POLLOCK: TOPICS IN ECONOMETRICS

THE ERRORS IN VARIABLES MODEL
AND THE LINEAR REGRESSION MODEL

Imagine that the variables ξ1, ξ2 have an exact linear relationship

(1) ξ1β1 + ξ2β2 = α.

Imagine also that, instead of observing these variables, we observe

(2) y1 = ξ1 + η1 and y2 = ξ2 + η2,

where η1 and η2 are errors of observation which are distributed independently
of each other and of the true values ξ1 and ξ2. We shall assume that

(3) E(ηi) = 0, V (ηi) = ωii and C(ηi, ηj) = ωij ,

where i, j = 1, 2.
The equations of (1) and (2) may be combined to give

(4) (y1 − η1)β1 + (y2 − η2)β2 = α.

The object is to find expressions for the parameters α, β1 and β2 which
are in terms of the variances and covariances of the observations y1, y2 and of
the errors which afflict them.

We shall begin the search for these estimators by resorting to the method
of moments. The approach is similar to one which we have applied to the
simple regression model. Later, we shall develop a least-squares estimator. A
maximum-likelihood estimator is also available.

Multiplying (4) by y1 and taking expectations gives

(5)
{
E(y2

1)− E(y1η1)
}
β1 +

{
E(y1y2)− E(y1η2)

}
β2 = E(y1)α.

From the assumption that the error ηj and the true value ξi are statistically
independent, whether or not the subscripts i and j agree, it follows that

(6) E(yiηj) = E
{

(ξi + ηi)ηj
}

= E(ηiηj) = ωij .

Therefore (5) can be written as

(7)
{
E(y2

1)− ω11

}
β1 +

{
E(y1y2)− ω12

}
β2 = E(y1)α.

Taking expectations in equation (1) gives

(8) E(y1)β1 + E(y2)β2 = α,
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and, on multiplying both sides of this by E(y1), we get

(9)
{
E(y1)

}2
β1 + E(y1)E(y2)β2 = E(y1)α.

On taking (9) from (7) we get

(10)
{
V (y1)− ω11

}
β1 +

{
C(y1, y2)− ω12

}
β2 = 0,

where we have used

(11)
V (y1) = E(y2

1)−
{
E(y1)

}2 and

C(y1, y2) = E(y1y2)− E(y1)E(y2).

By premultiplying equation (4) by y2 and taking expectations, and by
performing the same set of manipulations as before, we can get

(12)
{
C(y2, y1)− ω21}β1 +

{
V (y2)− ω22

}
β2 = 0.

Putting (10) and (12) together gives a system of homogeneous equations:

(13)

{[
V (y1) C(y1, y2)

C(y2, y1) V (y2)

]
−
[
ω11 ω12

ω21 ω22

]}[
β1

β2

]
=

[
0

0

]
.

This pair of equations cannot be solved uniquely for both β1 and β2. In
other words, the vector β′ = [β1, β2] is determined only up to a factor of
proportionality. Therefore an arbitrary normalisation must be imposed. One
possibility is to set β2

1 + β2
2 = 1. Another is to set β1 = −1 or β2 = −1 which

is to give one or other of y1 and y2 the role of the dependent variable.
Once values for β1 and β2 have been obtained, the value of α is given by

equation (8).
The foregoing solution depends upon our knowing the precise values of the

moments within equation (13). When the moments of y1 and y2 are unknown,
they may be estimated from a sample of observations (y1, y2)t; t = 1, . . . , T .
The estimates are

(14)

s11 =
1
T

∑
(y1t − ȳ1)2,

s22 =
1
T

∑
(y2t − ȳ2)2,

s21 =
1
T

∑
(y2t − ȳ2)(y1t − ȳ1).
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The errors are not directly observable; and there is, as yet, no indication
of how their moments might be estimated. For the present, we shall assume
that these are given in prior knowledge.

When the unknown moments of y1 and y2 are replaced by their empirical
counterparts, the system will almost certainly become algebraically inconsis-
tent; which means that it can have no solution. To render the system solvable,
we must interpolate an additional element λ so as form

(15)

{[
s11 s12

s21 s22

]
− λ

[
ω11 ω12

ω21 ω22

]}[
β1

β2

]
=

[
0

0

]
.

The factor λ should be given the value closest to unity which will reconcile
the two equations. This value will converge to unity as the empirical moments
converge to the true values.

We shall refer to equation (15) as the errors-in-variables estimator.
To see how λ may be determined, let us assume, for the sake of simplicity,

that the two errors η1, η2 are uncorrelated, so that ω12 = ω21 = 0, and that
they have equal variance, so that ω11 = ω22. Then the value of the common
variance need not be specified, since it may be absorbed in the value of λ. The
resulting equation system is

(16)

{[
s11 s12

s21 s22

]
− λ

[
1 0

0 1

]}[
β1

β2

]
=

[
0

0

]
.

The requirement that the equations should be mutually consistent is equiv-
alent to the condition that

(17)
0 = Det

[
s11 − λ s12

s21 s22 − λ

]

= λ2 − λ(s11 + s22) + (s11s22 − s12s21).

Therefore λ is found as the solution to a quadratic equation.
Once the estimates for β1 and β2 have been determined, the estimate for

α may be obtained from the empirical counterpart of equation (8):

(18) ȳ1β̂1 + ȳ2β̂2 = α̂.

Ordinary Least-Squares Regression as a Limiting Case.

Imagine that the variance of the error η1 is tending to zero. In that case,
the covariance of η1 and η2 must also be tending to zero. With a change
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of notation and with a particular normalisation of the parameter vector, the
limiting form of equation (15) can be written as

(23)

{[
sxx sxy

syx syy

]
− λ

[
0 0

0 σ2

]}[
β

−1

]
=

[
0

0

]
,

where

(24)

sxx =
1
T

∑
(xt − x̄)2,

syy =
1
T

∑
(yt − ȳ)2,

sxy =
1
T

∑
(xt − x̄)(yt − ȳ).

On solving the first equation sxxβ − sxy = 0, we find that

(25) β̂ =
∑

(xt − x̄)(yt − ȳ)
(xt − x̄)2

,

which is nothing but the ordinary least-squares estimator of the regression
parameter in the equation E(y|x)− xβ = α.

In solving the second equation syy − syxβ = λσ2, we are faced with two
unknowns, λ and σ2. If we set λ = 1, then the solution for σ2 is

(26)
σ̂2 =

1
T

∑
(yt − ȳ)2 − 1

T

∑
(yt − ȳ)(xt − x̄)β̂

=
1
T

∑
(yt − ȳ)2 − 1

T

∑
(xt − x̄)2β̂2.

It is straightforward to demonstrate that this formula is equivalent to the for-
mula

(27) σ̂2 =
1
T

∑
(yt − α̂− xtβ̂)2, α̂ = ȳ − β̂x̄,
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