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DIAGONALISATION OF A SYMMETRIC MATRIX

Characteristic Roots and Characteristic Vectors. Let A be an n × n symmetric
matrix such thatA = A′, and imagine that the scalar λ and the vector x satisfy the equation
Ax = λx. Then λ is a characteristic root of A and x is a corresponding characteristic vector.
We also refer to characteristic roots as latent roots or eigenvalues. The characteristic
vectors are also called eigenvectors.

(1) The characteristic vectors corresponding to two distinct characteristic roots
are orthogonal. Thus, if Ax1 = λ1x1 and Ax2 = λ2x2 with λ1 6= λ2, then
x′1x2 = 0.

Proof. Premultiplying the defining equations by x′2 and x′1 respectively, gives x′2Ax1 =
λ1x

′
2x1 and x′1Ax2 = λ2x

′
1x2. But A = A′ implies that x′2Ax1 = x′1Ax2, whence λ1x

′
2x1 =

λ2x
′
1x2. Since λ1 6= λ2, it must be that x′1x2 = 0.

The characteristic vector corresponding to a particular root is defined only up to a
factor of proportionality. For let x be a characteristic vector of A such that Ax = λx.
Then multiplying the equation by a scalar µ gives A(µx) = λ(µx) or Ay = λy; so y = µx
is another characteristic vector corresponding to λ.

(2) If P = P ′ = P 2 is a symmetric idempotent matrix, then its characteristic
roots can take only the values of 0 and 1.

Proof. Since P = P 2, it follows that, if Px = λx, then P 2x = λx or P (Px) = P (λx) =
λ2x = λx, which implies that λ = λ2. This is possible only when λ = 0, 1.

Diagonalisation of a Symmetric Matrix. Let A be an n × n symmetric matrix, and
let x1, . . . , xn be a set of n linearly independent characteristic vectors corresponding to its
roots λ1, . . . , λn. Then we can form a set of normalised vectors

c1 =
x1√
x′1x1

, . . . , cn =
xn√
x′nxn

,

which have the property that

c′icj =
{ 0, if i 6= j;

1, if i = j.

The first of these reflects the condition that x′ixj = 0. It follows that C = [c1, . . . , cn] is
an orthonormal matrix such that C ′C = CC ′ = I.

Now consider the equation A[c1, . . . , cn] = [λ1c1, . . . , λncn] which can also be written
as AC = CΛ where Λ = Diag{λ1, . . . , λn} is the matrix with λi as its ith diagonal elements
and with zeros in the non-diagonal positions. Postmultiplying the equation by C ′ gives
ACC ′ = A = CΛC ′; and premultiplying by C ′ gives C ′AC = C ′CΛ = Λ. Thus A = CΛC ′

and C ′AC = Λ; and C is effective in diagonalising A.
Let D be a diagonal matrix whose ith diagonal element is 1/

√
λi so that D′D = Λ−1

and D′ΛD = I. Premultiplying the equation C ′AC = Λ by D′ and postmultiplying it by
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D gives D′C ′ACD = D′ΛD = I or TAT ′ = I, where T = D′C ′. Also, T ′T = CDD′C ′ =
CΛ−1C ′ = A−1. Thus we have shown that

(3) For any symmetric matrix A = A′, there exists a matrix T such that TAT ′ =
I and T ′T = A−1.

Principal Components of a Symmetric Matrix. The characteristic vectors of a
symmetric matrix may be ordered according to the declining values of their associated
characteristic roots. If A = A′ is a symmetric positive-definite matrix such that x′Ax > 0
for all x, then the characteristic roots are all positive, and the ordered set of characteristic
vectors is apt to be called the principal components of the matrix.

The first principal component is the vector c1 which fulfils the following criterion

(4) Maximise c′Ac subject to c′c = 1.

To fulfil this condition, we should evaluate the following Lagrangean function:

(5) L(c, λ) = c′Ac− λc′c.

Differentiating L with respect to c and setting the result to zero gives a first-order condi-
tion Ac1−λc1 = 0, which is in accordance with the defining condition of the characteristic
vectors and characteristic roots of A. By premultiplying the equation by c′1 and by ob-
serving the condition that c′1c1 = 1, we find that λ1 = c′1Ac1, which is also in accordance
with the previous results.

The second principal component is the vector c2 which fulfils the following criterion:

(6) Maximise c′Ac subject to c′c = 1 and c′c1 = 0.

It is straightforward to show that the vector c2 is the characteristic vector of A which is
associated with the second largest characteristic root.

The characteristic vectors of a symmetric positive-definite matrix are aligned with the
principal axes of the ellipsoid defined by the equation x′Ax = r, where r is a squared
radius, which can be set to unity for convenience. Consider, for example, the criterion

(7) Maximise c′c subject to c′Ac = 1.

This relates to the problem of finding the axis spanned by the vector c where the extent of
ellipsoid is greatest. To fulfil the condition, we should evaluate the following Lagrangean
function:

(8) L(c, λ) = c′c− µc′Ac.

Differentiating L with respect to c and setting the result to zero gives the first-order condi-
tion c− µAc = 0 or, equivalently, Ac− µ−1c = 0, which indicates that c is a characteristic
vector of A. Since c′c = µ, we see that the principal axis of the ellipsoid is aligned with
the characteristic vector which corresponds to the largest value of µ, which is the smallest
characteristic root of A.
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