
FILTERING MACROECONOMIC DATA

Wiener–Kolmogorov Filtering of Stationary Sequences

The classical theory of linear filtering was formulated independently by
Norbert Wiener (1941) and Andrei Nikolaevich Kolmogorov (1941) during
the Second World War. They were both considering the problem of how
to target radar-assisted anti-aircraft guns on incoming enemy aircraft.

The theory has found widespread application in analog and digital signal
processing and in telecommunications in general. Also, it has provided a
basic technique for the enhancement of recorded music.

The classical theory assumes that the data sequences are generated by
stationary stochastic processes and that these are of sufficient length to
justify the assumption that they constitute doubly-infinite sequences.

For econometrics, the theory must to be adapted to cater to short trended
sequences. Then, Wiener–Kolmogorov filters can used to extract trends
from economic data sequences and for generating seasonally adjusted data.
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Consider a vector y with a signal component ξ and a noise component η:

(1) y = ξ + η.

These components are assumed to be independently normally distributed
with zero means and with positive-definite dispersion matrices. Then,

(2)

E(ξ) = 0, D(ξ) = Ωξ,

E(η) = 0, D(η) = Ωη,

and C(ξ, η) = 0.

A consequence of the independence of ξ and η is that

(3) D(y) = Ωξ + Ωη and C(ξ, y) = D(ξ) = Ωξ.

The signal component is estimated by a linear transformation x = Ψxy
of the data vector that suppresses the noise component. Usually, the
signal comprises low-frequency elements and the noise comprises elements
of higher frequencies.
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The Minimum Mean-Squared Error Estimator

The principle of linear minimum mean-squared error estimation indicates
that the error ξ − x in representing ξ by x should be uncorrelated with
the data in y:

(4)
0 = C(ξ − x, y) = C(ξ, y) − C(x, y)

= C(ξ, y) − ΨxC(y, y)
= Ωξ − Ψx(Ωξ + Ωη).

This indicates that the estimate is

(5) x = Ψxy = Ωξ(Ωξ + Ωη)−1y.

The corresponding estimate of the noise component η is

(6) h = Ψhy = Ωη(Ωξ + Ωη)−1y.

It will be observed that Ψξ + Ψη = I and, therefore, that x + h = y.
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Conditional Expectations

In deriving the estimator, we might have used the formula for conditional
expectations. In the case of two linearly related scalar random variables
ξ and y, the conditional expectation of ξ given y is

(7) E(ξ|y) = E(ξ) +
C(ξ, y)
V (y)

{y − E(y)}.

In the case of two vector quantities, this becomes

(8) E(ξ|y) = E(ξ) + C(ξ, y)D−1(y){y − E(y)}.

By setting
C(ξ, y) = Ωξ and D(y) = Ωξ + Ωη,

as in (3), and by setting E(ξ) = E(y) = 0, we get the expression that is
to be found under (5):

x = Ωξ(Ωξ + Ωη)−1y.
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The Difference Operator and Polynomial Regression

The lag operator L, which is commonly defined in respect of a doubly-
infinite sequence x(t) = {xt; t = 0±1,±2, . . .}, has the effect that Lx(t) =
x(t − 1).

The (backwards) difference operator ∇ = 1−L has the effect that ∇x(t) =
x(t)−x(t−1). It serves to reduce a constant function to zero and to reduce
a linear function to a constant. The second-order or twofold difference
operator

∇2 = 1 − 2L + L2

is effective in reducing a linear function to zero.

A difference operator ∇d of order d is commonly employed in the con-
text of an ARIMA(p, d, q) model to reduce the data to stationarity. Then,
the differenced data can be modelled by an ARMA(p, q) process. In such
circumstances, the difference operator takes the form of a matrix trans-
formation.
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Figure 1. The squared gain of the difference operator, which has a zero at zero

frequency, and the squared gain of the summation operator, which is unbounded

at zero frequency.
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The Matrix Difference Operator

The matrix analogue of the second-order difference operator in the case
of T = 5 , for example, is given by

(9) ∇2
5 =

[
Q′

∗
Q′

]
=


1 0 0 0 0
−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

 .

The first two rows, which do not produce true differences, are liable to be
discarded.

The difference operator nullifies data elements at zero frequency and it
severely attenuates those at the adjacent frequencies. This is a disadvan-
tage when the low frequency elements are of primary interest. Another
way of detrending the data is to fit a polynomial trend by least-squares
regression and to take the residual sequence as the detrended data.
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Figure 2. The quarterly series of the logarithms of consumption in the U.K., for

the years 1955 to 1994, together with a linear trend interpolated by least-squares

regression.
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Figure 3. The periodogram of the trended logarithmic data.
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Figure 4. The periodogram of the differenced logarithmic consumption
data.

10



D.S.G. POLLOCK: Filtering Macroeconomic Data

Polynomial Regression

Using the matrix Q′ defined above, we can represent the vector of the
ordinates of a linear trend line interpolated through the data sequence as

(10) x = y − Q(Q′Q)−1Q′y.

The vector of the residuals is

(11) e = Q(Q′Q)−1Q′y.

Observe that this vector contains exactly the same information as the
differenced vector g = Q′y. However, whereas the low-frequency structure
of the data in invisible in the periodogram of the latter, it is entirely visible
in the periodogram of the residuals.
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Figure 5. The periodogram of the residual sequence obtained from the linear

detrending of the logarithmic consumption data.
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Filters for Short Trended Sequences

Applying Q′ to the equation y = ξ + η, representing the trended data,
gives

(12)
Q′y = Q′ξ + Q′η

= δ + κ = g.

The vectors of the expectations and the dispersion matrices of the differ-
enced vectors are

(13)
E(δ) = 0, D(δ) = Ωδ = Q′D(ξ)Q,

E(κ) = 0, D(κ) = Ωκ = Q′D(η)Q.

The difficulty of estimating the trended vector ξ = y − η directly is that
some starting values or initial conditions are required in order to define
the value at time t = 0. However, since η is from a stationary mean-
zero process, it requires only zero-valued initial conditions. Therefore,
the starting-value problem can be circumvented by concentrating on the
estimation of η.
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The conditional expectation of η, given the differenced data g = Q′y, is
provided by the formula

(14)
h = E(η|g) = E(η) + C(η, g)D−1(g){g − E(g)}

= C(η, g)D−1(g)g,

where the second equality follows in view of the zero-valued expectations.

Within this expression, there are

(15) D(g) = Ωδ + Q′ΩηQ and C(η, g) = ΩηQ.

Putting these details into (14) gives the following estimate of η:

(16) h = ΩηQ(Ωδ + Q′ΩηQ)−1Q′y.

Putting this into the equation x = y − h gives

(17) x = y − ΩηQ(Ωδ + Q′ΩηQ)−1Q′y.
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The Leser (H–P) Filter

We now consider two specific cases of the Wiener–Kolmogorov filter. First,
there is the Leser or Hodrick–Prescott filter. This is derived by setting

(18) D(η) = Ωη = σ2
ηI, D(δ) = Ωδ = σ2

δI and λ =
σ2

η

σ2
δ

within (17) to give

(19) x = y − Q(λ−1I + Q′Q)−1Q′y

Here, λ is the so-called smoothing parameter. It will be observed that,
as λ → ∞, the vector x tends to that of a linear function interpolated
into the data by least-squares regression, which is represented by equation
(10):

x = y − Q(Q′Q)−1Q′y.

15



D.S.G. POLLOCK: Filtering Macroeconomic Data

0

0.25

0.5

0.75

1

0 π/4 π/2 3π/4 π

Figure 6. The gain of the Hodrick–Prescott lowpass filter with a smoothing

parameter set to 100, 1,600 and 14,400.
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The Butterworth Filter

The Butterworth filter that is appropriate to short trended sequences can
be represented by the equation

(20) x = y − λΣQ(M + λQ′ΣQ)−1Q′y.

Here, the matrices are

(21) Σ = {2IT − (LT + L′
T )}n−2 and M = {2IT + (LT + L′

T )}n,

where LT is a matrix of order T with units on the first subdiagonal; it can
be verified that

(22) Q′ΣQ = {2IT − (LT + L′
T )}n.

17



D.S.G. POLLOCK: Filtering Macroeconomic Data

0

0.25

0.5

0.75

1

0 π/4 π/2 3π/4 π

Figure 7. The squared gain of the lowpass Butterworth filters of

orders n = 6 and n = 12 with a nominal cut-off point of 2π/3
radians.
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